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Abstract

A hypothesis class admits a sample compression scheme, if for every sample labeled by a hypoth-
esis from the class, it is possible to retain only a small subsample, using which the labels on the
entire sample can be inferred. The size of the compression scheme is an upper bound on the size
of the subsample produced. Every learnable binary hypothesis class (which must necessarily have
finite VC dimension) admits a sample compression scheme of size only a finite function of its VC
dimension, independent of the sample size. For multiclass hypothesis classes, the analog of VC
dimension is the DS dimension. We show that the analogous statement pertaining to sample com-
pression is not true for multiclass hypothesis classes: every learnable multiclass hypothesis class,
which must necessarily have finite DS dimension, does not admit a sample compression scheme of
size only a finite function of its DS dimension.

Keywords: Sample Compression, Multiclass PAC Learning.

1. Introduction

Sample compression is a widely studied paradigm in learning theory. At a high level, the main
question that sample compression asks is: given a labeled training dataset, is it possible to get
by working only with a small fraction of the dataset? A valid sample compression scheme gets
rid of all the uninformative points in the dataset, and compresses the sample to a much smaller
subsample, such that there exists an algorithm that can reconstruct all the labels on the original
sample correctly just from the compressed sample. A classical example of sample compression is
exhibited by support vector machines for the task of classifying linearly separable data. Here, the
compressor may only send the support vectors in the data to the reconstructor. The reconstructor
goes on to build a hyperplane that maximally separates the support vectors with the largest possible
margin; this, in turn, also recovers correct labels on the non-support-vector points. In the language
of learning theory, if such compression-reconstruction is possible for every sample realizable by a
hypothesis class H, we say that the class H admits a sample compression scheme. In this case, the
size of the compression scheme is the size k(m) that a sample of size m gets compressed down to.

In fact, sample compression is intrinsically tied up with the learnability of binary hypothesis
classes (where the label space is {0, 1}). Formally, Littlestone and Warmuth (1986) showed that
every binary class 7 that admits a sample compression scheme of size k(m) also defines a PAC
(Probably-Approximately-Correct) (Valiant, 1984) learning algorithm for the class having sample
complexity O(k(m)). Thus, compression implies learnability in the case of binary classes. In their
work, Littlestone and Warmuth (1986) also asked the converse: does learnability imply compres-
sion? Since the PAC learnability of a binary class 7 is completely characterized by the finiteness of
its VC dimension VC(%) (Vapnik and Chervonenkis, 1974, 2015; Blumer et al., 1989), this ques-
tion is equivalent to asking: does every binary class A having finite VC dimension VC(7) admit a

sample compression scheme of size only a finite function of VC(H)?
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A long line of insightful works on this question culminated with Moran and Yehudayoff (2016)
answering it in the affirmative. For any binary class 7 having VC dimension dyc, Moran and
Yehudayoff (2016) constructed a sample compression scheme of size 20(4vc) . Prior to their work,
existing sample compression schemes had a dependence either on the sample size m (e.g., com-
pression of size O(dyc - log(m)) via boosting due to Freund (1995); Freund and Schapire (1997)),
or on the size of A (e.g., compression of size O(29VC - loglog |H|) due to Moran et al. (2017)).!
The work of Moran and Yehudayoff (2016) gets rid of both these dependencies and obtains a com-
pression scheme of size only a function of the VC dimension, thus establishing the equivalence
of learnability and sample compression for binary hypothesis classes. It is worth mentioning that
constructing sample compression schemes of size even sub-exponential in dvy is still open, and has
been a longstanding famous problem in learning theory (Warmuth, 2003)!

For essentially the same reasons that compression implies learnability in the binary case, com-
pression also implies learnability in the multiclass case (where the label space is not just {0, 1} but
much larger, possibly infinite too), as was observed by David et al. (2016). Here too, we can ask the
counterpart of Littlestone and Warmuth (1986)’s question: does multiclass learnability imply sam-
ple compression? In fact, the notion of what learnability means in the multiclass setting was only
fully established in a recent seminal work by Brukhim et al. (2022), who equated PAC learnability
of a class with finiteness of its DS dimension, which was first introduced in the work of Daniely
and Shalev-Shwartz (2014). Concretely, while finiteness of the DS dimension was known to be nec-
essary for learnability, Brukhim et al. (2022) also constructed an algorithm that successfully learns
classes having finite DS dimension. Thus, the natural question to ask is: does every multiclass hy-
pothesis class 7 having finite DS dimension DS(#) admit a sample compression scheme of size
only a finite function of DS(#)?

