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Abstract
Current state-of-the-art analyses on the convergence of gradient descent for training neural net-
works focus on characterizing properties of the loss landscape, such as the Polyak-Łojaciewicz
(PL) condition and the restricted strong convexity. While gradient descent converges linearly un-
der such conditions, it remains an open question whether Nesterov’s momentum enjoys accelerated
convergence under similar settings and assumptions. In this work, we consider a new class of objec-
tive functions, where only a subset of the parameters satisfies strong convexity, and show Nesterov’s
momentum achieves acceleration in theory for this objective class. We provide two realizations of
the problem class, one of which is deep ReLU networks, which constitutes this work as the first
that proves an accelerated convergence rate for non-trivial neural network architectures.
Keywords: Momentum, provable acceleration, deep ReLU neural networks

1. Introduction

Training neural networks with gradient-based methods has shown surprising empirical success (Le-
cun et al., 1998; LeCun et al., 2015; Zhang et al., 2017; Goodfellow et al., 2016); yet, it has been a
mystery why such a simple algorithm can consistently find a good minimum for these highly non-
convex objectives (Zhang et al., 2018; Li et al., 2020; Yun et al., 2019; Auer et al., 1995; Safran
and Shamir, 2018). As a consequence of this mysterious phenomenon, an equally, if not more,
intriguing question is why momentum methods, which are designed originally for accelerating the
minimization of convex objectives, can achieve faster convergence speed when applied to compli-
cated non-convex objectives, as that of neural network training.

The advances of the Neural Tangent Kernel (NTK) (Jacot et al., 2020) promoted the theoretical
understanding of neural network training. The use of NTK shows that when the width of the neural
network approaches infinity, the training process can be treated as a kernel machine. Inspired by the
NTK analysis, a large body of work has focused on showing the convergence of gradient descent
for various neural network architectures under finite over-parameterization requirements (Du et al.,
2019b,a; Allen-Zhu et al., 2019b; Zou and Gu, 2019; Zhang et al., 2019; Awasthi et al., 2021; Ling
et al., 2023; Allen-Zhu et al., 2019a; Song and Yang, 2020; Su and Yang, 2019). Yet, this line of
analysis is hard to extend to deeper and more complicated architectures and requires a significantly
larger over-parameterization than what is used in practice.

To resolve this limitation, later work started to build connections between the understanding of
neural network training and the widely studied optimization theory. In particular, a recent line of
work characterizes the loss landscape of neural networks using the local Polyak-Łojaciewicz (PL)
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condition (Song et al., 2021; Liu et al., 2020; Nguyen, 2021; Ling et al., 2023). Based on the well-
established theory of how gradient descent converges under the PL condition (Karimi et al., 2020),
this line of work decouples the neural network structure from the dynamics of the loss function
along the optimization trajectory. This way, these works could perform a more fine-grained analysis
of the relationship between regulatory conditions, such as the PL condition, and the neural network
structure. Such analysis not only resulted in further relaxed over-parameterization requirements
(Song et al., 2021; Nguyen, 2021; Liu et al., 2020) but was also shown to be easily extended to deep
architectures (Ling et al., 2023), suggesting that it is more suitable in practice.

In contrast to the fast-growing research devoted to (stochastic) gradient descent, there is limited
theoretical work on the convergence of momentum methods in deep learning. The acceleration of
both the Heavy Ball method and Nesterov’s momentum is shown only for shallow ReLU networks
(Wang et al., 2021; Liu et al., 2022a) and deep linear networks (Wang et al., 2021; Liu et al., 2022b).
It remains an open question to prove the acceleration for neural network training in a scenario closer
to what is used in practice in terms of both the over-parameterization requirement and the depth and
architecture of the neural network. As a result, we are interested in finding a regulatory condition
for neural networks that enables the accelerated convergence for momentum methods.

Showing acceleration under only the PL condition has been a long-standing difficulty. For
the Heavy Ball method, Danilova et al. (2018) established a linear convergence rate under the PL
condition, but no acceleration is shown without assuming strong convexity. Wang et al. (2022)
proved an accelerated convergence rate; yet, the authors assume the λ⋆-AVERAGE OUT condition,
which cannot be easily justified for complicated objectives like neural networks. To our knowledge,
the convergence proof for Nesterov’s momentum under the PL condition in non-convex settings is
currently missing. In the continuous limit, acceleration is proved in a limited scenario (Apidopoulos
et al., 2022), which does not easily extend to the discrete case (Shi et al., 2022). Finally, Yue
et al. (2022) shows that gradient descent already achieves an optimal convergence rate for functions
satisfying smoothness and the PL condition. This suggests that we need to leverage properties
beyond the PL condition to prove the acceleration of momentum methods in a broader class of
neural networks.

Based on prior work (Liu et al., 2020) that shows over-parameterized systems are essentially
non-convex in any neighborhood of the global minimum, we aim at developing a relaxation to
the (strong) convexity in the non-convex setting that enables the momentum methods to achieve
acceleration. In particular, we consider the minimization of a new class of objectives:

min
x∈Rd1 ,u∈Rd2

f(x,u), (1)

where f satisfies the strong convexity with respect to x, among other assumptions (c.f., Assumption
1-6). Intuitively, our construction assumes that the parameter space can be partitioned into two sets,
and only one of the two sets enjoys rich properties, such as strong convexity. In this paper, we focus
on Nesterov’s momentum since it has been shown in a recent work that the Heavy Ball method
cannot achieve acceleration even for smooth and strongly convex functions (Goujaud et al., 2023).
Indeed, in previous empirical works, Nesterov’s momentum is not only shown to achieve acceler-
ation in neural network training (Sutskever et al., 2013), but also demonstrate better performance
under large-scale testing than the Heavy Ball method (Dahl et al., 2023).

Our contribution. Our paper starts with an investigation of the properties of the problem class
in (1) that satisfies Assumption 1-6. In particular, we show that this set of assumptions is stronger
than the PL condition but weaker than strong convexity, and, as a consequence, gradient descent
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converges linearly with rate 1 − Θ(1/κ) under these assumptions. Next, we prove that Nesterov’s
momentum enjoys an accelerated linear convergence with a convergence rate 1 − Θ(1/

√
κ). Under

Assumption 1-6, our result holds even when f is non-convex and non-smooth:

Theorem 1 (Informal statement of Theorem 7) Let f (x,u) : Rd1 ×Rd2 → R be L1-smooth and
µ-strongly convex with respect to x for all u ∈ Rd2 , and let κ = L1/µ. If f (x,u) also satisfies
Assumption 3-6 with sufficiently small G1, G2 and sufficiently large Rx, Ru, then the sequence
{(xk,uk)}∞k=0 generated by Nesterov’s momentum satisfies:

f (xk,uk) ≤ 2
(
1−Θ

(
1√
κ

))k
(f(x0,u0)− f∗) .

Next, we provide two realizations of our problem class. In Section 4.1, we first consider fitting an
additive model under the MSE loss. We prove the acceleration of Nesterov’s momentum as long as
the non-convex component of the additive model is small enough to guarantee the Lipschitz-type
assumptions. Next, we turn to deep ReLU network training in Section 4.2. We show that when the
width of the neural network trained with n samples is Ω

(
n4
)
, under proper initialization, Nesterov’s

momentum converges to zero training loss with rate 1 − Θ(1/
√
κ). To the best of our knowledge,

this is the first result that establishes accelerated convergence of deep ReLU networks:

Theorem 2 (Informal statement of Theorem 15) Given a dataset with n samples and d0 features,
we let F be a deep ReLU neural network with width Ω

(
n4d20

)
and let Lk ∈ R be the MSE loss value

at iteration k generated by training F with Nesterov’s momentum. Then, for all k ≥ 0, we have
that:

Lk ≤ 2
(
1−Θ

(
1√
κ

))k
L0.

1.1. Related Works

Convergence in neural network training. The NTK-based analysis builds upon the idea that when
the width approaches infinity, training neural networks behaves like training a kernel machine. Var-
ious techniques are developed to control the error when the width becomes finite. In particular,
(Du et al., 2019b) tracks the change of activation patterns in ReLU-based neural networks and often
requires a large over-parameterization. Later works improve the over-parameterization requirement
by leveraging matrix concentration inequalities (Song and Yang, 2020), performing fine-grained
analysis on the change of Jacobians (Oymak and Soltanolkotabi, 2019), analyzing the functional
approximation property (Su and Yang, 2019), and building their analysis upon the separability as-
sumption of the data in the reproducing Hilbert space of the neural network (Ji and Telgarsky, 2020).
Going beyond two-layer neural networks, Allen-Zhu et al. (2019a); Du et al. (2019a) analyze the
convergence of gradient descent on deep neural networks under a large over-parameterization. In
the meantime, the analysis was also extended to other training algorithms and settings, such as
stochastic gradient descent (Oymak and Soltanolkotabi, 2019; Ji and Telgarsky, 2020; Xu and Zhu,
2021; Zou et al., 2018), drop-out (Liao and Kyrillidis, 2022; Mianjy and Arora, 2020), federated
training (Huang et al., 2021), and adversarial training (Li et al., 2022).

A noticeable line of work focuses on establishing that the PL condition is satisfied by neural
networks, where the coefficient of the PL condition is based on the eigenvalue of the NTK matrix.
Nguyen (2021) shows the PL condition is satisfied by deep ReLU neural networks by considering
the dominance of the gradient with respect to the weight in the last layer. Liu et al. (2020) proves
the PL condition by upper bounding the Hessian for deep neural networks with smooth activation
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functions. Song et al. (2021) further reduces the over-parameterization while maintaining the PL
condition via the expansion of the activation function with the Hermite polynomials. Lastly, Baner-
jee et al. (2023) establishes the restricted strong convexity of neural networks within a sequence
of ball-shaped regions centered around the weights per iteration; yet, the coefficient of the strong
convexity is not explicitly characterized in theory.

It should be noted that the above work relies on the over-parameterization of the neural net-
work, which, in many cases, leads the training dynamic to be trapped in the so-called kernel regime
(Woodworth et al., 2020; Yehudai and Shamir, 2022; Yang and Hu, 2021). While crucial to guar-
antee a favorable loss landscape (Safran and Shamir, 2018), it is also shown that even mild over-
parameterization leads to an exponentially slower convergence rate (Xu and Du, 2023) and cannot
explain the behavior of learning a single neuron (Yehudai and Shamir, 2022). However, the above
work focuses solely on the training with gradient descent. While our analysis is based on the over-
parameterization assumption, it is, to the best of our knowledge, the first to show the convergence of
Nesterov’s momentum on deep neural networks and opens up the possibility of studying Nesterov’s
momentum on neural networks in a more realistic scenario.
Convergence of Nesterov’s Momentum. The original proof of Nesterov’s momentum (Nesterov,
2018) builds upon the idea of estimating sequences for both convex smooth objectives and strongly
convex smooth objectives. Later work in (Bansal and Gupta, 2019) provides an alternate proof
within the same setting by constructing a Lyapunov function. In the non-convex setting, a large
body of works focuses on variants of Nesterov’s momentum that lead to a guaranteed convergence
by employing techniques such as negative curvature exploitation (Carmon et al., 2017), cubic reg-
ularization (Carmon and Duchi, 2020), and restarting schemes (Li and Lin, 2022). For neural net-
works, (Liu et al., 2022a,b) are the only works that study the convergence of Nesterov’s momentum.
However, considering the over-parameterization requirement, the objective is similar to a quadratic
function. Deviating from Nesterov’s momentum, Wang et al. (2021) studies the convergence of the
Heavy-ball method under similar over-parameterization requirements. A recent work (Wu et al.,
2023) proves the convergence of the Heavy-ball method under the mean-field limit; such a limit
is not the focus of our study in this paper. Lastly, Jelassi and Li (2022) shows that momentum-
based methods improve the generalization ability of neural networks. However, there is no explicit
convergence guarantee for the training loss.

2. Problem Setup and Assumptions

Notations Standard lower-case letters (e.g. a) denote scalars, bold lower-case letters (e.g. a) denote
vectors, and bold upper-case letters (e.g. A) denote matrices. For a vector a, we use ai to denote its
i-th entry and ∥a∥2 its ℓ2-norm. For a matrix A, we use aij to denote its (i, j)-th entry and ∥A∥F
its Frobenius norm. we use (a1,a2) to denote the concatenation of a1,a2. For a matrix A with
columns a1, . . . ,an, we use V(A) = (a1, . . . ,an) to denote the vectorized form of A.

Optimization literature often focuses on the constraint-free minimization of a function f̂ : Rd →
R. In this scenario, Nesterov’s momentum with step size η and momentum parameter β for mini-
mizing f̂ (w) bears the form, as in Bansal and Gupta (2019) and (2.2.22) of Nesterov (2018)1

wk+1 = w̄k − η∇f̂ (w̄) ; w̄k+1 = wk+1 + β (wk+1 −wk) (2)

In this paper, we reformulate this problem using the following definition.
1. Despite a different choice of step size and momentum parameter.
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Definition 1 A function f : Rd1 × Rd2 → R is called a partitioned equivalence of f̂ : Rd → R, if
i) d1 + d2 = d, and ii) there exists a permutation function π : Rd → Rd over the parameters of f̂ ,
such that f̂(w) = f(x,u) if and only if π(w) = (x,u). We say that (x,u) is a partition of w.

Despite the difference in the representation of their parameters, f̂ and f share the same properties,
and any algorithm for f̂ would produce the same result for f . Therefore, we turn our focus from
the minimization problem of f̂ to the minimization problem in (1). We should clarify that when
we study the property of f as an attempt to study the property of f̂ , we only need to assume the
existence of such a partitioned equivalence, instead of requiring an efficient algorithm to identify
this equivalence explicitly. We further assume that f is a composition of a loss function g : Rd̂ →
R and a possibly non-smooth and non-convex model function h : Rd1 × Rd2 → Rd̂, for some
dimension d̂ ∈ Z+; i.e., f(x,u) = g(h(x,u)). With this construction of functional composition,
we can assume only a partial smoothness on f together with the smoothness of g, instead of the full
smoothness property of f . We obey the following notation with respect to gradients of f :

∇1f(x,u) =
∂f(x,u)

∂x ; ∇2f(x,u) =
∂f(x,u)

∂u ; ∇f(x,u) = (∇1f(x,u),∇2f(x,u)) . (3)

We will consider Nesterov’s momentum with constant step size η and momentum parameter β:

(xk+1,uk+1) = (yk,vk)− η∇f(yk,vk)

(yk+1,vk+1) = (xk+1,uk+1) + β ((xk+1,uk+1)− (xk,uk))
(4)

with y0 = x0 and v0 = u0. The algorithm formulation in (4) is mathematically equivalent to (2) for
optimizing f̂(x). Therefore, the execution of (4) is completely agnostic to the parameter partition.
To state our assumptions, let B(1)

Rx
and B(2)

Ru
denote the balls centered as x0 and u0:

B(1)
Rx

= {x ∈ Rd1 : ∥x− x0∥2 ≤ Rx}; B(2)
Ru

= {u ∈ Rd2 : ∥u− u0∥2 ≤ Ru}.

Next, we state the assumptions on the general class of objectives we consider.

Assumption 1 f is µ-strongly convex with µ > 0 with respect to the first part of its parameters:

f(y,u) ≥ f(x,u) + ⟨∇1f(x,u),y − x⟩+ µ

2
∥y − x∥22 , ∀x,y ∈ Rd1 ; u ∈ B(2)

Ru
.

Assumption 2 f is L1-smooth with respect to the first part of its parameters:

f(y,u) ≤ f(x,u) + ⟨∇1f(x,u),y − x⟩+ L1

2
∥y − x∥22 , ∀x,y ∈ Rd1 ; u ∈ B(2)

Ru
.

Based on Assumption 1 and 2, we define the condition number of f .

Definition 2 (Condition Number) The condition number κ of f is given by κ = L1/µ.

Assumption 3 g satisfies min
s∈Rd̂ g(s) = minx∈Rd1 ,u∈Rd2 f(x,u), and is L2-smooth:

g(s1) ≤ g(s2) + ⟨∇g(s1), s2 − s1⟩+
L2

2
∥s2 − s1∥22 , ∀s1, s2 ∈ Rd̂.
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Assumptions 1 and 2 are relaxed versions of the smoothness and strong convexity. Instead of as-
suming that the objective is smooth and strongly convex over all parameters, we only assume such
property to hold with respect to a subset of the parameters while the rest lie near initialization.
Assumption 3 is standard in prior literature (Liu et al., 2020; Song et al., 2021) of neural network
training, and holds for loss functions such as the MSE loss and the logistic loss.

Assumption 4 h satisfies G1-Lipschitzness with respect to the second part of its parameters:

∥h(x,u)− h(x,v)∥2 ≤ G1 ∥u− v∥2 , ∀x ∈ B(1)
Rx

; u,v ∈ B(2)
Ru

.

Assumption 5 The gradient of f with respect to the first part of its parameter, ∇1f(x,u), satisfies
G2-Lipschitzness with respect to the second part of its parameters:

∥∇1f(x,u)−∇1f(x,v)∥2 ≤ G2 ∥u− v∥2 , ∀x ∈ B(1)
Rx

; u,v ∈ B(2)
Ru

.

