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Abstract
We present the first ε-differentially private, computationally efficient algorithm that estimates the
means of product distributions over {0, 1}d accurately in total-variation distance, whilst attaining
the optimal sample complexity to within polylogarithmic factors. The prior work had either solved
this problem efficiently and optimally under weaker notions of privacy, or had solved it optimally
while having exponential running times.
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1. Introduction

Machine learning and statistics aim to learn information about the population. The pertinent algo-
rithms always involve using random samples from the relevant population to learn and release that
information, but at the same time, often end up revealing sensitive information about the individuals
in the datasets. Differential privacy (DP) Dwork et al. (2006) is now a de facto standard for pre-
serving privacy in learning and testing algorithms. It informally guarantees that no adversary can
infer anything more about an individual from the output of a differentially private algorithm, than
they could have from its output if the individual were not present in the dataset.

In the last few years, a large body of work on differentially private statistics has emerged, which
has shown that the privacy constraint almost always imposes an additional cost in the sample com-
plexity for those tasks (see Appendix A). Depending on the strength of the privacy guarantee (e.g.,
pure, concentrated Bun and Steinke (2016); Dwork and Rothblum (2016), or approximate differen-
tial privacy), the running times of the private algorithms also tend to get affected greatly. It is quite
often (but not always) the case that developing pure DP algorithms for a statistical task, which has
the optimal sample complexity and a polyomial running time, is much more challenging than cre-
ating efficient and (sample) optimal, concentrated or approximate DP algorithms for the same task.
For instance, mean estimation of heavy-tailed distributions in ℓ2 distance under pure DP was solved
optimally, but without computational efficiency, in Kamath et al. (2020), but obtaining a compu-
tationally efficient algorithm for the same remained an open problem until it was solved recently
in Hopkins et al. (2022a). On the other hand, Kamath et al. (2020) did provide computationally
efficient and optimal, concentrated and approximate DP algorithms for mean estimation of heavy-
tailed distributions. Similarly, Kamath et al. (2019a) presented efficient and optimal, concentrated
and approximate DP algorithms for mean estimation of multivariate Gaussians, but solving this
problem optimally and with computational efficiency under pure DP remained open until Hopkins
et al. (2022b) solved it recently.
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Estimating binary product distributions (product distributions over {0, 1}d) in total-variation
distance is another such example. In this case, too, optimal and computationally efficient, concen-
trated and approximate DP algorithms had been presented already in Kamath et al. (2019a), but no
computationally efficient and optimal, pure DP algorithm was known after that, although multiple
optimal algorithms for this problem under pure DP, but lacking the computational efficiency, have
come up in the recent past (e.g., Bun et al. (2019)). In this work, we provide an optimal and a
computationally efficient algorithm that satisfies pure DP, and close that gap for this problem.

1.1. Estimation in Total-Variation Distance

We would first like to remind the reader as to why estimating binary product distributions in total-
variation distance is a much more difficult task than just simply estimating them in ℓ2 distance.
A small error in total-variation distance requires all the marginals to be estimated accurately with
respect to the magnitudes of their respective means, that is, the error for each marginal needs to
be scaled according to the magnitude of its mean. In certain situations, it could imply that each
marginal needs to be estimated to within a small multiplicative error. Instead, if in the estimate, all
the coordinates have similar additive errors, then unless that error is very small, the marginals with
very small means would have significantly lower accuracy than the ones with much larger means.
Therefore, the estimate would not be accurate in total-variation distance. On the other hand, if
we have the additive errors to be very small for all the coordinates (say, if we are estimating the
distribution to within ℓ1 distance α or to within ℓ∞ distance α

d ), then the cost of estimation would
become very large in terms of the sample complexity. Therefore, we need to find a way to estimate
product distributions accurately direction-wise.

Sans privacy, this is an easy task – we can just output the empirical mean of the samples. Under
privacy constraints, however, this is hard to do without knowing even an approximate scale of the
noise to add in each direction. The naı̈ve way to estimate privately would just involve either adding
a very small noise to each coordinate of the empirical mean, but that would increase the cost in the
sample complexity dramatically (by poly(d)). On the other hand, even if we use a sophisticated
pure DP estimator, which simply estimates accurately in ℓ2 distance α, this would not be accurate
enough either. Thus, we need more non-trivial ways to privately estimate each coordinate to within
an error that is scaled appropriately for that marginal.

1.2. Result

We informally state the main result of this work here. It essentially says that our pure DP algorithm
is computationally efficient and estimates the mean of any product distribution over {0, 1}d in total-
variation distance using just Õ(d) samples.