Interestingly, the route that Brukhim et al. (2022) take to construct a learning algorithm for
hypothesis classes having finite DS dimension is via sample compression. Concretely, for any
sample of size m realizable by a hypothesis class of DS dimension dpg, they construct a sample
compression scheme of size O(d};2 - polylog(m)). This polylog(m) dependence on the size of
the compression scheme is indeed reminiscent of the analogous dependence in the boosting-based
compression scheme of Freund (1995); Freund and Schapire (1997) for binary classes. Given that
this dependence was ultimately removed in the work of Moran and Yehudayoff (2016), could it also
be altogether gotten rid of in the multiclass case?

We answer this question in the negative, and show that a dependence on the sample size m is
indeed necessary in the compression size for any valid sample compression scheme in the multiclass
setting. Our main result is the following:

Theorem 1 (Multiclass Learnability A Compression) There exists a hypothesis class H map-
ping a domain X to Y = {0,1,2, ...} that satisfies:

(1) dps(H) = L.
(2) Any sample compression scheme for H that compresses labeled samples of size m to a sub-

sample of size k(m) must satisfy k(m) = Q((log(m))'=°W), where the o(1) term goes to 0
as m — oo.

1. For a detailed and exhaustive list of other prior compression schemes, we refer the reader to Section 1.2.2 in Moran
and Yehudayoff (2016).
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This result means that unlike the binary case, we cannot hope to obtain a sample compression
scheme in the multiclass setting where the size of the scheme is a finite function of only the DS
dimension of the hypothesis class. Instead, the size of any compression scheme must necessarily
depend on the sample size. Note again that (1) above implies H is learnable. Therefore, while
compression implies learnability, learnability does not imply sample compression in the multiclass
case, thus exhibiting a separation amongst the two paradigms in the binary and multiclass case. The
rest of the paper is devoted to establishing Theorem 1 and discussing the result.

2. Preliminaries and Background

The input data domain is denoted as X and the label space as ). Concepts and hypotheses are
interchangeably used to mean the same object. To prove our result, we will require dealing with
partial concept classes (X — {YU{x}}), where % is a special symbol, and hence we will denote the
otherwise standard total concept classes (X — )) with symbols having a bar on top (e.g., /) and
partial classes without a bar (e.g., H). When we are thinking of partial classes and want the label
space to additionally also include the special symbol %, we will be explicit and use {Y U {*}} —
otherwise, ) should be assumed to not include x. For a sequence S € X 4 we denote the restriction
of a class H on S (all the different ways in which members of H can label S) by H|s.

2.1. Partial Concept Classes and Disambiguation

Our lower bound heavily relies on the theory of partial concept classes introduced in the work of
Alon et al. (2022). Concepts in a partial concept class are allowed to be undefined in certain regions
of the input domain. These regions vary based on known structural assumptions on the data like
margin-separatedness, data lying on a low-dimensional subspace, etc.

Definition 2 (Partial Concept Classes (Alon et al., 2022)) Given an input space X, a label space
Y =1{0,1,2,...}, and a special symbol x, a partial concept class H maps X to Y U {x} i.e., H C
{Y U {x}}*. Forany h € H, if h(x) = %, we say that h is undefined at x. The support of a partial
concept h € H is defined as supp(h) = {x € X : h(x) # *}, and supp(H) = Jeq supp(h). A
labeled sequence S = {(x1,y1), ..., (Tm,Ym)} is realizable by H if there exists a partial concept
h € H such that Vi € [m], h(z;) # * and h(x;) = y;.

If every concept in the partial concept class has full support, the x symbol becomes irrelevant
and we get the usual notion of a total concept class.

Definition 3 (Total Concept Classes) A partial concept class H C {Y U {x}}* that satisfies
supp(h) = X, Vh € H, is a total concept class.

Total concept classes naturally define the notion of “disambiguation” of partial concept classes.

Definition 4 (Disambiguation, Definition 9 in Alon et al. (2022)) A fotal concept class H C Y~
disambiguates a partial concept class H if for every finite labeled sequence S = {(z1,y1)s-- -,
(T, Ym) } realizable by H, there exists h € H such that Vi € [m)], h(z;) = h(z;).

The hard-to-compress hypothesis class that realizes our lower bound in Theorem 1 will be a suitable
disambiguation of a hard-to-compress partial concept class. Next, we define the relevant complexity
parameter that completely captures learnability of a multiclass hypothesis class — the DS dimen-
sion.
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2.2. DS Dimension

As mentioned above, while the VC dimension of a binary (total) concept class was long known to
completely characterize its learnability, the corresponding problem of characterizing the learnability
of a class on multiple classes was only resolved recently in the work of Brukhim et al. (2022). They
showed that a combinatorial complexity parameter called the DS dimension (due to Daniely and
Shalev-Shwartz (2014)) is the appropriate equivalent of the VC dimension in terms of characterizing
learnability of multiclass concept classes. Since total classes are special cases of partial classes, we
define the DS dimension more generally for multiclass partial concept classes below.