Assumption 6 Minimum values of f restricted to the optimization over x equal the global mini-
mum value:

min
x∈Rd1

f(x,u) = f⋆ := min
x∈Rd1 ,u∈Rd2

f(x,u); ∀u ∈ B(2)
Ru

.

Since we do not assume f to be convex or smooth with respect to u, we cannot guarantee that the
updates in (4) on u will make positive progress towards finding the global minimum. Nevertheless,
the updates on u are unavoidable since the execution of (4) is agnostic to the parameter partition.
Therefore, we treat the change in the second part of the parameters as errors induced by the updates.
Assumptions 4 and 5 are made to control the effect on the change of the model output h(x,u) and
the gradient with respect to x caused by the change of u. Moreover, without Assumption 6, it is
possible that the change of u will lead the optimization trajectory to some local minimum of u, such
that the global minimum value cannot be achieved even when x is fully optimized. We show that
Assumptions 1-6 are satisfied by a smooth and strongly convex function:

Theorem 3 Let f̃ be µ̃-strongly convex and L̃-smooth. Then f̃ satisfies Assumptions 1-6 with:

Rx = Ru = ∞; µ = µ̃; L1 = L2 = L̃; G1 = G2 = 0.

Theorem 3 shows that the combination of Assumptions 1-6 is no stronger than the assumption that
the objective is smooth and strongly convex. Therefore, the minimization of the class of functions
satisfying Assumptions 1-6 does not have a better lower complexity bound than the class of smooth
and strong convex functions. That is, the best convergence rate we can achieve is 1−Θ(1/

√
κ).

3. Accelerated Convergence under Partial Strong Convexity

3.1. Warmup: Convergence of Gradient Descent

The previous section shows that f satisfying Assumption 1-6 is weaker than the combination of
smoothness and strong convexity. Before diving into the convergence of gradient descent, we first
show that Assumptions 1,6 imply the PL condition:

Lemma 4 Suppose that Assumption 1, 6 hold. Then, for all x ∈ Rd and u ∈ B(2)
Ru

, we have:

∥∇f(x,u)∥22 ≥ ∥∇1f(x,u)∥22 ≥ 2µ (f(x,u)− f⋆) .
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Recall that, due to the minimum assumption made on the relationship between f(x,u) and u, we
treat the change of u during the iterates as an error. Thus, we need the following lemma, which
bounds how much f is affected by the change of u.

Lemma 5 Let Assumptions 3, 4 hold. For any Q̂ > 0 and x ∈ B(1)
Rx

,u,v ∈ B(2)
Ru

, we have:

f(x,u)− f(x,v) ≤ Q̂−1L2 (f(x,v)− f⋆) +
G2

1
2

(
L2 + Q̂

)
∥u− v∥22 .

With the help of Lemmas 4 and 5, we can show the linear convergence of gradient descent:

Theorem 6 Suppose that Assumptions 1-4 and 6 hold with G4
1 ≤ µ2

8L2
2

and

Rx ≥ 16ηκ
√
L1 (f(x0,u0)− f⋆)

1
2 ; Ru ≥ 16ηκG1

√
L2 (f(x0,u0)− f⋆)

1
2 .

Then there exists constant c > 0 such that gradient descent with η = c
L1

converges according to:

f(xk,uk)− f⋆ ≤
(
1− c

4κ

)k
(f(x0,u0)− f⋆) .

I.e., Theorem 6 shows that gradient descent applied to f converges linearly with a rate of 1−Θ(1/κ)
within our settings. The proofs for Lemma 4 and 5, and Theorem 6 are deferred to Appendix B.

3.2. Acceleration of Nesterov’s Momentum

We will now study the convergence property of Nesterov’s momentum in (4) under only Assump-
tions 1-6. Our result shows an accelerated convergence rate compared with gradient descent.

Theorem 7 Let Assumptions (1)-(6) hold. Consider Nesterov’s momentum given by (4) with ini-
tialization {x0,u0} = {y0,v0}. There exists absolute constants c, C1, C2 > 0, such that, if
µ,L1, L2, G1, G2 and Rx, Ru satisfy:

G4
1 ≤ C1µ2

L2(L2+1)2

(
1−β
1+β

)3
; G2

1G
2
2 ≤ C2µ3

L2(L2+1)
√
κ

(
1−β
1+β

)2
;

Rx ≥ 36

c

√
κ
(
η(L2+1)
1−β

) 1
2
(f(x0,u0)− f⋆)

1
2 ;

Ru ≥ 36

c

√
κ
(
ηG2

1L2(L2+1)(1+β)3

µβ(1−β)3

) 1
2
(f(x0,u0)− f⋆)

1
2 ,

(5)

and, if we choose η = c/L1, β = (4
√
κ−

√
c)/(4

√
κ+ 7

√
c), then xk,yk ∈ B(1)

Rx
and uk,vk ∈ B(2)

Ru
for

all k ∈ N, and Nesterov’s recursion converges according to:

f(xk,uk)− f⋆ ≤ 2
(
1− c

4
√
κ

)k
(f(x0,u0)− f⋆). (6)

Theorem 7 shows that, under Assumptions 1-6 with a sufficiently small G1 and G2 as in (5), Nes-
terov’s iteration enjoys an accelerated convergence, as in (6). Moreover, the iterates of Nesterov’s
momentum {(xk,yk)}∞k=1 and {(uk,vk)}∞k=1 stay in a ball around initialization with radius in (5).

To better interpret our result, we first focus on (5). By our choice of β, we have that 1 − β =
Θ(1/

√
κ) and 1 + β = Θ(1). Therefore, the requirement of G1, G2 in (5) can be simplified to

G4
1 ≤ O (µ7/2/L3/2

1 L3
2) and G2

1G
2
2 ≤ O (µ9/2/L3/2

1 L2
2). This simplified condition implies that we need

a smaller G1 and G2 if µ is small and L1 and L2 are large. For the requirement on Rx and Ru
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in (5), we can simplify with η = O (1/L1) and β = Θ(1). In this way, Rx and Ru reduce to
Ω (L1/4

1 L
1/2
2 /µ3/4) · (f(x0,u0) − f⋆)

1
2 and Ω (G1L

3/4
1 L2/µ7/4) · (f(x0,u0) − f⋆)

1
2 , respectively. Both

quantities grow with a larger L1 and L2 and a smaller µ. Noticeably Ru also scales with G1.
Focusing on the convergence property in (6), we can conclude that Nesterov’s momentum achieves
an accelerated convergence rate of 1−Θ(1/

√
κ) compared with the 1−Θ(1/κ) rate in Theorem 6.

In more detail, we discuss the proof of Theorem 7 in the sections below.

3.3. Technical Difficulty

Similar to the previous work on showing the convergence of Nesterov’s momentum (Bansal and
Gupta, 2019; d’Aspremont et al., 2021), the core of our proof is the construction of a Lyapunov
function that upper bounds the optimality gap f(xk,uk) − f∗ at each step k, and enjoys a linear
convergence. However, the construction of this Lyapunov function faces the following difficulty.

Difficulty 1. Most previous analyses of Nesterov’s momentum use the global minimum as a refer-
ence point to construct the Lyapunov function; see Bansal and Gupta (2019); d’Aspremont et al.
(2021). In the original proof of Nesterov, the construction of the estimating sequence also assumes
the existence of a unique global minimum (Nesterov, 2018). However, in our scenario, the objective
function is non-convex. It allows the existence of multiple global minima, which prevents us from
directly applying the Lyapunov function or estimating sequence, as in previous works.

While the non-convexity of f introduces the possibility of multiple global minima, Assumption 1
implies that, with a fixed u, there exists a unique x⋆(u) that minimizes f(x,u). Moreover, As-
sumption 6 implies that, for all u ∈ B(2)

Ru
, the local minimum (x⋆(u),u) is also a global minimum.

Thus, we resolve the difficulty by using the x⋆(uk) as the reference point for the Lyapunov function
at the kth iteration and ensure the stability of the Lyapunov function by bounding the change of
x⋆(uk). The following lemma gives a characterization of this property.

Lemma 8 Let x⋆(u) = argminx∈Rd1 f(x,u). Suppose Assumptions 1 and 5 hold. Then, we have:

∥x⋆(u1)− x⋆(u2)∥2 ≤ G2
µ ∥u1 − u2∥2 , ∀u1,u2 ∈ B(2)

Ru
.

Lemma 8 indicates that, if we view x⋆(u) as a function of u, then this function is G2
µ -Lipschitz.

For a fixed u, given the nice properties on x, the iterates of Nesterov’s momentum will guide
x to the minimum, based on the current u. Lemma 8 guarantees that the progress toward the
minimum induced by u1 does not deviate much from the progress toward the minimum induced by
u2. However, to apply Lemma 8, we must control the change of uk between iterations. Indeed,
this bound is also necessary to apply the smoothness-like condition in Lemma 5. Unlike gradient
descent, {uk}∞k=1 generated by Nesterov’s momentum introduces the following difficulty.

Difficulty 2. Unrolling the Nesterov’s momentum iterates shows that uk+1 − uk is a linear com-
bination of previous gradients. Under the assumption of smoothness, the norm of the gradient is
bounded by a factor times the optimality gap at the current point, namely:2

∥∇2f (x,u)∥22 ≤ 2G1L2 (f (x,u)− f∗) .

2. For the proof of this property, please see Lemma 20
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In the case of gradient descent, the applied gradients are evaluated at steps (xk,uk), and thus
∥∇2f (xk,uk)∥2 can be controlled since (f (x,u)− f∗) can be shown to enjoy a linear conver-
gence by an induction-based argument (Du et al., 2019b; Nguyen, 2021). However, in the case
of Nesterov’s momentum, we cannot directly utilize this relationship since the applied gradient is
evaluated at the intermediate step (yk,vk), and while we know that the optimality gap at (xk,uk)
converges linearly, we have very little knowledge about the optimality gap at (yk,vk).

To tackle this difficulty, our analysis starts with a careful bound on ∥xk+1 − xk∥22 by utilizing the
convexity with respect to x to characterize the inner product ⟨∇1f(yk,vk),xk − xk−1⟩. After that,
we bound ∥∇1f(yk,vk)∥22 using a combination of ∥xk+1 − xk∥22 and ∥xk − xk−1∥22. Lastly, we
relate ∥∇2f(yk,vk)∥22 to ∥∇1f(yk,vk)∥22 using the following gradient dominance property.

Lemma 9 Suppose that Assumptions 1, 3, 4, and 6 hold. Then, we have:

∥∇2f(x,u)∥22 ≤
G2

1L2

µ ∥∇1f(x,u)∥22 , ∀x ∈ B(1)
Rx

; u ∈ B(2)
Ru

.

Lemma 9 establishes the upper bound of ∥∇2f(x,u)∥22 using ∥∇1f(x,u)∥22. Direct application of
this result will contribute to the bound on ∥uk+1 − uk∥2. Intuitively, this lemma also implies that
the effect of gradient update on u is less significant than that on x.

3.4. Proof Overview

Our analysis is based on the Lyapunov function proof given by Bansal and Gupta (2019) for proving
the accelerated convergence rate of Nesterov’s momentum in (2) in minimizing a strongly convex
and smooth objective f̂(w). In particular, Bansal and Gupta (2019)3 uses the following Lyapunov
function,

ϕ̂k = f (wk)− f∗ +
µ

2
∥ẑk −w⋆∥2 (7)

where w⋆ is the global minimum, and ẑk can be considered as a mixing of the sequences {wk}∞k=1

and {w̄k}∞k=1 in (2). In particular, the second term in (7) computes the distance between the mixed
variable ẑk and the reference point w⋆ and is added to ϕ̂k to guarantee a linear convergence on
ϕ̂k. Following our discussion in the previous section, we construct our Lyapunov function using
x⋆ (u) = argminx∈Rd1 f(x,u) as a reference point. For the simplicity of notations, we define
x⋆
k = x⋆ (uk). Similar to Bansal and Gupta (2019), we let zk be the linear combination of yk and

xk, and choose a proper scaling factor Q1 for the distance between zk and the previous reference
point x⋆

k−1. For some properly choose γ and λ, we define

zk =
1− βλ

βλ
(yk − xk) + yk; Q1 =

λ2

2η(1 + γ)5

Compared with the proof of Nesterov’s momentum on smooth and strongly convex functions, the
proof in our setting has to accommodate the errors caused by the change of u. Our complicated
scaling in the form of zk and Q1 is to make sure the errors caused by u can be properly canceled
out by the positive progress made by updating x. Setting y−1 = y0 and v−1 = v0, we consider the
following Lyapunov function:

ϕk = f(xk,uk)− f⋆ +Q1

∥∥zk − x⋆
k−1

∥∥2
2
+

η

8
∥∇1f(yk−1,vk−1)∥22

3. after rephrasing in the notations used in our scenario

9
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The last term in the expression of ϕk also eliminates the errors from updating u. Our proof recur-
sively establishes the following three properties:(

1− c
2
√
κ

)−1
ϕk+1 − ϕk ≤ c

4
√
κ

(
1− c

4
√
κ

)k
ϕ0; (8)

∥xk − xk−1∥22 ≤ Q2

(
1− c

4
√
κ

)k
ϕ0; ∥uk − uk−1∥22 ≤ G2

1Q3

(
1− c

4
√
κ

)k
ϕ0. (9)

Intuitively, (8) implies an accelerated linear convergence of f(xk′ ,uk′) − f⋆ up to k′ ≤ k + 1,
which further implies the bound on ∥xk′ − xk′−1∥2 and ∥uk′ − uk′−1∥2 as in (9) up to k′ ≤ k + 1.
In turn, (9) will guarantee that xk ∈ BRx ,u ∈ BRu , and control the error caused by updating u.
These two conditions combined will imply that (8) holds. This idea is further detailed below.

By our choice of ϕk, we must have that f(xk,uk)− f⋆ ≤ ϕk. Unrolling (8) implies that:

f(xk,uk)− f⋆ ≤ ϕk ≤
(
1− c

4
√
κ

)k
ϕ0, (10)

Combined with the bound that ϕ0 ≤ 2 (f(x0,u0)− f⋆)4, (8) further implies the convergence in (6).
The following lemma shows that, if (6) holds for all k ≤ k̂, we can guarantee (9) with k = k̂ + 1.

Lemma 10 Let the Assumptions of Theorem 7 hold. If (10) holds for all k ≤ k̂, then (9) holds for
k = k̂ + 1 with Q2 =

6η(L2+1)
1−β and Q3 =

6ηL2(L2+1)(1+β)3

µβ(1−β)3
.

The proof of Lemma 10 utilizes how we resolve Difficulty 2 in the previous section. Lemma 10
implies that up to iteration k̂ + 1, xk and uk stay in B(1)

Rx
and B(2)

Ru
with the lower bound of Rx and

Ru assumed in Theorem 7. This allows us to apply Assumptions 1-6 in showing (8) for iteration
k̂ + 1. Moreover, the bound on ∥uk − uk−1∥2 connects the following lemma to (8).

Lemma 11 Let the Assumptions of Theorem (7) hold. Then, we have:(
1− c

2
√
κ

)−1
ϕk+1 − ϕk ≤ cβ2√κ

(
G2

1L2 +
8Q1G2

1G
2
2

µ2

)
∥uk − uk−1∥22

The proof of Lemma 11 has a similar idea to Bansal and Gupta (2019) when showing that the
Lyapunov function converges. The additional difficulty of Lemma 11 lies in carefully controlling
the errors caused by the change of uk. Plugging the form of Q3 into the upper bound in (9) and then
plugging the resulting upper bound into Lemma 11 yields(

1− c
2
√
κ

)−1
ϕk+1 − ϕk ≤ 6c

√
κηL2(L2 + 1)(1 + β)3

µ(1− β)3

(
G4

1L2 +
8Q1G4

1G
2
2

µ2

)(
1− c

4
√
κ

)k
ϕ0

The equation above directly implies (8) after we plug in the upper bound on G1 and G2 assumed in
Theorem 7. This establishes the inductive step and thus finishes the proof.

4. Realization of Assumption 1-6

4. For the detail please see Lemma 21

10
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Figure 1: Experiment of learning additive
model with gradient descent and
Nesterov’s momentum.

We consider two realizations of problems that sat-
isfy Assumptions 1-6. By enforcing the requirement
in Theorem 7 on the two models, we show that al-
though nonconvex and possibly non-smooth, the two
models enjoy accelerated convergence when trained
with Nesterov’s momentum.

4.1. Additive model

Given matrices A1 ∈ Rm×m,A2 ∈ Rm×d and a
non-linear function σ : Rm → Rm, we consider
h(x,u) = A1x + σ(A2u) as the summation of a
linear model and a non-linear model. If we train
h(x,u) over the loss g(s) = 1

2 ∥s− b∥22 for some
label b ∈ Rm, the objective can be written as

f(x,u) = g(A1x+ σ (A2u))

=
1

2
∥A1x+ σ (A2u)− b∥22 .