Definition 5 (DS dimension (Daniely and Shalev-Shwartz, 2014)) Let H C {J U {x}}* be a
partial concept class and let S = {x1,...,24} € X9 be an unlabeled sequence. Fori € [d], we
say that f,g € H|g are i-neighbours if f(x;) # g(z;) and f(x;) = g(x;), Vj # i. We say that H
DS-shatters S if there exists F C H, |F| < oo satisfying

1. Vf € Fls, Vi € [d], f(zi) #*
2. Vf € Fls, Vi € [d], f has at least one i-neighbor g in F|g.

The DS dimension of H, denoted as dps = dps(H), is the largest integer d such that H DS-shatters®
some sequence S of size d.

2.3. Sample Compression Schemes

The way in which Brukhim et al. (2022) construct a learning algorithm for multiclass concept classes
having finite DS dimension is through a sample compression scheme. This is sufficient because a
successful sample compression scheme implies the existence of a learning algorithm (David et al.,
2016). Here, we formally define sample compression schemes.

Definition 6 (Sample Compression, Definition 29 in Alon et al. (2022)) A compression scheme
(K, p) consists of a compression function k : (X x Y)* — (X x Y)* x {0, 1}* and a reconstruction
function p : (X x V)* x {0,1}* — Y. k and p must satisfy the following property: for any
sequence S € (X x Y)*, k(S) = (5, B) such that the elements in S’ necessarily also exist in S.
The size k(m) of the compression scheme for a given sample size m is

& - S’ |B]). 1
() = ppymax max(|S'] |B) 0

The (unqualified) size k of the compression scheme is the maximum size k(m) over all m, or infinite
if the size can be unbounded.

A compression scheme (k, p) is a sample compression scheme for a partial concept class H €
{V U {x}}¥ if for all finite labeled sequences S = {(x1,y1), ..., (Tm,Ym)} realizable by H,
p(K(9)) is correct on all of S i.e., Vi € [m], p(k(S))(zi) = vi.

Remark 7 Observe that we only care about compressing sequences realizable by the class (no
points in the sequence should be labeled with a x), and that the reconstructor p always outputs a
total concept.

2. When Y = {0, 1}, DS-shattering is equivalent to the standard notion of VC-shattering i.e., realizability of all binary
patterns.
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2.4. Sample Compression Scheme of Moran and Yehudayoff (2016)

The 2°(4vc)_sized compression scheme of Moran and Yehudayoff (2016) requires crucially using
the uniform convergence principle (Vapnik and Chervonenkis, 2015) and also a bound on the dual
VC dimension of binary classes having finite VC dimension. These ingredients are combined with
a clever application of von Neumann’s minimax theorem (v. Neumann, 1928) to yield their sample
compression scheme. While they are able to use their compression scheme for binary classes in a
blackbox manner to derive compression schemes for certain multiclass hypothesis classes having
finite graph dimension, the graph dimension does not characterize multiclass learnability (more on
this in Section 4.1). Instead, we discuss here why their techniques don’t translate directly to the
multiclass setting in light of the DS dimension being the more relevant dimension of interest, as
shown by Brukhim et al. (2022).

Firstly, the principle of uniform convergence ceases to hold in the multiclass setting, and the
sample complexity of different ERM (Empirical Risk Minimizer) learners can differ by an arbi-
trarily large factor when the the number of labels is infinite (Daniely et al., 2015). Moreover, the
compression scheme of Moran and Yehudayoff (2016) crucially makes use of proper learners for
binary classes, i.e., learning algorithms whose output hypotheses always belong to the class. On the
other hand, there exist multiclass hypothesis classes that provably cannot be learned by any proper
learner (Daniely and Shalev-Shwartz, 2014)! Additionally, for binary classes having VC dimension
dvc, the dual VC dimension of the class is bounded above by 2dvetl (Assouad, 1983). However,
in the multiclass setting, the corresponding dual DS dimension may not be bounded above by any
finite function of the DS dimension (see Table 1 for an illustration)! In particular, we can have every
concept in the class use its own set of labels, disjoint from any other concept’s labels. If we do this,
then it is easy to see that the class cannot DS-shatter any pair of points. However, the dual class can
readily DS-shatter arbitrarily large sets.

X
Ty T2 T3 T4 x5 T 7 g
hy 1Ll ]1 1
ho 313|414
hs 51611516

(O BRUS I )
AN W
(Y I \S)
N B~

Table 1: The DS dimension of H is 1, since every hypothesis is using its own distinct set of labels,
and hence no pair (z;, 1) can be DS-shattered by H. However, notice how the dual class (wherein
Ej’s (rows) become the input domain, and z;’s (columns) form the hypothesis class) can easily
realize i-neighbors (as in Definition 5). In particular, the dual DS dimension above is 3, since the
columns corresponding to x1, ..., xs DS-shatter the 3 rows {El,ﬁg,ﬁg}. In fact, these columns
are realizing the entire Cartesian product {1,2} x {3,4} x {5,6} on {h1, ho, h3}, and are hence
even Natarajan-shattering {h1, ho, h3} (Natarajan, 1989). More generally, for any n, we can have
2" columns z1, . .., xon and realize the Cartesian product {1,2} x {3,4} x --- x {2n — 1,2n} on
{h1,...,h,} — this class has DS dimension 1 but dual DS dimension 7.

Due to these reasons, it seems apparent that the techniques from Moran and Yehudayoff (2016)
don’t port over to the multiclass setting, at least in a straightforward manner. In fact, our main result
(Theorem 1), which we will now proceed towards proving, shows that this pursuit of constructing a
bounded-DS dimension sample compression scheme in the multiclass setting is indeed fruitless.
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3. Lower Bound via Disambiguation

The main ingredient we use to establish Theorem 1 is the following result from the work of Alon
et al. (2022), which refutes the sample compression conjecture for binary partial concept classes.
While Alon et al. (2022) stated their result only for ) = {0, 1}, we can freely think of the label set
in their construction to be )Y = {0, 1,2, ... } instead, where we don’t use the extra labels available
at any point. Walking through their proof pointwise then already gives a lower bound for sample
compression in (multiclass) partial concept classes. Moreover, as mentioned above, if we only ever
use {0, 1} labels, DS-shattering is equivalent to VC-shattering. With these considerations, we can
state the result from Alon et al. (2022) in the following form (for completeness, we provide a proof
in Appendix A):

Lemma 8 (Theorem 7 in Alon et al. (2022)) There exists a partial concept class H C {Y U
{x}}* where Y = {0,1,2,...} that has the following properties:

1. Vhe H, Vx € X, h(x) € {0,1, %},
H =2, Hy, where each H,, C {Y U {x}}?,
|Hnl, |supp(Hn)| < oo for every n,

supp(H,) Nsupp(H.,) = 0 for every n # m,

S

dps(H,) = 1 for every n,
6. dps(H) =1,

and additionally satisfies: any sample compression scheme for H must have size Q((log(m))1=°(),
where m is the size of an input sequence realizable by H, and the o(1) term goes to 0 as m — oc.
In particular, there does not exist a sample compression scheme for H having a size that is a finite
function solely of the DS dimension of H.

Now, we make a simple observation: as a consequence of the definition of disambiguation
(Definition 4), sequences realizable by a disambiguating total class are necessarily a superset of the
sequences realizable by the corresponding partial class. This leads to the following proposition,
whose proof is immediate from the definitions of sample compression and disambiguation.

Proposition 9 (Compression monotonic in disambiguation) Let H C {Y U {x}}* be a partial
concept class and H C V¥ be a total concept class that disambiguates H. Then, if there exists a
sample compression scheme (k, p) for H of size k, then (k, p) is also a sample compression scheme

for H.

There is now a natural strategy to prove a sample compression lower bound for total concept
classes: find a partial concept class of small DS dimension that is hard to compress to a small size.
Then, construct a disambiguation of this class to a total concept class. Given the proposition above,
the disambiguating class would be at least as hard to compress as the partial class. However, we
would want the DS dimension of the disambiguating class to also be small, in order for the lower
bound to be meaningful.

The first ingredient in the above strategy is already available to us — choose the partial class
‘H given by Lemma 8 that has DS dimension 1. The crucial task that remains is constructing a
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disambiguation H of # that also has small DS dimension. But given the power of conjuring new
labels at will in the multiclass setting, this is not all too hard — we can construct a disambiguating
H that also has DS dimension 1 in a straightforward manner. We disambiguate each partial concept
h € H with a total concept h that assigns the ’s in h a unique label which is never again used by
any other disambiguating concept. This preserves the DS dimension of the disambiguating class.

Lemma 10 (Disambiguation with no DS blow-up) There exists a total concept class H C Y~
where Y = {0,1,2, ...} such that H disambiguates H from Lemma 8 and satisfies dps(H) = 1.

Proof Recall that H = (J7; H,, where each |H,| < oco. This means that 7 is countably large.
Let hy, ho, hg, .. - be an enumeration of all the concepts in . Then, for each i € {1,2,...}, define
the total concept h; : X — ) as follows

o(e) = {hi(x) if () # %,

1+ 1 otherwise.