(11)

Due to the non-linearity of σ, f(x,u) is generally
non-convex. If we further choose σ to be some non-
smooth function such as ReLU, i.e., σ(x)i = max{0, xi}, the objective can also be non-smooth.
Yet, assuming that σ is Lipschitz, we can show that f(x,u) satisfies Assumptions 1-6.

Lemma 12 Let σ be B-Lipschitz and σmin(A1) > 0. Then f(x,u) satisfies Assumptions 1-6 with

Rx =Ru = ∞; µ = σmin (A1)
2 ; L1 = σmax (A1)

2 ; L2 = 1

G1 = Bσmax (A2) ; G2 = Bσmax (A1)σmax (A2) .
(12)

Notice that while µ and L1 depend entirely on the property of A1, both G1 and G2 can be made
smaller by choosing A2 with a small enough σmax(A2). Intuitively, this means that G1 and G2

can be controlled, as long as the component that introduces the non-convexity and non-smoothness
σ (A2u) is small enough. Therefore, we can apply Theorem 7 to the minimization of (11).

Theorem 13 Consider the problem in (11) and assume using Nesterov’s momentum to minimize
f(x,u), where σ is a B-Lipschitz function. Let κ = σmax (A1)

2/σmin (A1)
2, and suppose:

σmin (A1) ≥ C̃σmax (A2)Bκ0.75, (13)

for large enough constant C̃ > 0. Then there exists constant c > 0 such that if we choose η =
c/σmax (A1)

2 and β = (4
√
κ−

√
c)/(4

√
κ+ 7

√
c), Nesterov’s momentum in (4) converges according to:

f(xk,uk) ≤ 2

(
1− c

4
√
κ

)k

f(x0,u0).

Notice that the requirement in (13) favors a larger σmin(A1) and smaller σmax(A2), B and κ. Using
this example, we empirically verify the theoretical result of Theorem 7, as shown in Figure 1. The

11
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three rows correspond to the cases of σmax (A2) ∈ {0.01, 0.3, 5}, respectively. The plot lines
denote the average loss/distance among ten trials, while the shaded region denotes the standard
deviation. Observing the plots in the left column, in all three cases, Nesterov’s momentum achieves
a faster convergence compared with gradient descent, while the case with the largest σmax (A2)
introduces the largest variance between results of the ten trials. Recall that σmax (A2) controls the
magnitude of G1 and G2. Thus, this phenomenon shows that when G1 and G2 become larger,
the theoretical guarantee in Theorem 7 begins to break down, and the result depends more on the
initialization. Figures in the right column plots the evolution of ∥xk − xk−1∥22 and ∥uk − uk−1∥22.
All three figures show that the two quantity decrease linearly. This phenomenon supports the linear
decay of the two quantities, as shown in Lemma 10. Moreover, as σmax (A2) increases, the relative
magnitude of ∥uk − uk−1∥22 to ∥xk − xk−1∥22 also increase (the line of “∥∆uk∥2” get closer to
“∥∆xk∥2”). This supports that ∥uk − uk−1∥22 scales with G1, as shown in Lemma 10.

4.2. Deep ReLU Neural Networks

Consider the Λ-layer ReLU neural network with layer widths {dℓ}Λℓ=0. Denoting the number of
training samples with n, we consider the input and label of the training data given by X ∈ Rn×d0

and Y ∈ Rn×dΛ . Let the weight matrix in the ℓ-th layer be Wℓ. We use θ = {Wℓ}Λℓ=1 to denote
the collection of all weights and σ(A)ij = max{0, aij} to denote the ReLU function. Then, the
output of each layer is given by:

Fℓ (θ) =


X, if ℓ = 0;

σ (Fℓ−1 (θ)Wℓ) , if ℓ ∈ [Λ− 1];

FΛ−1 (θ)WΛ, if ℓ = Λ.

(14)

We consider the training of FΛ (θ) over the MSE loss, as in L(θ) = 1
2 ∥FΛ (θ)− Y ∥2F . We can

interpret the scenario using our partition model in (1). Let g(s) = 1
2 ∥s− V (Y)∥22. If we partition

the parameter θ into x = V (WΛ) and u = (V (W1) , . . . ,V (WΛ−1)), then we can write:

h(x,u) = V (FΛ (θ)) ; f(x,u) =
1

2
∥V (FΛ (θ))− V (Y)∥22 =

1

2
∥FΛ (θ)−Y∥2F . (15)

For some given x and u, we let WΛ(x) be the matrix such that x = V (WΛ(x)); similarly, we let
Wℓ(u) with ℓ ∈ [L − 1] be the matrices such that u = (V (W1(u)) , . . . ,V (WΛ−1(u))). Denote
λΛ = sup

x∈B(1)
Rx

σmax (WΛ(x)) and λℓ = sup
u∈B(2)

Rx

σmax (Wℓ(u)) for ℓ ∈ [Λ − 1]. Moreover,

denote λi→j =
∏j

ℓ=i λℓ. Then we can show that f(x,u) defined in (15) satisfies Assumptions 1-6.

Lemma 14 Let θ(0) be the initialization of the ReLU network in (14) and α0 = σmin (FΛ−1 (θ(0))).
Assume that each Wℓ is initialized such that ∥Wℓ(0)∥2 ≤ λℓ

2 and α0 > 0. Then, f(x,u) satisfies
Assumptions 1-6 with:

Rx =
λΛ

2
; Ru =

1

2

(
min

ℓ∈[Λ−1]
λℓ

)
min

{
1,

α0

2
√
Λ ∥X∥F λ1→Λ−1

}2

; µ =
α2
0

2

L1 = ∥X∥2F λ2
1→Λ−1; L2 = 1; G1 = (λΛ +Ru)

√
Λ ∥X∥F λ1→Λ−1

(
min

ℓ∈[Λ−1]
λℓ

)−1

G2 = ((2λΛ +Ru) ∥X∥F λ1→Λ−1 + ∥Y∥F )
√
Λ ∥X∥F λ1→Λ−1

(
min

ℓ∈[Λ−1]
λℓ

)−1

12



ACCELERATION OF NEURAL NETWORK TRAINING

As shown in Lemma 3.3 by Nguyen (2021), we can guarantee that α0 > 0 with sufficient over-
parameterization. To show the acceleration of Nesterov’s momentum when training (14), we need
to i) guarantee that the condition of Rx and Ru in (5) satisfies the upper bound in Lemma 14, and ii)
the quantities µ,L1, L2, G1 and G2 defined in Lemma 14 satisfy the requirement in (5). Enforcing
the two conditions with sufficient over-parameterization gives us the following theorem.

Theorem 15 Consider training the ReLU neural network in (14) using the MSE loss, or equiv-
alently, minimizing f(x,u) defined in (15) with Nesterov’s momentum with η = c/L1 and β =
4
√
κ−

√
c

4
√
κ+7

√
c
, where κ = 2L1

α2
0

and α0, L1 defined in Lemma 14. If the width of the network satisfies:

dℓ = Θ(m) ∀ℓ ∈ [Λ− 2]; dΛ−1 = Ω
(
n4.5max

{
n, d2

})
, (16)

for some m ≥ max{d0, dΛ}, and we initialize the weights according to:

[Wℓ(0)]ij ∼ N
(
0, d−1

ℓ−1

)
, ∀ℓ ∈ [Λ− 1]; [WΛ(0)]ij ∼ N

(
0, d

− 3
2

Λ−1

)
.

Then, with high probability over the initialization, there exists an absolute constant c > 0 such that:

L (θ(k)) ≤ 2
(
1− c

4
√
κ

)k
L(θ(0)). (17)

As in prior work (Nguyen, 2021), we treat the depth of the neural network Λ to be a constant
when computing the over-parameterization requirement. Next, we compare our result with Theorem
2.2 and Corollary 3.2 of Nguyen (2021). To deal with the additional complexity of Nesterov’s
momentum as introduced in Section 3.3, our over-parameterization is slightly larger than the over-
parameterization of dΛ−1 = Θ

(
n3m3

)
in Corollary 3.2 of Nguyen (2021). Moreover, in Theorem

2.2 of Nguyen (2021), since their choice of η is also O (1/L1), the convergence rate they achieve for
gradient descent is 1−Θ(1/κ). Compared with this rate, Theorem 15 achieves a faster convergence
of 1 − Θ(1/

√
κ). This shows that Nesterov’s momentum enjoys acceleration when training deep

ReLU neural networks.

5. Conclusion and Broader Impact

We consider the minimization of a new class of objective functions, namely the partition model,
where the function is smooth and strongly convex with respect to only a subset of its parameters.
This class of objectives is more general than the class of smooth and strongly convex functions. We
prove the convergence of gradient descent and Nesterov’s momentum on this class of objectives un-
der certain assumptions and show that Nesterov’s momentum achieves an accelerated convergence
rate of 1 − Θ(1/

√
κ) compared to the 1 − Θ(1/κ) convergence rate of gradient descent. Moreover,

we considered the training of the additive model and deep ReLU networks as two realizations of the
partition model. We showed the acceleration of Nesterov’s momentum on these two realizations.

Future works can focus on three aspects. First, one can consider the case where Assumption 6
does not hold, and study whether Nesterov’s momentum can still converge to up to some error with
acceleration under a milder condition of this assumption. Second, one can extend the analysis to
different neural network architectures by investigating whether Assumptions 1-6 hold on CNNs and
ResNets. Lastly, since the weight selection process is extensively studied by literature on neural
network pruning, one can study whether neural network pruning keeps weights with good optimiza-
tion properties and potentially connects our result with the theory of pruning methods such as the
Lottery Ticket Hypothesis.
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Appendix A. Proofs for Section 2

A.1. Proof of Theorem 3

Let f̃ : Rd → R be a L̃-smooth and µ̃-strongly convex function. Let {0} be the zero-dimensional
vector space. We define h(x,u) : Rd × {0} → Rd as h(x,u) = x for all x ∈ Rd. Moreover, we
define g : R → R as g(s) = f̃(s) for all s ∈ R, and f(x,u) = g(h(x,u)). Then f(x,u) is a
partitioned equivalence of f̃(x) since

f(x,u) = g(x) = f̃(x) ∀x ∈ Rd

Choosing Rx = Ru = ∞, we have that B(1)
Rx

= Rd and B(2)
Ru

= {0}. Therefore, we have

f(y,u) = f̃(y) ≥ f̃(x) +
〈
∇f̃(x),y − x

〉
+

µ̃

2
∥y − x∥22

= f(x,u) + ⟨∇1f(x,u),y − x⟩+ µ̃

2
∥y − x∥22

f(y,u) = f̃(y) ≤ f̃(x) +
〈
∇f̃(x),y − x

〉
+

L̃

2
∥y − x∥22

= f(x,u) + ⟨∇1f(x,u),y − x⟩+ L̃

2
∥y − x∥22

where the first and second inequality follows from the strong convexity and smoothness of f̃ . This
shows that f(x,u) satisfies Assumption 1, 2 with µ = µ̃ and L1 = L̃. Since g(s) = f̃(s), it must
be L2-smooth with L2 = L̃ as well. Moreover, we must have g⋆ = f̃⋆ = f⋆. This shows that
Assumption 3 holds. Also, since for all u ∈ {0} we must have u = 0, it holds naturally that

h(x,u) = h(x,v); ∇1f(x,u) = ∇1f(x,v)

Therefore, Assumption 4, 5 hold with G1 = G2 = 0. Lastly, since f̃ is strongly convex, there must
exist a unique x⋆ = argminx∈Rd f̃(x). Therefore, we must have that

min
x∈Rd

f(x,u) ≤ f(x⋆,u) = f̃(x⋆) = f⋆ ∀u ∈ {0}

This shows that Assumption 6 is satisfied.
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Appendix B. Proofs for Section 3.1

B.1. Proof of Lemma 4

Fix any u ∈ B(2)
Ru

and let x⋆ = argminx∈Rd1 f(x,u). By Assumption 1, we have

f(x⋆,u) ≥ f(x,u) + ⟨∇1f(x,u),x
⋆ − u⟩+ µ

2
∥x⋆ − x∥22

≥ min
y∈Rd1

f(x,u) + ⟨∇1f(x,u),y − u⟩+ µ

2
∥y − x∥22︸ ︷︷ ︸

fx,u(y)


Notice that ∇2fx,u (y) = µ. Therefore, fx,u (y) is strongly convex with respect to y. Thus,
y⋆ = argminy∈Rd1 fx,u (y) must satisfy

∇fx,u (y
⋆) = ∇1f(x,u) + µ (y⋆ − x) = 0

which implies that y⋆ = x− 1
µ∇1f(x,u), and miny∈Rd1 fx,u (y) = f(x,u)− 1

2µ ∥∇1f(x,u)∥22.
This implies that

f(x⋆,u) ≥ f(x,u)− 1

2µ
∥∇1f(x,u)∥22 ⇒ ∥∇1f(x,u)∥22 ≥ 2µ (f(x,u)− f(x⋆,u))

By Assumption 6, we have that f(x⋆,u) = f⋆. Also, by definition of ∇f(x,u), we have ∥∇f(x,u)∥22 =
∥∇1f(x,u)∥22 + ∥∇2f(x,u)∥22. Therefore

∥∇f(x,u)∥22 ≥ ∥∇1f(x,u)∥22 ≥ 2µ (f(x,u)− f⋆)

B.2. Proof of Lemma 5

Since Assumption 3 holds, we can invoke Lemma 19 to get that

∥∇g(s)∥22 ≤ 2L2 (g(s)− f⋆)

Moreover, Assumption 3 also implies that

f(x,u) = g(h(x,u)) ≤ f(x,v) + ⟨∇g(h(x,v)), h(x,u)− h(x,v)⟩+ L2

2
∥h(x,u)− h(x,v)∥22

Assumption 4 implies that

∥h(x,u)− h(x,v)∥2 ≤ G1 ∥u− v∥2
Therefore, applying the triangle inequality to the inner-product term, we have

f(x,u) ≤ f(x,v) +G1 ∥∇g(h(x,v))∥2 · ∥u− v∥2 +
G2

1L2

2
∥u− v∥22

≤ f(x,v) +Q−1 ∥∇g(h(x,v))∥22 +
G2

1

2
(L2 +Q) ∥u− v∥22

≤ f(x,v) +Q−1 (f(x,v)− f⋆) +
G2

1

2
(L2 +Q) ∥u− v∥22

This implies that

f(x,u)− f(x,v) ≤ Q−1 (f(x,v)− f⋆) +
G2

1

2
(L2 +Q) ∥u− v∥22
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B.3. Proof of Theorem 6

We prove the following two conditions by induction.

Condition 1 Let k ∈ N, then for all t ≤ k, we have ∥xt − x0∥2 ≤ Rx and ∥ut − u0∥2 ≤ Ru.

Condition 2 Let k ∈ N, then for all t ≤ k, we have

f(xt,ut)− f⋆ ≤
(
1− c

κ

)t
(f(x0,u0)− f⋆)

B.3.1. BASE CASE: k = 0

When k = 0, Condition 1 reads ∥xt − x0∥2 ≤ Rx and ∥ut − u0∥2 ≤ Ru for t = 0. This is
automatically true since ∥x0 − x0∥2 = ∥u0 − u0∥2 = 0. Condition 2 is also true since

f(x0,u0)− f⋆ ≤
(
1− c

κ

)0
(f(x0,u0)− f⋆)

B.3.2. INDUCTIVE STEP 1: CONDITION 1 ⇒ CONDITION 2

Suppose that Condition 1 and Condition 2 holds for all t ≤ k. We show that Condition 2 holds
for all t ≤ k + 1. Since ∥xt − x0∥2 ≤ Rx and ∥ut − u0∥2 ≤ Ru, we have that xt ∈ B(1)

Rx
and

ut ∈ B(2)
Ru

for all t ≤ k. Therefore, Assumption 2 holds for all x ∈ Rd1 and u = uk, which implies
that

f(xk+1,uk) ≤ f(xk,uk) + ⟨∇1f(xk,uk),xk+1 − uk⟩+
L1

2
∥xk+1 − xk∥22

= f(xk,uk)− η ∥∇1f(xk,uk)∥22 +
L2

2
η2 ∥∇1f(xk,uk)∥22

= f(xk,uk)− η

(
1− ηL1

2

)
∥∇1f(xk,uk)∥22

(18)

Since Assumption 1, 6 holds, we can apply Lemma 4 to (18) and choose η = 1
L1

to get that

f(xk+1,uk)− f⋆ ≤
(
1− 1

κ

)
(f(xk,uk)− f⋆) (19)

Moreover, since uk+1 = uk − η∇2f(xk,u), we have

∥uk+1 − uk∥22 = η ∥∇2f(xk,u)∥22 ≤ η2G2
1L2 (f(xk,uk)− f⋆)

where the last inequality follows from Lemma 20. Since Assumption 3, 4 holds, we can use Lemma
5 with Q = 2(κ− 1)L2 to get that

f(xk+1,uk+1)− f(xk+1,uk) ≤ Q−1L2 (f(xk+1,uk)− f⋆)

+
G2

1

2
(L2 +Q) ∥uk+1 − uk∥22

≤ Q−1L2 (f(xk+1,uk)− f⋆)

+ η2G4
1L2 (L2 +Q) (f(xk,uk)− f⋆)

≤ 1

2(κ− 1)
(f(xk+1,uk)− f⋆)

+ η2G4
1L

2
2 (2κ− 1) (f(xk,uk)− f⋆)

(20)
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Combining (18) with (19), we have

f(xk+1,uk+1)− f⋆ = f(xk+1,uk)− f⋆ + f(xk+1,uk+1)− f(xk+1,uk)

≤
(
1 +

1

2(κ− 1)

)
(f(xk+1,uk)− f⋆)

+ η2G4
1L

2
2 (2κ− 1) (f(xk,uk)− f⋆)

≤
(

2κ− 1

2(κ− 1)

(
1− 1

κ

)
+ η2G4

1L
2
2 (2κ− 1)

)
· (f(xk,uk)− f⋆)

≤
(
1− 1

2κ
+

2G4
1L

2
2κ

L2
1

)
· (f(xk,uk)− f⋆)

As long as G4
1 ≤ µ2

8L2
2
, we can guarantee that

1− 1

2κ
+

G4
1L

2
2

L2
1

(2κ− 1) ≤ 1− 1

2κ
+

µ2κ

4L2
1

≤ 1− 1

4κ

Therefore, we have

f(xk+1,uk+1)− f⋆ ≤
(
1− 1

4κ

)
(f(xk,uk)− f⋆)

which implies Condition 2 for all t ≤ k + 1.

B.3.3. INDUCTIVE STEP 1: CONDITION 2 ⇒ CONDITION 1

Assume that Condition 2 holds for all t ≤ k. We prove that Condition 1 holds for k+1. Notice that
the change of x and u from initialization can be bounded as

∥xk+1 − x0∥2 ≤
k∑

t=0

∥xt+1 − xt∥2 = η
k∑

t=0

∥∇1f(xt,ut)∥2

∥uk+1 − u0∥2 ≤
k∑

t=0

∥ut+1 − ut∥2 = η

k∑
t=0

∥∇2f(xt,ut)∥2

(21)

Since Assumption 2, 3, 4 holds, we can invoke Lemma 18, 20 to have that

∥∇1f(xt,ut)∥22 ≤ 2L1 (f(xt,ut)− f⋆) ; ∥∇2f(xt,ut)∥22 ≤ 2G2
1L2 (f(xt,ut)− f⋆)

Therefore, (21) boils down to

∥xk+1 − x0∥2 ≤ η
√
2L1

k∑
t=0

(f(xt,ut)− f⋆)
1
2

∥uk+1 − u0∥2 ≤ ηG1

√
2L2

k∑
t=0

(f(xt,ut)− f⋆)
1
2

(22)
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Moreover, Condition 2 implies that

(f(xt,ut)− f⋆)
1
2 ≤

(
1− 1

4κ

) t
2

(f(x0,u0)− f⋆)
1
2 ≤

(
1− 1

8κ

)t

(f(x0,u0)− f⋆)
1
2

Plugging this bound into (22) gives

∥xk+1 − x0∥2 ≤ η
√
2L1 (f(x0,u0)− f⋆)

1
2

k∑
t=0

(
1− 1

8κ

)t

≤ 16ηκ
√
L1 (f(x0,u0)− f⋆)

1
2

∥uk+1 − u0∥2 ≤ ηG1

√
2L2 (f(x0,u0)− f⋆)

1
2

k∑
t=0

(
1− 1

8κ

)t

≤ 16ηκG1

√
L2 (f(x0,u0)− f⋆)

1
2

(23)

Therefore, as long as

Rx ≥ 16ηκ
√
L1 (f(x0,u0)− f⋆)

1/2 ; Ru ≥ 16ηκG1

√
L2 (f(x0,u0)− f⋆)

1/2

we can guarantee that ∥xk+1 − x0∥2 ≤ Rx and ∥uk+1 − u0∥2 ≤ Ru. Combining the two inductive
steps and the base case completes the proof.

Appendix C. Proofs for Section 3.3

C.1. Proof of Lemma 8

By Assumption 1, we have that for all x,y ∈ Rd and v ∈ B(2)
Ru

, it holds that

f(y,u) ≥ f(x,u) + ⟨∇1f(x,u),y − x⟩+ µ

2
∥y − x∥22

f(x,u) ≥ f(y,u) + ⟨∇1f(y,u),x− y⟩+ µ

2
∥x− y∥22

Summing the two inequality gives

⟨∇1f(y,u)−∇1f(x,u),y − x⟩ ≥ µ ∥y − x∥22
Applying Cauchy-Schwarz inequality to the left-hand side gives

∥∇1f(y,u)−∇1f(x,u)∥ ≥ µ ∥y − x∥2 (24)

Let u,v ∈ B(2)
Ru

be given. Then (24) implies that

∥x⋆(u)− x⋆(v)∥2 ≤
1

µ
∥∇1f(x

⋆(u),u)−∇1f(x
⋆(v),u)∥2 (25)

By the definition of x⋆(u) and x⋆(v), we have

∇1f(x
⋆(u),u) = 0 = ∇1f(x

⋆(v),v)

Therefore, (25) reduces to

∥x⋆(u)− x⋆(v)∥2 ≤
1

µ
∥∇1f(x

⋆(v),v)−∇1f(x
⋆(v),u)∥2 ≤

G2

µ
∥u− v∥2

where the last inequality follows from Assumption 5.
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C.2. Proof of Lemma 9

Since Assumption 1, 3, 4, 6 holds, we can invoke Lemma 4, 20 to get that

∥∇1f(x,u)∥22 ≥ 2µ (f(x,u)− f⋆) ; ∥∇2f(x,u)∥22 ≤ 2G2
1L2 (f(x,u)− f⋆)

for all x ∈ B(1)
Rx

and u ∈ B(2)
Ru

. Combining the two inequality gives

∥∇2f(x,u)∥22 ≤
G2

1L2

µ
∥∇1f(x,u)∥22

Appendix D. Proofs for Section 3.2

D.1. Proof of Theorem 7

Define γ = c
2
√
κ−c

such that 1+γ =
(
1− c

2
√
κ

)−1
. Let λ = (1+γ)3−1. Denote x−1 = y−1 = x0

and u−1 = v−1 = u0. In this proof, we will focus on the following Lyapunov function

ϕk = f(xk,uk)− f⋆ +Q1

∥∥zk − x⋆
k−1

∥∥2
2
+

η

8
∥∇1f(yk−1,vk−1)∥22 (26)

where x⋆
k, zk and Q1 are defined as

x⋆
k = argmin

x∈Rd1

f(x,vk); zk =
1− βλ

βλ
(yk − xk) + yk; Q1 =

λ2

2η(1 + γ)5

We will prove the following two conditions by induction

Condition 3 For all k ≤ k̂, we have

ϕk ≤
(
1− c

4
√
κ

)k

ϕ0

Condition 4 For all k ≤ k̂, we have that xk,yk ∈ B(1)
Rx/2 and uk,vk ∈ B(2)

Ru/2, and

∥xk − xk−1∥22 ≤
6η(L2 + 1)

1− β

(
1− c

4
√
κ

)k

ϕ0

∥uk − uk−1∥22 ≤ G2
1

6ηL2(L2 + 1)(1 + β)3

µβ(1− β)3

(
1− c

4
√
κ

)k

ϕ0

(27)

Moreover, we have η ∥∇1f(yk,vk)∥2 ≤ β ∥xk − xk−1∥2 + ∥xk+1 − xk∥2.

Notice that f(xk,uk) − f⋆ ≤ ϕk. By Lemma 21, we have ϕ0 ≤ 2 (f(x0,u0)− f⋆). Thus,
Condition 3 implies that

f(xk,uk)− f⋆ ≤ 2

(
1− c

4
√
κ

)k

(f(x0,u0)− f⋆)

Therefore, Condition 3 and 4 together implies Theorem 7. We now show that the two conditions
hold by induction.
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D.1.1. BASE CASE: k̂ = 0

When k̂ = 0, the only possible k ≤ k̂ is k = 0. In this case, Condition 3 reads ϕ0 ≤ ϕ0, which is
automatically true. Condition 4 also holds automatically since when k = 0, we have

∥xk − xk−1∥2 = ∥x0 − x−1∥2 = 0; ∥uk − uk−1∥2 = ∥u0 − u−1∥2 = 0

D.1.2. INDUCTIVE STEP 1: CONDITION 3 ⇒ CONDITION 4

Assume that Condition 3 holds for all k ≤ k̂. We want to show that Condition 4 holds for all
k ≤ k̂ + 1 Notice that f(xk,uk)− f⋆ ≤ ϕk. This implies that

f(xk,uk)− f⋆ ≤
(
1− c

4
√
κ

)k

ϕ0

Combining with Assumption 1-6, and the condition that G1 ≤ C1µ2

L2(L2+1)2

(
1−β
1+β

)3
, we can invoke

Lemma 16 to conclude directly that Condition 4 holds for all k ≤ k̂ + 1.

D.1.3. INDUCTIVE STEP 2: CONDITION 4 ⇒ CONDITION 3

Assume that Condition 3 and 4 holds for all k ≤ k̂. We show that Condition 3 holds for all k ≤ k̂+1.
To start, we first show that xk̂+1 ∈ B(1)

Rx
and uk̂+1 ∈ B(2)

Ru
. By the triangle inequality, we have∥∥∥xk̂+1 − x0

∥∥∥
2
≤
∥∥yk̂ − x0

∥∥
2
+
∥∥∥xk̂+1 − yk̂

∥∥∥
2
;
∥∥∥uk̂+1 − x0

∥∥∥
2
≤
∥∥vk̂ − x0

∥∥
2
+
∥∥∥uk̂+1 − vk̂

∥∥∥
2

Since Condition 4 implies that yk̂ ∈ B(1)
Rx/2 and vk̂ ∈ B(2)

Ru/2, it suffice to show that
∥∥∥xk̂+1 − yk̂

∥∥∥
2
≤

Rx/2 and
∥∥∥uk̂+1 − vk̂

∥∥∥
2
≤ Ru/2. By Lemma 16, we have∥∥∥xk̂+1 − yk̂

∥∥∥
2
= η

∥∥∇1f(yk̂,vk̂)
∥∥
2
≤ β

∥∥∥xk̂ − xk̂−1

∥∥∥
2
+
∥∥∥xk̂+1 − xk̂

∥∥∥
2

≤ 2

(
6
η(L2 + 1)

1− β
ϕ0

) 1
2

≤ 8

(
η(L2 + 1)

1− β

) 1
2

(f(x0,u0)− f⋆)
1
2

≤ Rx

2

(28)

This shows that xk̂+1 ∈ B(1)
Rx

. Similarly, we have∥∥∥xk̂+1 − yk̂

∥∥∥
2
= η

∥∥∇2f(yk̂,vk̂)
∥∥
2
≤ G1

√
L2

µ

(
β
∥∥∥xk̂ − xk̂−1

∥∥∥
2
+
∥∥∥xk̂+1 − xk̂

∥∥∥
2

)
≤ 2G1

√
L2

µ

(
6
η(L2 + 1)

1− β
ϕ0

) 1
2

≤ 8

(
ηG2

1L2(L2 + 1)

µ(1− β)

) 1
2

(f(x0,u0)− f⋆)
1
2

≤ Ru

2

(29)
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Thus, uk̂+1 ∈ B(1)
Ru

. Now, we can invoke Lemma 17 to get that

(1 + γ)ϕk̂+1 ≤ ϕk̂ +

(
G2

1L2

2γ
+

4Q1G
2
2

γµ2
(1 + γ)

)
β2
∥∥∥uk̂ − uk̂−1

∥∥∥2
2

(30)

With Condition 4, we can write (30) as

(1 + γ)ϕk̂+1 − ϕk̂ ≤
(
G4

1L2

2γ
+

4Q1G
2
1G

2
2

γµ2
(1 + γ)

)
6ηβL2(L2 + 1)(1 + β)3

µ(1− β)3

·
(
1− c

4
√
κ

)k̂

ϕ0

(31)

Since G4
1 ≤ C1µ2

L2(L2+1)2

(
1−β
1+β

)3
, we have

G4
1L2

2γ
=

C1µ
2

2(L2 + 1)2γ

(
1− β

1 + β

)3

≤ C1µL1

c
√
κ(L2 + 1)2

(
1− β

1 + β

)3

=
C1µ

η
√
κ(L2 + 1)2

(
1− β

1 + β

)3

(32)

where the inequality follows from 1
γ ≤ 2

c

√
κ = 2L1

cµ
√
κ

. Since G2
1G

2
2 ≤ C2µ3

L2(L2+1)
√
κ

(
1−β
1+β

)2
, we

have
4Q1G

2
1G

2
2

γµ2
(1 + γ) =

100C2γµ

η(1 + γ)4L2(L2 + 1)
√
κ

(
1− β

1 + β

)2

≤ 100C2γµ

η
√
κL2(L2 + 1)

(
1− β

1 + β

)2

≤ 100C2µ

η
√
κL2(L2 + 1)

(
1− β

1 + β

)3

(33)

where the last inequality follows from

γ ≤ c√
κ
≤

√
c√

κ+
√
c
≤ 1− β

1 + β

Combining (32) and (33) gives

G4
1L2

2γ
+

4Q1G
2
1G

2
2

γµ2
(1 + γ) ≤ (C1 + 100C2)µ

η
√
κL2(L2 + 1)

(
1− β

1 + β

)3

Thus (31) becomes

(1 + γ)ϕk̂+1 − ϕk̂ ≤ 6√
κ
(C1 + 100C2)

(
1− c

4
√
κ

)k̂

ϕ0 (34)

Plugging in the value of γ = c
2
√
κ−c

and choose a small enough C1 and C2 gives

(
1− c

2
√
κ

)−1

ϕk̂+1 − ϕk̂ ≤ 1

4
√
κ

(
1− c

4
√
κ

)k̂

ϕ0 (35)
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Therefore

ϕk̂+1 ≤
(
1− c

2
√
κ

)
ϕk̂ +

1

4
√
κ

(
1− c

4
√
κ

)k̂+1

ϕ0

≤
(
1− c

2
√
κ

)(
1− c

4
√
κ

)k̂

ϕ0 +
1

4
√
κ

(
1− c

4
√
κ

)k̂

ϕ0

≤
(
1− c

4
√
κ

)k̂+1

ϕ0

This proves Condition 3 for k̂ + 1. Since we have established the induction for both conditions, we
have completed the proof.

D.2. Proof of Lemma 10/16

We first restate an extended version of Lemma 10 here.

Lemma 16 Suppose that Assumption 1-6 holds with G4
1 ≤ C1µ2

L2(L2+1)2

(
1−β
1+β

)3
and for all k ≤ k̂

f(xk,uk)− f⋆ ≤
(
1− c

4
√
κ

)k

ϕ0 (36)

Then we have xk,yk ∈ B(1)
Rx

and uk,vk ∈ B(2)
Ru

for all k ≤ k̂ + 1 with

Rx ≥ 18

c

√
κ

(
3η(L2 + 1)

1− β

) 1
2

(f(x0,u0)− f⋆)
1
2

Ru ≥ 18

c

√
κ

(
6ηG2

1L2(L2 + 1)(1 + β)3

µβ(1− β)3

)
(f(x0,u0)− f⋆)

1
2

Moreover, for all k ≤ k̂ + 1, we have η ∥∇1f(yk,vk)∥2 ≤ β ∥xk − xk−1∥2 + ∥xk+1 − xk∥2 and

∥xk − xk−1∥22 ≤
6η(L2 + 1)

1− β

(
1− c

4
√
κ

)k

ϕ0

∥uk − uk−1∥22 ≤ G2
1

6ηL2(L2 + 1)(1 + β)3

µβ(1− β)3

(
1− c

4
√
κ

)k

ϕ0

(37)

Proof We prove Lemma 16 by induction. Notice that for k = 0, all the statements are automatically
true. Assume that 37 holds up to iteration k, we first show that xk,yk ∈ B(1)

Rx
and uk,vk ∈ B(2)

Ru
.