Consider the total concept class H = | ;o h;. By construction,  disambiguates H. Further, any
sequence DS-shattered by the partial class is certainly also DS-shattered by 7, and hence dps(H) >
1. Now, let S = {z1,...,m4} be any sequence that is DS-shattered by H. Then, according to
Definition 5 above, let F = {fy,... f,,} C H be the finite subset of 7 that realizes this shattering.
Namely, if we think of all the distinct patterns f,|s, fs|s, - - -, f.n|s that F realizes on S, then every
pattern f;|5 has a neighbor f,|g in every direction [ € [d] (f;|s and f;|s are the same everywhere
but at index 7). There can be two cases: either every string f,|g is such that f;|s € {0,1}?. But
this would mean that the partial concepts { f1,..., f4} themselves realize the DS-shattering of .S,
implying that d < 1. In the other case, there is some f, which satisfies f;(z;) € {2,3,...} for
some | € [d]. But now observe that no other function in # other than f; attains the label f,(z;)
on x; — this is merely an artefact of our construction of . In particular, this means that 7 cannot
realize a neighbor for f,|s in any direction other than I, meaning also that d < 1. This completes
the proof that dps(H) < 1. [ |

Remark 11 Lemma 10, Proposition 9 and Lemma 8 together imply Theorem 1.

4. Discussion

We showed that unlike the binary setting, compression and learnability are not equivalent in the
multiclass learning setting. Namely, if we are allowed infinite labels, it is possible that a hypothesis
class is learnable, but the size of a compressed sample must necessarily scale with the size of the
original sample, and cannot be independent of it. Our result illustrates a separation between the
paradigms of compression and learnability in the binary and multiclass settings. In the following,
we discuss the relevance of our result in the context of a past result on multiclass compression by
Moran and Yehudayoff (2016), and also discuss why the disambiguation technique from above does
not work in order to prove lower bounds for sample compression when the disambiguating class is
only allowed to use finitely many labels.
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4.1. Upper Bound from Moran and Yehudayoff (2016) in Terms of Graph Dimension

As mentioned above, the seminal work of Moran and Yehudayoff (2016) answered the question
“does learnability imply compression?” in the affirmative for binary hypothesis classes. Namely,
for any binary hypothesis class of VC dimension dyc, Moran and Yehudayoff (2016) construct a
sample compression scheme of size 20(dve) - n fact, there is a nice reduction (outlined in Ap-
pendix B for completeness) from the multiclass setting to the binary setting that allows them to use
their compression scheme as is, and obtain a sample compression scheme of size 29(4¢) for any
(multiclass) hypothesis class, where dg is the graph dimension of the class. The graph dimension
d¢ is defined as follows:

Definition 12 (Graph dimension Natarajan (1989)) Let H C V¥ be ’ a hypothesis class and let
S € X% be a sequence. We say that 1 G-shatters S if there exists an f € H (which realizes the
G-shattering), such that for every subsequence T’ C S, there exists an h € H such that

Vo €T, h(z) = f(x), andVz € S\ T, h(z) # f(x).

The size of the largest sequence that H G-shatters® is called the graph dimension of H, denoted as
da(H).

However, even if it is the case that a hypothesis class always permits a sample compression scheme
of size 20(4¢) | the graph dimension d¢ need not necessarily be finite for a learnable hypothesis
class when the label space is allowed to be infinitely large. In particular, Daniely and Shalev-
Shwartz (2014) constructed a learnable hypothesis class 7 that has d¢ (ﬂ) = oo. This is precisely
why the compression scheme of Moran and Yehudayoff (2016) in terms of the graph dimension
does not allow them to immediately conclude that “learnability implies compression” in the multi-
class case. Furthermore, our lower bound does not contradict their upper bound. This is because
the disambiguation we construct in Lemma 10 above only preserves the DS dimension*. On the
other hand, the graph dimension of the disambiguating class can (and must) increase arbitrarily,
so that the 29(46) bound is still a valid (but not meaningful) upper bound on the size of the com-
pression scheme. Here is a simple example to see why this might be the case: fix a sequence
S = {z1,x2,x3}, and say that some h in the partial class H realizes the pattern (0,0, 0) on this
sequence. Say also that the set of distinct patterns that is realized on S by the rest of the partial
concepts in H is (x,0,0), (0,%,0), (0,0, %), (x,%,0), (*,0,%), (0,%,*), (%, *,%). Observe that this
sequence is not remotely DS/VC-shattered by the partial class. Now, let us think of the patterns that
the disambiguating class realizes on this sequence. Since each total concept in the disambiguating
class labels the x’s in the partial concept it represents with a distinct number, the patterns on S
realized by H would be something like:

(0,0,0) —» (0,0,0) (%, %,0) —> (20,20,0)
(%,0,0) —> (3,0,0) (%,0,%) —> (39,0, 39)
(0,%,0) —» (0,7,0) (0, %, %) —> (0,53,53)
(0,0,%) — (0,0,11) (%, %, %) —> (100,100, 100).

3. Note that just like DS-shattering, G-shattering is also equivalent to VC-shattering when ) = {0, 1}.
4. and also, the Natarajan dimension Natarajan (1989), which is also required to be finite for PAC learnability.
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We can readily see that S is G-shattered by H (h realizes the G-shattering). This phenomenon must
indeed be occurring at a larger scale — arbitrarily large sequences must be getting G-shattered by
H in the manner illustrated above, so as to ensure that the 29(4¢) upper bound does not contradict
our lower bound from Theorem 1.

4.2. Upper/Lower Bounds in Terms of Natarajan Dimension for Finite Labels

In a sense, the DS dimension really only comes into picture when dealing with hypothesis classes
that have an infinite label space. When the label space of the hypothesis class is finite, i.e., | V| = ¢ <
o0, learnability of the class is completely characterized (e.g., Theorem 4 in Daniely et al. (2015))
by another folklore quantity called the Natarajan dimension dy. The Natarajan dimension of a
class must unconditionally be finite for learnability (irrespective of finitely many/infinite labels);
however, its finiteness is sufficient for learnability only if the label space is finite. The Natarajan
dimension is defined as follows:

Definition 13 (Natarajan dimension (Natarajan, 1989)) Ler 7 C Y% be a hypothesis class and
let S € X% be a sequence. We say that H N-shatters S if there exist f,, fo € H (which realize the
N-shattering), such thatVx € S, fi(x) # fa(z), and further, for every subsequence T' C S, there
exists an h € H such that

Vo €T, h(z) = f1(z), andVz € S\ T, h(z) = fy(x).

The size of the largest sequence that H N-shatters is called the Natarajan dimension of H, denoted

as dy(H).

Observe that a sequence that is N-shattered by 7 is also G-shattered by it, implying dy < dg.
Additionally, due to a result by Ben-David et al. (1995), the graph dimension can also be upper-
bounded in terms of the Natarajan dimension and the number of classes c, as

dy < dg < O(dn -log(c)). 2

This relation, combined with the sample compression scheme due to Moran and Yehudayoft (2016)
above, immediately implies a sample compression scheme of size ¢?(@~) for any hypothesis class on
c classes having Natarajan dimension d . Since finiteness of the Natarajan dimension is a necessary
condition for leanability, we conclude that compression and learnability are in fact equivalent in the
multiclass setting when the number of labels is finite.

As for lower bounds, a straightforward lower bound can be obtained by a counting argument,
similar to (Floyd and Warmuth, 1995, Theorem 14). Concretely, let H C Y such that V| = ¢
and |X'| = m. For any sample compression scheme of size k, the number of distinct “compression
sets” possible are at most Zf:o (T) - ¢ - 29() (choose 7 distinct elements from X, label it in one
of at most ¢’ possible ways, and append an additional bit string of size at most O (k) to it), which
is at most (%)e(k). If we now think of compressing the entire domain of each hypothesis in the
class, each of these compression sets should point to a distinct hypothesis in the class, and hence
there should at least be one compression set for every hypothesis in the class. Consequently, if the
size of H were to be large, while keeping its Natarajan dimension bounded, we would get a lower

5. Again, N-shattering is equivalent to VC-shattering when Y = {0, 1}.
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bound on k. As (Haussler and Long, 1995, Theorem 4) show, for any ¢, dy < m, one can construct
H C V¥ having Natarajan dimension dy, || = ¢ and |X'| = m such that

- (7 )=

1=0

If we set m = dy, we get |[H| = c?V. Recalling the upper bound on the number of compression
sets from before, we can conclude that if £ < C - dy for some absolute constant C, the number
of possible compression sets will be smaller than ||. In summary, the size k of any valid sample
compression must satisfy

Qdy) < k < Oln),

Note that setting ¢ = 2 (which also makes dy = dvy¢) recovers the longstanding unsettled expo-
nential gap between upper and lower bounds in the size of compression schemes in the binary case.
For larger but constant ¢, we are morally faced with the same unsettled exponential gap, where the
Natarajan dimension replaces the VC dimension. Perhaps unsettling is the regime where we think
of dy as constant. In this case, note that the lower bound is €2(1) and does not even depend on the
number of classes ¢, whereas the upper bound is poly(c). It seems plausible that the lower bound
on the compression size should grow with the number of classes.

Open Problem 1 Let k be the (unqualified) size of any valid sample compression scheme for a
hypothesis class H C Y% having Natarajan dimension dy = ©O(1), where |Y| = ¢ < oco. Is
k = w(1) with respect to ¢? Is k = Q(polylog(c))? Is k = Q(c®) for some § > 0?