Step 1: xk,yk ∈ B(1)
Rx

. By the triangle inequality, we have

∥xk − x0∥2 ≤
k−1∑
t=0

∥xt+1 − xt∥2

≤
√

6η(L2 + 1)

1− β
ϕ0

k−1∑
t=0

(
1− c

4
√
κ

) k
2

≤
√

6η(L2 + 1)

1− β
ϕ0 ·

1

1−
(
1− c

4
√
κ

) 1
2

(38)
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Notice that
(
1− c

4
√
κ

) 1
2 ≤ 1 − c

8
√
κ

. Moreover, by lemma 21, we have ϕ0 ≤ 2 (f(x0,u0)− f⋆)

Thus (38) becomes

∥xk − x0∥2 ≤
8

c

√
κ ·
√

6η(L2 + 1)

1− β
ϕ0 ≤

16

c

√
κ

(
3η(L2 + 1)

1− β

) 1
2

(f(x0,u0)− f⋆)
1
2 (39)

This shows that ∥xk − x0∥2 ≤ Rx. Moreover, since yk − xk = β(xk − xk−1), we have

∥yk − x0∥2 ≤ ∥yk − xk∥2 + ∥xk − x0∥2 = β ∥xk − xk−1∥+ ∥xk − x0∥2

By the inductive hypothesis, we have ∥xk − xk−1∥22 ≤ 6η(L2+1)
1−β

(
1− c

4
√
κ

)k
ϕ0. Combining with

the bound in (39), we have

∥yk − x0∥2 ≤
(
β +

8

c

√
κ

)√
6η(L2 + 1)

1− β
ϕ0 ≤

18

c

√
κ

(
3η(L2 + 1)

1− β

) 1
2

(f(x0,u0)− f⋆)
1
2

This shows that ∥yk − x0∥2 ≤ Rx.
Step 2: uk,vk ∈ B(2)

Ru
. Now, we focus on uk and vk. Similar to (38), we have

∥uk − u0∥2 ≤
k−1∑
t=0

∥ut+1 − ut∥2

≤ G1

√
6ηL2(L2 + 1)(1 + β)3

µβ(1− β)3
ϕ0

k−1∑
t=0

(
1− c

4
√
κ

) k
2

≤ G1

√
6ηL2(L2 + 1)(1 + β)3

µβ(1− β)3
ϕ0 ·

1

1−
(
1− c

4
√
κ

) 1
2

≤ 8

c

√
κG1

√
6ηL2(L2 + 1)(1 + β)3

µβ(1− β)3
ϕ0

≤ 16

c

√
κ

(
6ηG2

1L2(L2 + 1)(1 + β)3

µβ(1− β)3

)
(f(x0,u0)− f⋆)

1
2

(40)

This shows that ∥uk − u0∥2 ≤ Ru. Moreover, for vk we have

∥vk − u0∥2 ≤ β ∥uk − uk−1∥2 + ∥uk − u0∥2

By the inductive hypothesis, we have ∥uk − uk−1∥22 ≤ G2
1
6ηL2(L2+1)(1+β)3

µβ(1−β)3

(
1− c

4
√
κ

)k
ϕ0. There-

fore

∥vk − u0∥2 ≤
(
β +

8

c

√
κ

)
G1

√
6ηL2(L2 + 1)(1 + β)3

µβ(1− β)3
ϕ0

≤ 18

c

√
κ

(
6ηG2

1L2(L2 + 1)(1 + β)3

µβ(1− β)3

)
(f(x0,u0)− f⋆)

1
2
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This shows that ∥vk − u0∥2 ≤ Ru. Thus, we have shown that xk,yk ∈ B(1)
Rx

and uk,vk ∈ B(2)
Ru

.
Step 3: Bounding ∥xk+1 − xk∥2. Now, we show that (37) holds with k + 1. We start by recalling
the iterates of Nesterov’s momentum (4). This iteration implies that

xk+1 = yk − η∇1f(yk,vk) = xk + β(xk − xk−1)− η∇1f(yk,vk)

uk+1 = vk − η∇2f(yk,vk) = uk + β(uk − uk−1)− η∇2f(yk,vk)

Therefore, we can conclude that

xk+1 − xk = β(xk − xk−1)− η∇1f(yk,vk); uk+1 − uk = β(uk − uk−1)− η∇2f(yk,vk)

For the convenience of our analysis, we will define

Dx,k = ∥xk − xk−1∥2 ; Du,k = ∥uk − uk−1∥2

To start, we notice that Dx,k+1 can be expanded as

D2
x,k+1 = ∥xk+1 − xk∥22

= ∥β(xk − xk−1)− η∇1f(yk,vk)∥22
= β2D2

x,k − 2ηβ ⟨∇1f(yk,vk),xk − xk−1⟩+ η2 ∥∇1f(yk,vk)∥22

(41)

Both the inner product term and the gradient norm in (41) need to be bounded carefully. For the
inner product term, since vk ∈ B(2)

Ru
, we invoke Assumption 1

f(xk,vk) ≥ f(yk,vk) + ⟨∇1f(yk,vk),xk − yk⟩+
µ

2
∥xk − yk∥22

≥ f(yk,vk)− β ⟨∇1f(yk,vk),xk − xk−1⟩
(42)

where the last inequality follows from xk − yk = −β(xk − xk−1) and ∥xk − yk∥22 ≥ 0. Therefore
(42) implies that

−β ⟨∇1f(yk,vk),xk − xk−1⟩ ≤ f(xk,vk)− f(yk,vk) (43)

For the gradient norm, since vk ∈ B(2)
Ru

, Assumption 2 must hold. Therefore, we can invoke Lemma
18 to get that

∥∇1f(yk,vk)∥22 ≤ 2L1(f(yk,vk)− f⋆) (44)

Plugging (43) and (44) into (41), we can get that

D2
x,k+1 ≤ β2D2

x,k + 2η (f(xk,vk)− f(yk,vk)) + 2η2L1(f(yk,vk)− f⋆) (45)

Since we choose η = c
L1

, as long as c ≤ 1, we will have 2η2L1 ≤ 2η. Moreover, since f(yk,vk)−
f⋆ ≥ 0, (45) can be further bounded as

D2
x,k+1 ≤ β2D2

x,k + 2η (f(xk,vk)− f(yk,vk)) + 2η(f(yk,vk)− f⋆)

= β2D2
x,k + 2η (f(xk,vk)− f⋆)

(46)
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With xk ∈ B(1)
Rx

and uk,vk ∈ B(2)
Ru

, we must have that Assumption 3, 4 holds. Therefore, we can
invoke Lemma 5 with Q = 1 to get that

f(xk,vk) ≤ f(xk,uk) + L2(f(xk,uk)− f⋆) +
G2

1

2
(L2 + 1) ∥uk − vk∥22

Subtracting f⋆ from both sides, and use the fact that uk − vk = −β(uk − uk−1), we have

f(xk,vk)− f⋆ ≤ (L2 + 1)

(
f(xk,uk)− f⋆ +

G2
1β

2

2
∥uk − uk−1∥22

)
(47)

Plugging (47) into (46), and recalling that ∥uk − uk−1∥22 = D2
u,k gives

D2
x,k+1 ≤ β2D2

x,k + 2η(L2 + 1)

(
f(xk,uk)− f⋆ +

G2
1β

2

2
D2

u,k

)
(48)

Recall that f(xk,uk)− f⋆ satisfies (36). Moreover, by the inductive assumption, we have

D2
x,k ≤ 6η(L2 + 1)

1− β

(
1− c

4
√
κ

)k

ϕ0; D2
u,k ≤ G2

1

6ηL2(L2 + 1)(1 + β)3

µβ(1− β)3

(
1− c

4
√
κ

)k

ϕ0

Therefore, (47) becomes

D2
x,k+1 ≤

6β2η(L2 + 1)

1− β
+ 4η(L2 + 1) +

6η2βG4
1L2(L2 + 1)2(1 + β)3

µ(1− β)3︸ ︷︷ ︸
ζ1


(
1− c

4
√
κ

)k

ϕ0

(49)

With G4
1 ≤ C1µ2

L2(L2+1)2

(
1−β
1+β

)3
and η = c

L1
≤ 1

µ , we can derive that

6η2βG4
1L2(L2 + 1)2(1 + β)3

µ(1− β)3
≤ 6C1η

2βµ ≤ 6C1ηβ ≤ 2η

with a small enough C1. Therefore, ζ1 in (49) can be simplified to

ζ1 ≤
6β2η(L2 + 1)

1− β
+ 4η(L2 + 1) + 2η

≤ 6η(L2 + 1)

1− β

(
β2 +

2

3
(1− β) +

1− β

3(L2 + 1)

)
≤ 6η(L2 + 1)

1− β

(
1− β + β2

)
By the choice of β = 4

√
κ−

√
c

4
√
κ+7

√
c
, we have

β − β2 =
8
√
c(4

√
κ−√

c)

(4
√
κ+ 7

√
c)2

≤ c

4
√
κ
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Thus, ζ1 in (49) satisfies ζ1 ≤ 6η(L2+1)
1−β

(
1− c

4
√
κ

)
and (49) becomes

D2
x,k+1 ≤

6η(L2 + 1)

1− β

(
1− c

4
√
κ

)k+1

ϕ0 (50)

This proves the inductive step for D2
x,k+1.

Step 4: Bounding ∥uk+1 − uk∥2. Next, we focus on Du,k. We first need a bound on ∥∇2f(yk,vk)∥2.
To start, (41) implies that

η2 ∥∇1f(yk,vk)∥22 = D2
x,k+1 − β2D2

x,k + 2ηβ ⟨∇1f(yk,vk),xk − xk−1⟩
≤ D2

x,k+1 − β2D2
x,k + 2ηβDx,k ∥∇1f(yk,vk)∥2

which implies that

η2 ∥∇1f(yk,vk)∥22 − 2ηβDx,k ∥∇1f(yk,vk)∥2 + β2D2
x,k −D2

x,k+1 ≤ 0

Therefore, for all G = η ∥∇1f(yk,vk)∥2, G must satisfy

G2 − 2βDx,kG + β2D2
x,k −D2

x,k+1 ≤ 0 (51)

When (51) takes equality, the two solutions of G are

Glb = βDx,k −Dx,k+1; Gub = βDx,k +Dx,k+1

Therefore, ∥∇1f(yk,vk)∥2 must be bounded by

η ∥∇1f(yk,vk)∥2 ≤ Gub = βDx,k +Dx,k+1 (52)

Moreover, since Assumption 1,3,4, and 6 holds, and that yk ∈ B(1)
Rx

and vk ∈ B(2)
Ru

, we can apply
Lemma 9 to (49) get that

η ∥∇2f(yk,vk)∥2 ≤ G1

√
L2

µ
(βDx,k +Dx,k+1) (53)

Recall that uk+1 − uk = β(uk − uk−1)− η∇2f(yk,vk). Unrolling this recursion gives

uk+1 − uk = η

k∑
t=0

βk−t∇2f(yt,vt)

Now, we can bound Du,k+1 as

Du,k+1 ≤ η

∥∥∥∥∥
k∑

t=0

βk−t∇2f(yt,vt)

∥∥∥∥∥
2

≤ η
k∑

t=0

βk−t ∥∇2f(yt,vt)∥2

≤ G1

√
L2

µ

k∑
t=0

βk−t (βDx,t +Dx,t+1)

= G1

√
L2

µ

(
k∑

t=0

βk−t+1Dx,t +

k∑
t=0

βk−tDx,t+1

)
(54)
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Recall the inductive hypothesis

D2
x,k ≤ 6η(L2 + 1)

1− β

(
1− c

4
√
κ

)k

ϕ0

Since we have shows that this bound also hold for k + 1 in (50), we can write (54) as

Du,k+1 = G1

√
6ηL2(L2 + 1)

µ(1− β)
ϕ

1
2
0

(
k∑

t=0

βk−t+1

(
1− c

4
√
κ

) t
2

+

k∑
t=0

βk−t

(
1− c

4
√
κ

) t+1
2

)
(55)

By the standard geometric series result, we have

k∑
t=0

βk−t+1

(
1− c

4
√
κ

) t
2

= β ·
βk+1 −

(
1− c

4
√
κ

) k+1
2

β −
(
1− c

4
√
κ

) 1
2

k∑
t=0

βk−t

(
1− c

4
√
κ

) t+1
2

=

(
1− c

4
√
κ

) 1
2

·
βk+1 −

(
1− c

4
√
κ

) k+1
2

β −
(
1− c

4
√
κ

) 1
2

By our choice of β, we must have that β ≤ 1− c
4
√
κ
≤
(
1− c

4
√
κ

) 1
2 . Therefore (55) becomes

Du,k+1 ≤ G1

√
6ηL2(L2 + 1)

µ(1− β)
ϕ0 ·

(
β +

(
1− c

4
√
κ

) 1
2

)
βk+1 −

(
1− c

4
√
κ

) k+1
2

β −
(
1− c

4
√
κ

) 1
2

= G1

√
6ηL2(L2 + 1)

µ(1− β)

(
1− c

4
√
κ

) k+1
2

ϕ0 ·

(
1− c

4
√
κ

) 1
2
+ β(

1− c
4
√
κ

) 1
2 − β

Which implies that

D2
u,k+1 ≤

6ηG2
1L2(L2 + 1)

µ(1− β)

(
1− c

4
√
κ

)k+1

ϕ0 ·


(
1− c

4
√
κ

) 1
2
+ β(

1− c
4
√
κ

) 1
2 − β


2

(56)
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We notice that, since
(
1− c

4
√
κ

) 1
2 ≤ 1− c

8
√
κ

, we have

(
1− c

4
√
κ

) 1
2
+ β(

1− c
4
√
κ

) 1
2 − β

=
1− c

4
√
κ
+ β2 + 2β

(
1− c

4
√
κ

) 1
2

1− c
4
√
κ
+ β2 + 2β

(
1− c

4
√
κ

) 1
2

≤
1− c

4
√
κ
+ β2 − β

(
2− c

4
√
κ

)
1− c

4
√
κ
+ β2 − β

(
2− c

4
√
κ

)
=

(
1− c

4
√
κ
+ β

)
(1 + β)(

1− c
4
√
κ
− β

)
(1− β)

Since β − β2 ≤ c
4
√
κ

, we have

1− c

4
√
κ
+ β ≤ 1 + β; 1− c

4
√
κ
− β ≥ 1− β + β2 ≥ β(1− β)

This gives (
1− c

4
√
κ

) 1
2
+ β(

1− c
4
√
κ

) 1
2 − β

≤ (1 + β)2

β(1− β)2

Thus, (56) becomes the following form, which proves the inductive step for D2
u,k+1.

D2
u,k+1 ≤

6ηG2
1L2(L2 + 1)(1 + β)3

µβ(1− β)3

(
1− c

4
√
κ

)k+1

ϕ0 (57)

D.3. Proof of Lemma 11/17

We first restate an extended version of Lemma 10 here.

Lemma 17 Suppose that Assumption 1-6 holds with G4
1 ≤ C1µ2

L2(L2+1)2

(
1−β
1+β

)3
and G2

1G
2
2 ≤

C2µ3

L2(L2+1)
√
κ

(
1−β
1+β

)2
. If xk+1,xk,yk ∈ B(1)

Rx
and uk+1,uk,vk ∈ B(2)

Ru
for all k ≤ k̂, then for

all k ≤ k̂ we have

(1 + γ)ϕk+1 ≤ ϕk +

(
G2

1L2

2γ
+

4Q1G
2
2

γµ2
(1 + γ)

)
β2 ∥uk − uk−1∥22

where γ = c
2
√
κ−c

and Q1 =
λ2

2η(1+γ)5
with λ = (1 + γ)3 − 1.
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Proof We will derive the bound for (1 + γ)ϕk+1 − ϕk. This quantity can be written as

(1 + γ)ϕk+1 − ϕk = (1 + γ) (f(xk+1,uk+1)− f⋆)− (f(xk,uk)− f⋆)︸ ︷︷ ︸
∆1

+Q1

(1 + γ) ∥zk+1 − x⋆
k∥22 −

∥∥zk − x⋆
k−1

∥∥2
2︸ ︷︷ ︸

∆2


+

η

8
(1 + γ) ∥∇1f(yk,vk∥22 −

η

8
∥∇1f(yk−1,vk−1)∥22

(58)

In the following parts of the proof, we will bound ∆1 and ∆2 respectively. Throughout the proof,
we will define ∆yk = yk − x⋆

k,∆zk = zk − x⋆
k, and ∆xk = xk − x⋆

k

Bound on ∆1. We first study f(xk+1,uk+1)− f⋆. It can be decomposed as

f(xk+1,uk+1)− f⋆ = f(xk+1,vk)− f⋆ + f(xk+1,uk+1)− f(xk+1,vk) (59)

Since xk+1 ∈ B(1)
Rx

, and uk+1,vk ∈ B(2)
Ru

, we can invoke Lemma 5 with Q = L2/γ to get that

f(xk+1,uk+1)− f(xk+1,vk) ≤ γ (f(xk+1,vk)− f⋆) +
G2

1L2

2γ
(1 + γ) ∥uk+1 − vk∥22

Notice that ∥uk+1 − vk∥22 = η2 ∥∇2f(yk,vk)∥22 ≤ η2G2
1 · L2

µ ∥∇1f(yk,vk)∥22. Thus

G2
1L2

2γ
(1 + γ) ∥uk+1 − vk∥22 ≤

η2G4
1L

2
2

2γµ
(1 + γ) ∥∇1f(yk,vk)∥22 ≤

η

4
(1 + γ) ∥∇1f(yk,vk)∥22

for the choice of G4
1 ≤ C1µ2

L2(L2+1)2

(
1−β
1+β

)3
≤ µL1γ

2cL2
2
= µγ

2ηL2
2
. In this way, (59) becomes

f(xk+1,uk+1)− f⋆ ≤ (1 + γ)(f(xk+1,vk)− f⋆) +
η

4
(1 + γ) ∥∇1f(yk,vk)∥22 (60)