4.3. Disambiguation Using Only Finitely Many Labels

In the disambiguation that we constructed above, we crucially used the power of infinite labels
available to us. In fact, using infinite labels is necessary for this proof technique. If instead, we only
considered disambiguations that label x’s with one of ¢ < oo labels, we cannot hope to preserve
learnability of the disambiguating class. For ¢ = 2, this is immediate from Theorem 1 in Alon
et al. (2022), which says that any binary (total) concept class disambiguating the partial class from
Lemma 10 must have infinite VC dimension. However, even for ¢ > 2 but finite, this approach
will not work. This is crucially because any total class 7 disambiguating the partial class H from
Lemma 8 also disambiguates each of the H,,s individually for increasing n. We can then instantiate
Lemma 16 in Section A.l and the contrapositive of the multiclass version of the Sauer-Shelah-
Perles lemma (Haussler and Long, 1995) to conclude that dy () = oo. Thus, this approach with
finite-label disambiguators will only let us derive a lower bound on the compression size for what
has become an unlearnable class, a not-so-interesting result. In contrast, and perhaps intriguingly,
disambiguating with infinite labels allows us to retain the learnability of the disambiguating class,
while also inheriting the lower bound on the compression size from the underlying partial class.
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Appendix A. Proof of Lemma 8

In this section, we essentially rewrite the proof by Alon et al. (2022), which is a beautiful reduction
from a recent breakthrough result by Balodis et al. (2022), which in turn builds upon the works
of Ben-David et al. (2017); Go6s (2015) to show a nearly tight bound for the Alon-Saks-Seymour
problem (Kahn, 1991; Bousquet et al., 2014).

Alon et al. (2022) translate the result by Balodis et al. (2022) into the construction of a partial
concept class that is hard to disambiguate with a small total class, and also consequently hard to
compress.

A.1. A Partial Class That is Hard to Disambiguate

We recall some concepts from graph theory. Given a graph G = (V, E)), the chromatic number
X(G) of G is the minimum number of colors required, such that each vertex can be assigned a color
in a way that no two vertices connected by an edge have the same color assigned to them. The
biclique partition number bp(G) is the minimum number of complete bipartite graphs required to
successfully partition the edge set E of G. Each complete bipartite graph in the decomposition
consists of all the vertices in V' (some possibly isolated, but the rest forming a complete bipartite
graph) and a subset of the edges in E. Balodis et al. (2022) proved the following result relating
these two quantities, in response to a problem originally posed by Alon, Saks and Seymour (Kahn,
1991):
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Theorem 14 (Corollary 3 in Balodis et al. (2022)) For every n, there exists a finite simple graph
G = (V, E) with bp(G) = n such that

X(G) 2 nlog)'

- )

where the o(1) term goes to 0 as n — oo.

Now, we describe the clever reduction by Alon et al. (2022), who leverage the lower bound result
above to construct a partial concept class that is hard to disambiguate with a small total concept
class. Given n, let G = (V, E)) be the graph promised by Theorem 14, and let B; = (L;, R;, E;) be
n complete bipartite graphs (identified with numbers in [n]) that witness the partitioning of the edge
set of G such that bp(G) = n, and the edge sets E; are pairwise disjoint. Let ) = {0,1,2,... }, and
define the multiclass partial concept class H,, € {) U {x}}[" as follows: for each vertex v € V/,
*H,, contains a partial concept h,, such that for each i € [n],

0 ifve L,
ho(i)= {1 ifve R, 3)

* otherwise.

Since {0, 1} are the only non-x labels in #,,, DS-shattering reduces to VC-shattering. We have the
following two lemmas:

Lemma 15 (Lemma 31 in Alon et al. (2022)) DS(#,) = 1.

Proof Since there exists at least one edge in G, the hypotheses corresponding to the endpoints of
this edge shatter a set of size 1, and hence DS(#,,) > 1. We will show that for any i # j, H,, cannot
simultaneously realize the patterns (0, 0) and (1, 1) on (4, j), implying that DS(#,,) < 2. Towards a
contradiction, assume that some h,, satisfies h,(7) = 0 and h,(j) = 0. From (3) above, this means
that w € L; and u € L;. Now, assume also that some h,, satisfies h, (i) = 1 and h,(j) = 1. This
means that v € R; and v € R;. But since the bipartite components B; are complete, this means that
the edge (u,v) exists in both B; and Bj, contradicting the disjointedness of the edge sets E; and
E;. |

Lemma 16 (Lemma 32 in Alon et al. (2022)) Let 7,, € Y1} be a total concept class that disam-
biguates H,,. Then, H,, defines a coloring of G using |H,,| colors. Therefore, from Theorem 14
above,

‘ﬂn‘ > n(log(n))lfo(l) .

Proof Let h, € ., be the total concept that disambiguates h, € H,, i.e., every sequence realizable
by h, is also realizable by h,. Then, we identify the concept h,, with a unique color Id(h,,), and
assign the vertex v this color. This defines a candidate coloring of the vertices of G. It remains
to argue that no two endpoints of any edge in GG are assigned the same color. Indeed, let (u,v)
be en edge in G. Then, this edge necessarily exists in exactly one of the bipartite components
B; = (L;, R;, E;), meaning that either h,, (i) = 0, hy,(7) = 1 or hy (i) = 1, hy(i) = 0. Whatever be
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the case, h,, and h,, necessarily disagree on i, and therefore so do their disambiguators hy, and Ay,
implying Id(h,,) # Id(h,). [

Now, for each n, we can instantiate H,, as defined above, each having its own separate domain,
and extend the domain of every H,, to the union of the domains as follows: every h € H,, labels the
domain of any other H,,, entirely with x. For the domain-extended #,,’s thus defined, by construc-
tion, we have that supp(#,,) N supp(H,) = 0 for all n # m. Furthermore, since each H,, has a
support of size n and is based on a finite simple graph, we already have |H,,|, |[supp(H,)| < oo. Let
H = U, | Hn. Since any shattered sequence would have to entirely lie in the support of a single
H,, by Lemma 15 above, we also have that DS(?{) = 1. This justifies all the points describing H
in Theorem 1.

A.2. Compression Implies Disambiguation

The following lemma shows that sample compression schemes imply disambiguations of bounded
size for partial concept classes.

Lemma 17 (Proposition 14 in Alon et al. (2022)) For Y = {0,1,2,...}, let H € {Y U {x}}*
be such that

1. Vhe H,Vz € X, h(z) € {0,1, %},
2. |supp(H)| < n.

Then, if (k,p) is a sample compression scheme for H of (unqualified) size k, then there exists a

disambiguation of H of size at most n®*).

Proof By definition of a compression scheme, x must be able to compress the support of every
h € H to a short labeled sequence of size at most k, such that the output of p on this short sequence
(together with some appropriate bit string of size at most O(k)) correctly labels the entire support
of h. Thus, if we iterate over all possible realizable sequences and bit strings of size at most ©(k),
the reconstruction by p on all of these necessarily disambiguates every single partial concept in H.
Since |supp(#)| < n, the total number of configurations that we need to apply p to is at most
K o (1) 28 29 (choose i distinct elements from supp(#), label it in one of 27 possible ways,
and append a bit string of size at most ©(k) to it), which is at most n®*) as required.

|

A.3. Putting Things Together

Say there exists a compression scheme (x, p) for H defined in Section A.1 above that compresses
labeled sequences of size m to size k(m). Then, observe that (x, p) defines a compression scheme
of (unqualified) size k = k(m) for H,, (for any sequence realizable by #,,, which must be of
size at most m, elongate the sequence (if required) to have size exactly m with duplicate elements,
and (k, p) now correctly compresses-reconstructs it). From Lemma 17 above, this implies a disam-
biguation of H,,, of size at most mO®(m))_ But then, Lemma 16 necessitates that

mOEm) 5 (log(m)! =)

which gives us that k(m) = Q((log(m))'=°M) as required.
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Appendix B. Sample Compression Scheme in Terms of Graph Dimension

We elaborate on the reduction from sample compression schemes for binary hypothesis classes to
those for multiclass hypothesis classes from Section 4.1 from Moran and Yehudayoff (2016). Given
al lllypothesis class H : X — Y having graph ¢ (}imenis/ionidg,iconstruct Ll/le binary hypothesis class
H (X x)Y) — {0,1}, defined as follows: H = {h : h € H} where h is defined as follows:

E,(as,y) _ {1 if h(z) =y,

0 otherwise.
We can then see that dvc(H') = de(H). Now, given a sample S = {(z1,91), -, (Zm, Ym)}
realizable by H, the compressor constructs the sequence S = {((z1,y1),1),.. ., (Zm,Ym), 1)}
that is realizable by . Theorem 1.4 in Moran and Yehudayoff (2016) then implies that there exists
a sample compression scheme of size 2€(4c ) for 7 . Namely, let ERMz (S”) be any hypothesis in

' entirely consistent with S’. Then, there exist subsequences 5], . . ., S} of S’ (where t = O(2%¢))
each of size O(dg) such that the majority vote of ERMz/(S7), ..., ERMz(S5}) is 1 on every
(3, y;) pair in S”. This equivalently means that the majority vote of ERMz;(S1), ..., ERMz(S;)
is the correct label y; for every x; in S. Thus, the compressor compresses S to Sy, ..., S; (along
with a bit string of size 20(9¢) specifying splits), and the reconstructor invokes ERM on each S,
and takes the majority vote to obtain correct predictions on all of S.
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