Again, since xk+1 ∈ B(1)
Rx

, and uk+1,vk ∈ B(2)
Ru

, we can use Assumption 2 and the iterate xk+1 =
yk − η∇1f(yk,vk) to get the

f(xk+1,vk)− f⋆ ≤ f(yk,vk)− f⋆ + ⟨∇1f(yk,vk,xk+1 − yk⟩+
L1

2
∥xk+1 − yk∥22

= f(yk,vk)− f⋆ − η ∥∇1f(yk,vk)∥22 +
η2L1

2
∥∇1f(yk,vk)∥22

= f(yk,vk)− f⋆ − η
(
1− c

2

)
∥∇1f(yk,vk)∥22

(61)

Combining (61) with (60) gives

f(xk+1,uk+1)− f⋆ ≤ (1 + γ)(f(yk,vk)− f⋆)− η(1 + γ)

(
3

4
− c

2

)
∥∇1f(yk,vk)∥22 (62)
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Next, we study f(xk,uk)− f⋆. It can be decomposed as

f(xk,uk)− f⋆ = f(xk,vk)− f⋆ − (f(xk,vk)− f(xk,uk)) (63)

Since xk ∈ B(1)
Rx

, and uk,vk ∈ B(2)
Ru

, we can invoke Lemma 5 with Q = L2/γ to get that

f(xk,vk)− f(xk,uk) ≤ γ(f(xk,uk)− f⋆) +
G2

1L2

2γ
(1 + γ) ∥uk − vk∥22

Therefore, (63) becomes

f(xk,uk)− f⋆ ≥ f(xk,vk)− f⋆ − γ(f(xk,uk)− f⋆)− G2
1L2

2γ
(1 + γ) ∥uk − vk∥22

which implies that

f(xk,uk)− f⋆ ≥ 1

1 + γ
(f(xk,vk)− f⋆)− G2

1L2

2γ
∥uk − vk∥22 (64)

Now, recall the definition of ∆1 in (58). Combined with (61) and (64), we can write ∆1 as

∆1 = (1 + γ)(f(xk+1,uk+1)− f⋆)− (f(xk,uk)− f⋆)

≤ (1 + γ)2(f(yk,vk)− f⋆)− η(1 + γ)2
(
3

4
− c

2

)
∥∇1f(yk,vk)∥22

− 1

1 + γ
(f(xk,vk)− f⋆) +

G2
1L2

2γ
∥uk − vk∥22

=
1

1 + γ
(f(yk,vk)− f(xk,vk)) +

λ

1 + γ
(f(yk,vk)− f⋆)

− η(1 + γ)2
(
3

4
− c

2

)
∥∇1f(yk,vk)∥22 +

G2
1L2

2γ
∥uk − vk∥22

(65)

Since vk ∈ B(2)
Ru

, we can apply Assumption 1 to get that

f(xk,vk) ≥ f(yk,vk) + ⟨∇1f(yk,vk),xk − yk⟩
f⋆ = f(x⋆

k,vk) ≥ f(yk,vk) + ⟨∇1f(yk,vk),x
⋆
k − yk⟩+

µ

2
∥x⋆

k − yk∥

Thus, we have

1

1 + γ
(f(yk,vk)− f(xk,vk)) +

λ

1 + γ
(f(yk,vk)− f⋆)

≤ 1

1 + γ
⟨∇1f(yk,vk),yk − xk⟩+

λ

1 + γ
⟨∇1f(yk,vk),yk − x⋆

k⟩22

− µλ

2(1 + γ)
∥x⋆

k − yk∥

=
1

1 + γ
⟨∇1f(yk,vk),yk − xk + λ(yk − x⋆

k)⟩ −
µλ

2(1 + γ)
∥x⋆

k − yk∥22

(66)

36



ACCELERATION OF NEURAL NETWORK TRAINING

Recall that zk = 1−βλ
βλ (yk − xk) + yk. This implies that yk − xk = βλ

1−βλ(zk − yk). Therefore

yk − xk + λ(yk − x⋆
k) =

βλ

1− βλ
(zk − yk) + λ(yk − x⋆

k)

=
λ

1− βλ
(β(zk − yk) + (1− βλ)(yk − x⋆

k))

=
λ

1− βλ
(β(zk − x⋆

k) + (1− βλ− β)(yk − x⋆
k))

Recall that ∆zk = zk − x⋆
k and ∆yk = yk − x⋆

k. Thus (66) becomes

1

1 + γ
(f(yk,vk)− f(xk,vk)) +

λ

1 + γ
(f(yk,vk)− f⋆)

≤ λ

(1 + γ)(1− βλ)
⟨∇1f(yk,vk), β∆zk + (1− βλ− β)∆yk⟩ −

µλ

2(1 + γ)
∥∆yk∥22

Combining with (65), the bound on ∆1 becomes

∆1 ≤
λ

(1 + γ)(1− βλ)
⟨∇1f(yk,vk), β∆zk + (1− βλ− β)∆yk⟩ −

µλ

2(1 + γ)
∥∆yk∥22

− η(1 + γ)2
(
3

4
− c

2

)
∥∇1f(yk,vk)∥22 +

G2
1L2

2γ
∥uk − vk∥22

(67)

Bound on ∆2. Now we turn to the bound on ∆2. Recall that ∆2 is defined as

∆2 = (1 + γ) ∥zk+1 − x⋆
k∥22 −

∥∥zk − x⋆
k−1

∥∥2
2

To start, we notice that, since vk,vk−1 ∈ B(2)
Ru

, we can invoke Lemma 8 to get that

∥∥x⋆
k − x⋆

k−1

∥∥
2
≤ G2

µ
∥vk − vk−1∥2

Therefore, we can lower-bound
∥∥zk − x⋆

k−1

∥∥2
2

as

∥∥zk − x⋆
k−1

∥∥2
2
≥ ∥∆zk∥+ 2

〈
∆zk,xk − x⋆

k−1

〉
≥
(
1− γ

2(1 + γ)

)
∥∆zk∥22 −

2

γ
(1 + γ)

∥∥xk − x⋆
k−1

∥∥2
2

≥ 2 + γ

2 + 2γ
∥∆zk∥22 −

2G2
2

γµ2
(1 + γ) ∥vk − vk−1∥22

(68)
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Next, we provide an upper bound for ∥zk+1 − x⋆
k∥22. Recall that yk+1 = xk+1+β(xk+1−xk) and

xk+1 = yk − η∇1f(yk,vk). We can re-write zk+1 as

zk+1 =
1− βλ

βλ
(yk+1 − xk+1) + yk+1

=
1

βλ
yk+1 −

1− βλ

βλ
xk+1

=
1 + β

βλ
xk+1 −

1

λ
xk −

1− βλ

βλ
xk+1

=
1 + λ

λ
xk+1 −

1

λ
xk

=
1 + λ

λ
yk −

1

λ
xk −

1 + λ

λ
η∇1f(yk,vk)

=
β

1− βλ
zk +

(
1− β

1− βλ

)
yk −

η

λ
(1 + λ)∇1f(yk,vk)

Therefore, we can write ∥zk+1 − x⋆
k∥22 as

∥zk+1 − x⋆
k∥22 =

∥∥∥∥ β

1− βλ
∆zk +

(
1− β

1− βλ

)
∆yk −

η

λ
(1 + λ)∇1f(yk,vk)

∥∥∥∥2
2

=
β2

(1− βλ)2
∥∆zk∥22 +

(1− βλ− β)2

(1− βλ)2
∥∆yk∥22

− 2η(1 + λ)

λ(1− βλ)
⟨∇1f(yk,vk), β∆zk + (1− βλ− β)∆yk⟩

+
2β(1− βλ− β)

(1− βλ)2
⟨∆zk,∆yk⟩+

η2

λ2
(1 + λ)2 ∥∇1f(yk,vk)∥22

=
β2

(1− βλ)2
∥∆zk∥22 +

(1− βλ− β)2

(1− βλ)2
∥∆yk∥22

− λ

Q1(1 + γ)2(1− βλ)
⟨∇1f(yk,vk), β∆zk + (1− βλ− β)∆yk⟩

+
2β(1− βλ− β)

(1− βλ)2
⟨∆zk,∆yk⟩+

η(1 + γ)

2Q1
∥∇1f(yk,vk)∥22

(69)

where the last inequality follows from Q1 =
λ2

2η(1+γ)2
and λ = (1+ γ)3 − 1. Therefore, combining

(69) and (68) gives

∆2 ≤
(
β2(1 + γ)

(1− βλ)2
− 2 + γ

2 + 2γ

)
∥∆zk∥22 + (1 + γ) · (1− βλ− β)2

(1− βλ)2
∥∆yk∥22

− λ

Q1(1 + γ)(1− βλ)
⟨∇1f(yk,vk), β∆zk + (1− βλ− β)∆yk⟩

+
2(1 + γ)β(1− βλ− β)

(1− βλ)2
⟨∆zk,∆yk⟩+

η(1 + γ)2

2Q1
∥∇1f(yk,vk)∥22

+
2G2

2

γµ2
(1 + γ) ∥vk − vk−1∥22

(70)
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Putting things together. Now, going back to (58). With the help of (67) and (70), we have

(1 + γ)ϕk+1 − ϕk = ∆1 +Q1∆2 +
η

8
(1 + γ) ∥∇1f(yk,vk)∥22 −

η

8
∥∇1f(yk−1,vk−1)∥22

=
λ

(1 + γ)(1− βλ)
⟨∇1f(yk,vk), β∆zk + (1− βλ− β)∆yk⟩

− µλ

2(1 + γ)
∥∆yk∥22 − η(1 + γ)2

(
3

4
− c

2

)
∥∇1f(yk,vk)∥22

+
G2

1L2

2γ
∥uk − vk∥22 +Q1

(
β2(1 + γ)

(1− βλ)2
− 2 + γ

2 + 2γ

)
∥∆zk∥22

+Q1(1 + γ) · (1− βλ− β)2

(1− βλ)2
∥∆yk∥22

− λ

(1 + γ)(1− βλ)
⟨∇1f(yk,vk), β∆zk + (1− βλ− β)∆yk⟩

+
2Q1(1 + γ)β(1− βλ− β)

(1− βλ)2
⟨∆zk,∆yk⟩

+
η

2
(1 + γ)2 ∥∇1f(yk,vk)∥22 +

2Q1G
2
2

γµ2
(1 + γ) ∥vk − vk−1∥22

+
η

8
(1 + γ) ∥∇1f(yk,vk)∥22 −

η

8
∥∇1f(yk−1,vk−1)∥22

= −η(1 + γ)2
(
1

4
− c

2

)
∥∇1f(yk,vk)∥22 −

η

8
∥∇1f(yk−1,vk−1)∥22

+ E1,k + E2,k

(71)

where E1,k and E2,k are defined as

E1,k = Q1

(
β2(1 + γ)

(1− βλ)2
− 2 + γ

2 + 2γ

)
∥∆zk∥22 +

2Q1(1 + γ)β(1− βλ− β)

(1− βλ)2
⟨∆zk,∆yk⟩

+

(
Q1(1 + γ) · (1− βλ− β)2

(1− βλ)2
− µλ

2(1 + γ)

)
∥∆yk∥22

E2,k =
G2

1L2

2γ
∥uk − vk∥22 +

2Q1G
2
2

γµ2
(1 + γ) ∥vk − vk−1∥22

(72)

Our first step is to show that E1,k ≤ 0. To start, notice that

β2(1 + γ)

(1− βλ)2
− 2 + γ

2 + 2γ
≤ 0 ⇔ β ≤

√
1 + γ/2

1 + γ + λ
√

1 + γ/2

By definition of β and using λ = (1 + γ)3 − 1 ≥ 3γ, we have

β =
4
√
κ−√

c

4
√
κ+ 7

√
c
≤ 4

√
κ− 2c

4
√
κ+ 8c

=
1

1 + 5γ
≤

√
1 + γ/2

1 + γ + λ
√
1 + γ/2
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for a small enough constant c. Thus, we can guarantee that β2(1+γ)
(1−βλ)2

− 2+γ
2+2γ ≤ 0. Therefore

2Q1(1 + γ)β(1− βλ− β)

(1− βλ)2
⟨∆zk,∆yk⟩ ≤ Q1

(
2 + γ

2 + 2γ
− β2(1 + γ)

(1− βλ)2

)
∥∆zk∥22

+
Q1(1 + γ)2β2(1− βλ− β)2(

2+γ
2+2γ − β2(1+γ)

(1−βλ)2

)
(1− βλ)4

∥∆yk∥22

This implies that

E1,k ≤

Q1(1 + γ)2β2(1− βλ− β)2(
2+γ
2+2γ − β2(1+γ)

(1−βλ)2

)
(1− βλ)4

+Q1(1 + γ) · (1− βλ− β)2

(1− βλ)2
− µλ

2(1 + γ)

 ∥∆yk∥22

To show that E1,k ≤ 0, it suffice to show that

Q1(1 + γ)2β2(1− βλ− β)2(
2+γ
2+2γ − β2(1+γ)

(1−βλ)2

)
(1− βλ)4

+Q1(1 + γ) · (1− βλ− β)2

(1− βλ)2
≤ µλ

2(1 + γ)

Moving Q1(1 + γ) to the right-hand side gives

(1 + γ)β2(1− βλ− β)2(
2+γ
2+2γ − β2(1+γ)

(1−βλ)2

)
(1− βλ)4

+
(1− βλ− β)2

(1− βλ)2
≤ µλ

2Q1(1 + γ)2

By the definition of Q1, we have µλ
2Q1(1+γ)2

= ηµ(1+γ)3

λ ≥ ηµ(1+γ)3

7γ ≥ c
7κγ . Moreover,

(1 + γ)β2(1− βλ− β)2(
2+γ
2+2γ − β2(1+γ)

(1−βλ)2

)
(1− βλ)4

+
(1− βλ− β)2

(1− βλ)2

≤ (1 + γ)β2(1− βλ− β)2 + (1− βλ− β)2(1− βλ)2 − (1 + γ)β2(1− βλ− β)2(
2+γ
2+2γ − β2(1+γ)

(1−βλ)2

)
(1− βλ)4

=
(1− βλ− β)2(

2+γ
2+2γ − β2(1+γ)

(1−βλ)2

)
(1− βλ)2

=

(
1− β

1−βλ

)2
1− γ

2(1+γ) −
(

β
1−βλ

)2
Therefore, to make E1,k ≤ 0, we just need(

1− β
1−βλ

)2
1− γ

2(1+γ) −
(

β
1−βλ

)2 ≤ c

7κγ

Recall that β = 4
√
κ−

√
c

4
√
κ+

√
c
= 2

√
c−(1−2

√
c)γ

2
√
c+(7+2

√
c)γ

≥ 2
√
c−γ

2
√
c+8γ

. This implies that

β

1− βλ
≥ β

1− 7βγ
≥ 2

√
c− γ

2
√
c+ 8γ
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Therefore (
1− β

1−βλ

)2
1− γ

2(1+γ) −
(

β
1−βλ

)2 ≤

(
9γ

2
√
c+8γ

)2
1− γ

2 −
(

2
√
c−γ

2
√
c+8γ

)2
≤ 81γ2(

1− γ
2

)
(2
√
c+ 8γ)2 − (2

√
c− γ)2

≤ 81γ

36
√
c− 2c

≤ 81γ

35
√
c

Thus, to make E1,k ≤ 0, we just need

81γ

35
√
c
≤ c

7κγ
⇒ γ ≤ 5c

3
4

81
√
κ

Since our choice of γ is γ = c
2
√
κ−c

≤ 5c
3
4

81κ for a smalle enough c, we can guarantee that E1,k ≤ 0.
Thus, (71) becomes

(1+γ)ϕk+1−ϕk ≤ −η(1+γ)2
(
1

8
− c

2

)
∥∇1f(yk,vk)∥22−

η

8
∥∇1f(yk−1,vk−1)∥22+E2,k (73)

With c ≤ 1
4 , it becomes

(1 + γ)ϕk+1 − ϕk ≤ G2
1L2

2γ
∥uk − vk∥22 +

2Q1G
2
2

γµ2
(1 + γ) ∥vk − vk−1∥22

− η

8
∥∇1f(yk−1,vk−1)∥22

(74)

By the iterates of Nesterov’s momentum, we have

uk − vk = −β(uk − uk−1); vk − vk−1 = −η∇2f(yk−1,vk−1) + β(uk − uk−1)

Therefore, ∥uk − vk∥22 = β2 ∥uk − uk−1∥22 and

∥vk − vk−1∥22 ≤ 2η2 ∥∇2f(yk−1,vk−1)∥22 + 2β2 ∥uk − uk−1∥22

≤ 2η2G2
1L2

µ
∥∇1f(yk−1,vk−1)∥22 + 2β2 ∥uk − uk−1∥22

where in the last inequality we invoke Lemma 9. In this way, (74) becomes

(1 + γ)ϕk+1 − ϕk ≤ β2

(
G2

1L2

2γ
+

4Q1G
2
2

γµ2
(1 + γ)

)
∥uk − uk−1∥22+

+ η

(
4ηQ1G

2
1G

2
2L2

γµ3
(1 + γ)− 1

8

)
∥∇1f(yk−1,vk−1)∥22

(75)

Plugging in the requirement G2
1G

2
2 ≤ C2µ3

L2(L2+1)
√
κ

(
1−β
1+β

)2
gives that 4ηQ1G2

1G
2
2L2

γµ3 (1 + γ) ≤ 1
8 .

Therefore, (75) becomes

(1 + γ)ϕk+1 − ϕk ≤ β2

(
G2

1L2

2γ
+

4Q1G
2
2

γµ2
(1 + γ)

)
∥uk − uk−1∥22

which completes the proof.
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Appendix E. Proofs for Section 4.1

E.1. Proof of Lemma 12

To start, recall that our objective function is defined as

f(x,u) =
1

2
∥A1x+ σ (A2u)− b∥22 (76)

We first compute its gradient and its Hessian

∇1f(x,u) = A⊤
1 (A1x+ σ (A2u)− b)

∇11f(x,u) = A⊤
1 A1

(77)

Thus, a⊤∇11f(x,u)a = ∥A1a∥22. This implies that λmax (∇11f(x,u)) ≤ σmax (A1)
2. Moreover,

since A1 ∈ Rm×m, we can also know that λmin (∇11f(x,u)) ≥ σmin (A1)
2. Thus, Assumption

1, 2 holds with µ = σmin (A1)
2 and L1 = σmax (A1)

2. Since g is defined as g(s) = 1
2 ∥s− b∥22,

it must be 1-smooth. Moreover, its minimum values is 0. Going back to f , we notice that since
σmin(A1) > 0, choosing x⋆(u) =

(
A⊤

1 A1

)−1
A⊤

1 (b− σ (A2u)) gives f(x,u) = 0. This shows
that Assumption 3,6 hold with L2 = 1. For Assumption 4, we can compute that

∥h(x,u)− h(x,v)∥2 = ∥σ (A2u)− σ (A2v)∥2
≤ B ∥A2u−A2v∥2
≤ Bσmax (A2) ∥u− v∥2

where in the first inequality we use the B-Lipschitzness of σ. This shows that Assumption 4 holds
with G1 = Bσmax (A2). Lastly, for Assumption 5, we can compute that

∥∇1f(x,u)−∇1f(x,v)∥2 =
∥∥∥A⊤

1 (σ (A2u)− σ (A2v))
∥∥∥
2

≤ σmax (A1) ∥σ (A2u)− σ (A2v)∥2
≤ Bσmax (A1)σmax (A2) ∥u− v∥2

Therefore, Assumption 5 holds with G2 = Bσmax (A1)σmax (A2).

E.2. Proof of Theorem 13

We want to invoke Theorem 7 to prove Theorem 13. Thus, it suffices to check the requirements in
(5) for the coefficients in Lemma 12:

Rx =Ru = ∞; µ = σmin (A1)
2 ; L1 = σmax (A1)

2 ; L2 = 1

G1 = Bσmax (A2) ; G2 = Bσmax (A1)σmax (A2) .
(78)

Since β = 4
√
κ−

√
c

4
√
κ+7

√
c
, we have

1− β

1 + β
=

8
√
c

6
√
κ+ 6

√
c
≥ c′√

κ
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for some small enough constant c′. Treating L2 = 1 as a constant, it suffices to guarantee that

G4
1 ≤

C̃1µ
2

κ
3
2

; G2
1G

2
2 ≤

C̃2µ
3

κ
3
2

(79)

for some small enough constants C̃1 and C̃2. Plugging in the coefficients in (78)yields

B4σmax (A2)
4 ≤ C̃1σmin (A1)

4

κ
3
2

; B4σmax (A2)
4 σmax (A1)

2 ≤ C̃2σmin (A1)
6

κ
3
2

(80)

The second condition can also be written as

B4σmax (A2)
4 ≤ C̃2σmin (A1)

4

κ
5
2

Therefore, we can guarantee the requirements in (5) as long as

σmin (A1) ≥ C̃σmax (A2)Bκ0.75

for some large enough constant C̃. In this way, we can invoke Theorem 7 and notice that f⋆ = 0 to
get that

f(xk,uk) ≤ 2

(
1− c

4
√
κ

)k

f(x0,u0)

Appendix F. Proofs for Section 4.2

F.1. Proof of Lemma 14

Orthogonal Transformation of the Parameters and Equivalence of Nesterov’s Momentum.
To obtain a parameter partition that achieves partial strong convexity, we cannot directly partition
the parameters in the standard basis. Instead, we first apply an orthogonal transformation to all
the parameters and then partition the transformed parameters. In particular, let O ∈ Rd×d be an
orthogonal matrix, and for any objective f̂ : Rd → R, we consider a new function f̃(w) = f̂ (Ow)
for x ∈ Rd. Intuitively, f̃ is the equivalence of f̂ on the orthogonally transformed parameter defined
by O. Ideally, using Nesterov’s momentum to minimize f̃ executes

wk+1 = w̄k − η∇f̃ (w̄k) ; w̄k+1 = wk+1 + β (wk+1 −wk)

Notice that, by the chain rule, ∇f̃ (w̄k) = O⊤∇f̂ (Ow). If we multiply both sides of the two
equations in the updates of Nesterov’s momentum by O, then we get

Owk+1 = Ow̄k − η∇f (Ow̄k) ; Ow̄k+1 = Owk+1 + β (Owk+1 −Owk)

which is precisely the update rule of Nesterov’s momentum for minimizing f (Ow). Therefore, we
can conclude that orthogonal transformation preserves the property of the algorithm of interest.
Computation of the Coefficients. We let w = (V (W1) , . . . ,V (WΛ)) ∈ R

∑Λ
ℓ=1 dℓdℓ−1 . Let θ0

be the initialized parameter, and consider the SVD of FΛ−1 (θ0) as FΛ−1 (θ0) = UΣ0V̂ with
U ∈ Rn×n and V̂ ∈ RdΛ−1×dΛ−1 . Let V̂1 ∈ Rn×dΛ−1 be the top-n rows of V̂ and V̂2 be the rest
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rows. We define V1 ∈ RdΛn×
∑Λ

ℓ=1 dℓdℓ−1 ,V2 ∈ R(
∑Λ

ℓ=1 dℓdℓ−1−dΛn)×
∑Λ

ℓ=1 dℓdℓ−1 in the following
sense (⊗ denotes the Kronecker product):

V1 =
[
0dΛn×

∑Λ−1
ℓ=1 dℓdℓ−1

IdΛ ⊗ V̂1

]
V2 =

[
0dΛ(dΛ−1−n)×

∑Λ−1
ℓ=1 dℓdℓ−1

IdΛ ⊗ V̂2

I∑Λ−1
ℓ=1 dℓdℓ−1

0∑Λ−1
ℓ=1 dℓdℓ−1×dΛ−1dΛ

]

Together,
[
V1

V2

]
is an orthogonal matrix. Under this orthogonal transformation, we partition the

aggregation of all parameters w into x = V1w and u = V2w. Moreover, we let ŴΛ,1 = V̂1WΛ

and ŴΛ,2 = V̂2WΛ, and observe that

x = V
(
ŴΛ,1

)
;u =

(
V
(
ŴΛ,2

)
,V (W1) , . . . ,V (WΛ−1)

)
Notice that FΛ (θ) can be written as

FΛ (θ) = FΛ−1 (θ)
(
V̂⊤

1 ŴΛ,1 + V̂⊤
2 ŴΛ,2

)
Therefore, since x = V

(
ŴΛ,1

)
, we have

∇11f(x,u) = IdΛ ⊗ V̂1FΛ−1 (θx,u)
⊤FΛ−1 (θx,u) V̂

⊤
1

namely, ∇11f (x,u) is a block-diagonal matrix. Therefore, its eigenvalues are given by

λmax (∇11f(x,u)) = λmax

(
V̂1FΛ−1 (θx,u)

⊤FΛ−1 (θx,u) V̂
⊤
1

)
= σ1

(
FΛ−1 (θx,u) V̂

⊤
1

)2
λmin (∇11f(x,u)) = λmin

(
V̂1FΛ−1 (θx,u)

⊤FΛ−1 (θx,u) V̂
⊤
1

)
= σn

(
FΛ−1 (θx,u) V̂

⊤
1

)2
Based on our assumption, for all x ∈ B(1)

Rx
and u ∈ B(2)

Ru
, we must have that

∥WΛ(x)−WΛ(x0)∥2 ≤ ∥x− x0∥2 ≤ Rx; ∥Wℓ(u)−Wℓ(u0)∥2 ≤ ∥u− u0∥2 ≤ Ru; (81)

Moreover
Λ−1∑
ℓ=1

∥Wℓ(u)−Wℓ(u0)∥2 ≤
√
Λ ∥u− u0∥2 ≤

√
ΛRu (82)

Therefore, by (81), we have

∥WΛ(x)∥2 ≤ ∥WΛ(x0)∥2 + ∥WΛ(x)−WΛ(x0)∥2 ≤
λΛ

2
+Rx ≤ λΛ

∥Wℓ(u)∥2 ≤ ∥Wℓ(u0)∥2 + ∥Wℓ(u)−Wℓ(u0)∥2 ≤
λℓ

2
+Ru ≤ λℓ
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by the initialization property. This shows that requiring Ru ≤ 1
2 minℓ∈[Λ−1] λℓ and Rx ≤ λΛ

2 suffice
for making the definition of λℓ’s valid. By Lemma 2.1 in (Nguyen, 2021), we have

∥FΛ−1(θx,u)− FΛ−1(θ(0))∥F ≤ ∥X∥F λ1→Λ−1

Λ−1∑
ℓ=1

λ−1
ℓ ∥Wℓ(x,u)−Wℓ(x0,u0)∥2

≤
√
Λ ∥X∥F λ1→Λ−1Ru

(
min

ℓ∈[Λ−1]
λℓ

)−1

≤ α0

4

where the second-to-last inequality follows from (82), and the last inequality follows from the upper
bound on Ru. Therefore, we have

σn

(
FΛ−1 (θx,u) V̂

⊤
1

)
≤ σn

(
FΛ−1 (θ(0)) V̂

⊤
1

)
−
∥∥∥(FΛ−1(θx,u)− FΛ−1(θ(0))) V̂

⊤
1

∥∥∥
2

≤ σn (FΛ−1 (θ(0)))− ∥FΛ−1(θx,u)− FΛ−1(θ(0))∥F
≤ α0 −

α0

4

=
3

4
α0

where the second inequality follows from the fact that
∥∥∥V̂1

∥∥∥
2
≤ 1. This implies that for all x ∈ Rx

and u ∈ Ru, we have

λmin (∇11f (x,u)) ≥
(
3

4
α0

)2

≥ α2
0

2
=: µ (83)

This shows the partial strong convexity. To prove the partial smoothness, we have

σ1

(
FΛ−1 (θx,u) V̂

⊤
1

)
≤ ∥FΛ−1 (θx,u)∥2 ≤ ∥X∥F λ1→Λ−1 (84)

where the first inequality follows from the fact that
∥∥∥V̂1

∥∥∥
2
≤ 1. Therefore,

λmax (∇11f (x,u)) ≤ ∥X∥2F λ2
1→Λ−1 =: L1

Now, we proceed to compute G1by bounding ∥h(x,u)− h(x,v)∥2. We notice that

h(x,u)− h(x,v) = FΛ−1 (θx,u)
(
V̂⊤

1 ŴΛ,1 (x) + V̂⊤
2 ŴΛ,2 (u)

)
− FΛ−1 (θx,v)

(
V̂⊤

1 ŴΛ,1 (x) + V̂⊤
2 ŴΛ,2 (v)

)
= (FΛ−1 (θx,u)− FΛ−1 (θx,v))

(
V̂⊤

1 ŴΛ,1 (x) + V̂⊤
2 ŴΛ,2 (u)

)
+ FΛ−1 (θx,v) V̂

⊤
2

(
ŴΛ,2(u)− ŴΛ,2(v)

)
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Now, for the first term, we have∥∥∥(FΛ−1 (θx,u)− FΛ−1 (θx,v)) V̂
⊤
1 ŴΛ,1

∥∥∥
F
≤ λΛ ∥FΛ−1 (θx,u)− FΛ−1 (θx,v)∥F

≤ ∥X∥F λ1→Λ−1

Λ∑
ℓ=1

λ−1
ℓ ∥Wℓ(u)−Wℓ(v)∥2

≤
√
Λ ∥X∥F λ1→Λ

(
min

ℓ∈[Λ−1]
λℓ

)−1

∥u− v∥2

For the second term, we have∥∥∥FΛ−1 (θx,v) V̂
⊤
2

(
ŴΛ,2(u)− ŴΛ,2(v)

)∥∥∥
F

≤
∥∥∥FΛ−1 (θx,v) V̂

⊤
2

∥∥∥
2

∥∥∥ŴΛ,2(u)− ŴΛ,2(v)
∥∥∥

≤ ∥FΛ−1 (θx,v)− FΛ−1 (θ(0))∥F ∥u− v∥2

≤
√
Λ ∥X∥F λ1→Λ−1Ru

(
min

ℓ∈[Λ−1]
λℓ

)−1

∥u− v∥2

where the second inequality follows from∥∥∥FΛ−1 (θx,v) V̂
⊤
2

∥∥∥
2
≤
∥∥∥FΛ−1 (θ(0)) V̂

⊤
2

∥∥∥
2
+ ∥FΛ−1 (θx,v)− FΛ−1 (θ(0))∥2

= ∥FΛ−1 (θx,v)− FΛ−1 (θ(0))∥2

by noticing that
∥∥∥FΛ−1 (θ(0)) V̂

⊤
2

∥∥∥
2
= 0 by the definition of V̂2. Combining the two, we have

∥h(x,u)− h(x,v)∥2 ≤ (λΛ +Ru)
√
Λ ∥X∥F λ1→Λ−1

(
min

ℓ∈[Λ−1]
λℓ

)−1

∥u− v∥2

This implies that

G1 = (λΛ +Ru)
√
Λ ∥X∥F λ1→Λ−1

(
min

ℓ∈[Λ−1]
λℓ

)−1

Next, we proceed to compute G1 by bounding ∥∇1f (x,u)−∇1f (x,v)∥2. Computing the gradi-
ent, we have

∇ŴΛ,1
L (θ) = V̂1FΛ−1 (θ)

⊤
(
FΛ−1 (θ)

(
V̂⊤

1 ŴΛ,1 + V̂⊤
2 ŴΛ,2

)
−Y

)
Therefore

∇1f(x,u)−∇1f (x,v)

= V̂1

(
FΛ−1 (θx,u)

⊤FΛ−1 (θx,u)− FΛ−1 (θx,v)
⊤FΛ−1 (θx,v)

)
WΛ(x,u)︸ ︷︷ ︸

δ1

− V̂1 (FΛ−1 (θx,u)− FΛ−1 (θx,v))Y

+ V̂⊤
1 FΛ−1 (θx,v)

⊤FΛ−1 (θx,v) V̂2

(
ŴΛ,2(u)− ŴΛ,2(u)

)
︸ ︷︷ ︸

δ2
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We bound the magnitude of δ1 and δ2 separately. For δ1, we have

∥δ1∥F =
∥∥∥FΛ−1 (θx,u)

⊤FΛ−1 (θx,u)− FΛ−1 (θx,v)
⊤FΛ−1 (θx,v)

∥∥∥
F

≤
(
∥FΛ−1 (θx,u)∥F + ∥FΛ−1 (θx,v)∥F

)
∥FΛ−1 (θx,u)− FΛ−1 (θx,v)∥F ∥WΛ(x,u)∥2

≤ 2 ∥X∥F λ1→Λ−1 ·
√
Λ ∥X∥F λ1→Λ−1

(
min

ℓ∈[Λ−1]
λℓ

)−1

∥u− v∥2 · λΛ

= 2
√
Λ ∥X∥2F λΛλ

2
1→Λ−1

(
min

ℓ∈[Λ−1]
λℓ

)−1

∥u− v∥2

For the second term, we have∥∥∥V̂1 (FΛ−1 (θx,u)− FΛ−1 (θx,v))Y
∥∥∥ ≤ ∥FΛ−1 (θx,u)− FΛ−1 (θx,v)∥F ∥Y∥F

≤
√
Λ ∥X∥F ∥Y∥F λ1→Λ−1

(
min

ℓ∈[Λ−1]
λℓ

)−1

∥u− v∥2

Lastly, for δ2, we have

∥δ2∥F ≤ ∥FΛ−1 (θx,v)∥2 ∥FΛ−1 (θx,v)− FΛ−1 (θ(0))∥2
∥∥∥ŴΛ,2(u)− ŴΛ,2(u)

∥∥∥
F

≤
√
Λ ∥X∥2F λ2

1→Λ−1

(
min

ℓ∈[Λ−1]
λℓ

)−1

Ru ∥u− v∥2

Putting things together gives

G2 = ((2λΛ +Ru) ∥X∥F λ1→Λ−1 + ∥Y∥F )
√
Λ ∥X∥F λ1→Λ−1

(
min

ℓ∈[Λ−1]
λℓ

)−1

Now that we have shown that Assumption 1,2,4,5 holds, we proceed to prove Assumption 3 and
Assumption 6. Simple decomposition gives

FΛ (θ) = FΛ−1 (θ)
(
V̂⊤

1 ŴΛ,1 + V̂⊤
2 ŴΛ,2

)
Therefore, to set FΛ (θ) = Y, we can simply let ŴΛ,1 to be

ŴΛ,1 =
(
V̂1FΛ−1 (θ)

⊤FΛ−1 (θ) V̂
⊤
1

)−1
V̂1FΛ−1 (θ)

⊤
(
Y − V̂⊤

2 ŴΛ,2

)
since V̂1FΛ−1 (θ)

⊤FΛ−1 (θ) V̂
⊤
1 ∈ Rn×n has full rank. This shows that minx f (x,u) = 0 for

any u. Since f (x,u) ≥ 0 by the property of the MSE, we can conclude that Assumption 6 holds.
Moreover, Assumption 3 also holds with L2 = 1 since MSE is by itself 1-smooth.
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F.2. Proof of Theorem 15

We want to invoke Theorem 7 to prove Theorem 15. Thus it suffices to check the requirements in
(5) (which we restate below):

G4
1 ≤

C1µ
2

L2(L2 + 1)2

(
1− β

1 + β

)3

; G2
1G

2
2 ≤

C2µ
3

L2(L2 + 1)
√
κ

(
1− β

1 + β

)2

;

Rx ≥ 36

c

√
κ

(
η(L2 + 1)

1− β

) 1
2

(f(x0,u0)− f⋆)
1
2 ;

Ru ≥ 36

c

√
κ

(
ηG2

1L2(L2 + 1)(1 + β)3

µβ(1− β)3

) 1
2

(f(x0,u0)− f⋆)
1
2 ,

for the coefficients in Lemma 14 (which we restate below as well):

Rx =
λΛ

2
; Ru =

1

2

(
min

ℓ∈[Λ−1]
λℓ

)
min

{
1,

α0

2
√
Λ ∥X∥F λ1→Λ−1

}2

; µ =
α2
0

2

L1 = ∥X∥2F λ2
1→Λ−1; L2 = 1; G1 = (λΛ +Ru)

√
Λ ∥X∥F λ1→Λ−1

(
min

ℓ∈[Λ−1]
λℓ

)−1

G2 = ((2λΛ +Ru) ∥X∥F λ1→Λ−1 + ∥Y∥F )
√
Λ ∥X∥F λ1→Λ−1

(
min

ℓ∈[Λ−1]
λℓ

)−1

Recall that 1 − β = O (1/
√
κ) = O (

√
µ/

√
L1) and 1 + β = O(1). Since L2 = 1, we treat it as a

constant. Moreover, we also treat Λ as a constant. We have shown in Lemma 14 that f⋆ = 0. Thus
f(x0,u0)− f⋆ = L(θ(0)). With η = c

L1
, the requirement in (5) can be simplified to

G4
1 ≤

Ĉ1µ
7
2

L
3
2
1︸ ︷︷ ︸

R1

; G2
1G

2
2 ≤

Ĉ2µ
9
2

L
3
2
1︸ ︷︷ ︸

R2

; Rx ≥ Ĉ3L
1
4
1

µ
3
4

L(θ(0)) 1
2︸ ︷︷ ︸

R3

; Ru ≥ Ĉ4G1L
3
4
1

µ
7
4

L(θ(0)) 1
2︸ ︷︷ ︸

R4

(85)

In the following parts of the proof, we will use ≳ and ≲ to denote the inequality hiding constants.
We will analyze each requirement separately.
Calculation for R1. Notice that

G4
1 ≲

(
λ4
Λ +R4

u

)
∥X∥4F λ4

1→Λ−1

(
min

ℓ∈[Λ−1]
λℓ

)−4

=
(
λ4
Λ +R4

u

)(
min

ℓ∈[Λ−1]
λℓ

)−4

L2
1

It suffices to show that

max
{
λ4
Λ, R

4
u

}
≲ min

ℓ∈[Λ−1]
λ4
ℓ ·

µ
7
2

L
7
2
1

Notice that, by definition,

Ru ≤ 1

2
min

ℓ∈[Λ−1]
λℓ ·

µ

L1
⇒ R4

u ≤
(
1

2

)4

min
ℓ∈[Λ−1]

λ4
ℓ ·

µ4

L4
1

≤
(
1

2

)4

min
ℓ∈[Λ−1]

λ4
ℓ ·

µ
7
2

L
7
2
1
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where the last inequality follows from µ ≤ L1. Therefore the condition on Ru is satisfied automat-
ically. It suffice to consider the condition on λ4

Λ, which boils down to

λ4
Λ ≲ min

ℓ∈[Λ−1]
λ4
ℓ ·

α7

∥X∥7F λ7
1→Λ−1

Rearranging gives

α7 ≳
∥X∥7F λ7

1→Λ

λ3
Λminℓ∈[Λ−1] λ

4
ℓ

(86)

Calculation for R2. With the condition that R1 is satisfied, it suffice to show that

G4
2 ≲

µ
11
2

L
3
2
1

For G2, we have
G4

2 ≲ max {T1, T2, T3}
with

T1 = ∥X∥8F λ4
Λλ

8
1→Λ−1

(
min

ℓ∈[Λ−1]
λℓ

)−4

T2 = R4
u ∥X∥8F λ8

1→Λ−1

(
min

ℓ∈[Λ−1]
λℓ

)−4

T3 = ∥Y∥4F ∥X∥4F λ4
1→Λ−1

(
min

ℓ∈[Λ−1]
λℓ

)−4

Notice that since

R4
u ≤

(
C⊥

2

)4

min
ℓ∈[Λ−1]

λ4
ℓ ·

µ4

L4
1

we must have

T2 ≤
(
C⊥

2

)4

min
ℓ∈[Λ−1]

λ4
ℓ ·

µ4

L4
1

· L4
1

(
min

ℓ∈[Λ−1]
λℓ

)−4

≤
(
C⊥

2

)4

µ4 ≲
µ

11
2

L
3
2
1

since µ ≤ L1. Thus, we only need to consider T1 and T3. Combining the two conditions, R2 boils
down to

α11
0 ≳

∥X∥7F λ7
1→Λ−1

minℓ∈[Λ−1] λ
4
ℓ

(
∥X∥4F λ4

1→Λ + ∥Y∥4F
)

(87)

Calculation for R3. We first notice that since µ ≤ L1, R3 can be restricted to

Rx ≥ Ĉ3L
1
2
1

µ
L(θ(0)) 1

2

Plugging in Rx = λΛ
2 and µ,L1 gives

λΛ ≳
∥X∥F λ1→Λ−1

α2
0

L(θ(0)) 1
2
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Rearranging the terms gives

α2
0 ≳

∥X∥F λ1→L

λ2
Λ

L(θ(0)) 1
2 (88)

Calculation for R4 Notice that α0 =
√
2µ ≤ √

2L1 ≤ 2
√
Λ ∥X∥F λ1→Λ−1. Therefore

Ru ≲ min
ℓ∈[Λ−1]

λℓ
α2
0

∥X∥2F λ2
1→Λ−1

To satisfy R4, we need

Ru ≳ Ru ∥X∥F λ1→Λ−1L (θ(0))
1
2
L

3
4
1

µ
7
4

(
min

ℓ∈[Λ−1]
λℓ

)−1

Ru ≳ ∥X∥F λ1→ΛL (θ(0))
1
2
L

3
4
1

µ
7
4

(
min

ℓ∈[Λ−1]
λℓ

)−1

To analyze the first, we simply remove Ru from both sides to get that

α7
0 ≳

∥X∥5F λ5
1→Λ−1L (θ(0))2

minℓ∈[Λ−1] λ
4
ℓ

(89)

For the second, we plug in the upper bound on Ru to have

α11
0 ≳

∥X∥9F λ9
1→Λ

λ7
Λminℓ∈[Λ−1] λ

4
ℓ

L (θ(0)) (90)

Initialization Scheme. Recall our initialization scheme

dℓ = Θ(m) ∀ℓ ∈ [Λ− 1]; dL−1 = Θ
(
n4.5maxn, d20

)
[Wℓ(0)]ij ∼ N

(
0, d−1

ℓ−1

)
∀ℓ ∈ [Λ− 1]; [WΛ(0)]ij ∼ N

(
0, d

− 3
2

Λ−1

)
We will show that this initialization scheme satisfies (86)-(90), which we restate below

α7 ≳
∥X∥7F λ7

1→Λ

λ3
Λminℓ∈[Λ−1] λ

4
ℓ

α11
0 ≳

∥X∥7F λ7
1→Λ−1

minℓ∈[Λ−1] λ
4
ℓ

(
∥X∥4F λ4

1→Λ + ∥Y∥4F
)

α2
0 ≳

∥X∥F λ1→Λ

λ2
Λ

L(θ(0)) 1
2

α7
0 ≳

∥X∥5F λ5
1→Λ−1L (θ(0))2

minℓ∈[Λ−1] λ
4
ℓ

α11
0 ≳

∥X∥9F λ9
1→Λ

λ7
Λminℓ∈[Λ−1] λ

4
ℓ

L (θ(0))
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To start, we first compute λℓ’s. Recall that we required initializing ∥Wℓ(0)∥2 = λℓ
2 . This implies

that λℓ ≤ 2 ∥Wℓ(0)∥2 for all ℓ ∈ [Λ]. By Theorem 4.4.5 in (Vershynin, 2018), we have

∥Wℓ(0)∥2 =



O
(
1 +

√
m√
d0

)
if ℓ = 1

O (1) if ℓ = 2, . . .Λ− 2

O

(
1 +

√
dΛ−1√
m

)
if ℓ = Λ− 1

O

(
d
− 1

4
Λ−1 +

√
dΛ

d
3/4
Λ−1

)
if ℓ = Λ

Since λℓ satisfies the same scaling, plugging in the width, and notice that dΛ−1 ≥ m ≥ max{dΛ, d0}
gives

λℓ =



O
(√

m√
d0

)
if ℓ = 1

O (1) if ℓ = 2, . . . ,Λ− 2

O
(
n9/4
√
m
max{√n, d0}

)
if ℓ = Λ− 1

O

(
1

n9/8 max{n1/4,
√
d0}

)
if ℓ = Λ

Therefore

min
ℓ∈[Λ−1]

λℓ = O (1) ; λ1→Λ−1 = O

(
n9/4

√
d0

max{√n, d0}
)

Moreover, by Assumption 3.1 in (Nguyen, 2021), we have ∥X∥F = O
(√

nd0
)

and ∥Y∥F =

O (
√
n). By Lemma 3.3 in (Nguyen, 2021), we have that α0 = Ω

(
d

1
2
Λ−1

)
= Ω

(
n9/4 max{√n, d0

)
}.

Lastly, by Lemma C.1 in (Nguyen and Mondelli, 2020) and (Nguyen, 2021), we have L(θ(0)) 1
2 =

O
(√

nd0
)
. With these preparations, let’s check each requirement. For (86), we have

α7
0 = Ω

(
max

{
n

77/4, n
63/4d70

})
;

∥X∥7F λ7
1→Λ

λ3
Λminℓ∈[Λ−1] λ

4
ℓ

= O
(
max

{
n

69/4, n
59/4d50

})
Therefore, we have that (86) is satisfied. For (87), we have

α11
0 = Ω

(
max

{
n

121/4, n
99/4d90

})
∥X∥7F λ7

1→Λ−1

minℓ∈[Λ−1] λ
4
ℓ

(
∥X∥4F λ4

1→Λ + ∥Y∥4F
)
= O

(
max

{
n

165/8, n
143/8d

11/2
0

})
Therefore, we have that (87) is satisfied. For (88), we have

α2
0 = Ω

(
max

{
n

11
2 , n

9
2d20

})
;

∥X∥F λ1→Λ

λ2
Λ

L(θ(0)) 1
2 = O

(
max

{
n

33
8 , n

31
8 d0

})
Therefore, we have that (88) is satisfied. For (89), we have

α7
0 = Ω

(
max

{
n

77/4, n
63/4d70

})
;

∥X∥5F λ5
1→Λ−1L (θ(0))2

minℓ∈[Λ−1] λ
4
ℓ

= O
(
max

{
n

73/4d20, n
63/4d70

})
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Notice that n73/4d20 ≥ n63/4d70 only when d0 ≤ √
n. In this case, we must have that n

77
4 ≥ n73/4d20.

Therefore, we have that (89) is satisfied. For (90), we have

α11
0 = Ω

(
max

{
n

121/4, n
99/4d90

})
;

∥X∥9F λ9
1→Λ

λ7
Λminℓ∈[Λ−1] λ

4
ℓ

L (θ(0)) = O
(
max

{
n

51/4d0, n
10d

13/2
0

})
Similarly, when n51/4d0 ≥ n10d

13/2
0 , we must have d0 ≤ √

n. This implies that n
121
4 ≥ n51/4d0.

Therefore, we have that (90) is also satisfied. Now, all requirements in Theorem 7 can be satisfied
by the initialization scheme with our over-parameterization. Thus, we can invoke Theorem 7 to get
that

f(xk,uk)− f⋆ ≤ 2

(
1− c

4
√
κ

)
(f(x0,u0)− f⋆)

Noting that f⋆ = 0 and f(xk,uk) = L(θ(k)), we have

L(θ(k)) ≤ 2

(
1− c

4
√
κ

)
L(θ(0))

which completes the proof.

Appendix G. Auxiliary Lemma

Lemma 18 Suppose that Assumption 2 holds. Then for all x ∈ Rd1 and u ∈ B(2)
Ru

we have

∥∇1f(x,u)∥22 ≤ 2L1 (f(x,u)− f⋆)

Proof Assumption 2 implies that, for all x ∈ Rd1 and u ∈ B(2)
Ru

f⋆ ≤ f

(
x− 1

L1
∇1f(x,u),u

)
≤ f(x,u)− 1

L1
∥∇1f(x,u)∥22 +

1

2L1
∥∇1f(x,u)∥22

= f(x,u)− 1

2L1
∥∇1f(x,u)∥22

which implies that, for all x ∈ Rd1 and u ∈ B(2)
Ru

∥∇1f(x,u)∥22 ≤ 2L1 (f(x,u)− f⋆)

Lemma 19 Suppose that Assumption 3 holds. Then for all s ∈ Rd̂ we have

∥∇g(s)∥22 ≤ 2L2 (g(s)− f⋆)

Proof By Assumption 3, for all s ∈ Rd̂ we have

f⋆ = g⋆ ≤ g

(
s− 1

L2
∇g(s)

)
= g(s)− 1

L2
∥∇g(s)∥22 +

1

2L2
∥∇g(s)∥22 = g(s)− 1

2L2
∥∇g(s)∥22
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Therefore, for all s ∈ Rd̂, it holds that

∥∇g(s)∥22 ≤ 2L2 (g(s)− f⋆)

Lemma 20 Suppose that Assumption 3, 4 holds. Then for all x ∈ B(1)
Rx

and u ∈ B(2)
Ru

we have

∥∇2f(x,u)∥22 ≤ 2G1L2 (f(x,u)− f⋆)

Proof Since Assumption 3 holds, we can invoke Lemma 19 to get that for all x ∈ B(1)
Rx

and u ∈ B(2)
Ru

,
we have

∥∇g(h(x,u))∥22 ≤ 2L2 (f(x,u)− f⋆)

By Assumption 4, we must have that ∥∇2h(x,u)∥2 ≤ G1. Therefore, using the chain rule, we have

∥∇2f(x,u)∥22 ≤ ∥∇2h(x,u)∥2 ∥∇g(h(x,u))∥22 ≤ 2G2
1L2 (f(x,u)− f⋆)

Lemma 21 Let ϕ0 be defined in (26). Suppose that Assumption holds. Then we have that ϕ0 ≤
2(f(x0,u0)− f⋆).

Proof To start, for all c ≤ 1, we must have that

γ =
c

2
√
κ− c

≤ c√
κ
≤ 1

Thus, for λ, we have λ = (1 + γ)3 − 1 ≤ 7γ. This implies that

Q1 =
λ2

2η(1 + γ)5
≤ 25γ2

η
=

25cL1

κ
= 25cµ

When k = 0, we have z0 = y0 = x0. Moreover, x⋆
−1 = argminx∈Rd1 f(x,u0). At u0, Assump-

tion 1 must hold, which implies that

f(x0,u0) ≥ f(x⋆
−1,u0) +

µ

2

∥∥x0 − x⋆
−1

∥∥2
2

This implies that
∥∥x0 − x⋆

−1

∥∥2
2
≤ 2

µ (f(x0,u0)− f⋆). Thus

Q1

∥∥z0 − x⋆
−1

∥∥2
2
≤ 50c (f(x0,u0)− f⋆)

Moreover, by Assumption 2, we have

η

8
∥∇1f(y−1,v−1∥2 =

η

8
∥∇1f(x0,u0)∥22 ≤

ηL1

4
(f(x0,u0)− f⋆) =

c

4
(f(x0,u0)− f⋆)

Thus, putting things together, we have

ϕ0 ≤ (1 + 50.25c) (f(x0,u0)− f⋆) ≤ 2 (f(x0,u0)− f⋆)

as long as c ≤ 1
51 .
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