Theorem 1 (Informal) For every ε, α, β > 0, there exists a polynomial-time, ε-DP algorithm that
takes n i.i.d. samples from a product distribution P over {0, 1}d, and returns a product distribution
Q, such that if

n ≥ Õ

(
d

α2
+

d

εα

)
,

where Õ(·) hides all polylogarithmic factors, then with probability at least 1−β, the total-variation
distance between P and Q is at most α.
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Note that this is the optimal sample complexity for this problem, and the upper bounds under
approximate DP and the matching lower bounds (which also hold under pure DP) were proved in
Kamath et al. (2019a). The first term in the sample complexity is the necessary term for attaining
the desired accuracy without any privacy constraints, and the second term is the additive cost due to
privacy. For ε ≥ Ω(α), privacy comes for “free”, that is, there is only a small multiplicative cost in
the non-private sample complexity. Additionally, as we will see in the formal version of the above
theorem (see Theorem 4), there is also a multiplicative polylog(d, 1

β ,
1
ε ) improvement in the sample

complexity over that of Kamath et al. (2019a) due to our tighter analysis.
One more comparison that we would like to draw is with the work of Bun et al. (2019). It is

true that the polylog factors in their results are better than ours, but their algorithm only provides
guarantees for estimation within total-variation distance, whereas our work does that for parameter
estimation within χ2-distance (hence, KL-divergence, as well) for a very wide range of parameters.
In that sense, our algorithm provides stronger results because the total-variation distance guarantee
is implied from the above.

1.3. Overview of Techniques

Our techniques are similar to those in Kamath et al. (2019a) for estimating binary product distribu-
tions – private partitioning, followed by privately estimating.

The private partitioning is performed iteratively. In each round, we assume an upper bound
on the marginals, and use the Laplace mechanism (scaled according to that upper bound and the
number of marginals that remain to be partitioned) to get a rough private estimate of each marginal,
and pick the ones that lie above a certain threshold. As we prove later, those coordinates are bound
to have higher means than the ones with their noisy estimates below that threshold. We rescale those
chosen heavier coordinates as per the assumed upper bound for that iteration, and mark them to be
estimated later after the partitioning is complete. In the next round, we assume both a reduced upper
bound on the marginals and a reduced threshold to filter out the next set of marginals, and repeat the
process.

Once we have filtered and rescaled those heavier marginals, we estimate them in poly(n, d)
time to within α in ℓ2 distance under pure DP using the sub-Gaussian learner from Hopkins et al.
(2022b). On inverse-rescaling the estimated marginals according to their respective original rescal-
ing parameters, we get an accurate estimate for those heavier coordinates to within O(α) in total-
variation distance. Note that we cannot simply invoke the estimator from Hopkins et al. (2022b)
on the filtered out coordinates before rescaling them, since that would just give an ℓ2 estimate of
the original marginals, which would not be accurate direction-wise, hence, would not be accurate in
total-variation distance, especially when there are marginals with very different magnitudes in that
filtered set (see Section 1.1). Therefore, this combination of partitioning and rescaling those heavier
marginals seems necessary for this kind of an approach.

Remark 2 We would like to remark that in Hopkins et al. (2022b), the assumption is that the co-
variance of the distribution in question is Σ = I, while what we require is that Σ ⪯ I. That said,
their algorithm can still work with the latter assumption because their proof for mean estimation
mainly relies on their Corollary 5.4 and Lemma B.1, which still hold under this relaxed assumption.

There are two important aspects of our algorithm that make it different from the work by Kamath
et al. (2019a).
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• In the partitioning procedure, we filter out the “heavier” marginals iteratively, and group
the ones with similar weights together, but unlike the algorithm in Kamath et al. (2019a),
ours does not estimate them simultaneously while the partitioning is being performed. This
is because we wanted to avoid the additional poly(d) cost in the sample complexity due
to (basic) composition under pure DP. However, Kamath et al. (2019a) were able to both
partition and estimate those heavy marginals at the same time because they were working
under concentrated or approximate DP, and they could use the more sophisticated, advanced
composition of privacy Dwork et al. (2010), which only provides concentrated or approximate
DP guarantees.

• In order to estimate those heavier marginals after filtering and grouping them, we rescale them
using their respective rough private estimates that we obtained while partitioning, and apply
the pure DP sub-Gaussian mean estimator from Hopkins et al. (2022b), which is computa-
tionally efficient, as well. This gives us an estimate of the scaled marginals that is accurate to
within α in ℓ2 distance.

After the partitioning rounds, we have the final round, where we are just left with the lighter
coordinates to estimate. For that, we simply use the Laplace mechanism again, but with a much
lower sensitivity this time, and get an accurate estimate for those marginals directly in one shot.

With accurate estimates for both the heavy and the light marginals in hand, we finally combine
the two via a simple concatenation, and this gives us an accurate estimate for the whole distribution,
as we had originally desired.

Remark 3 We also want to remark on the techniques of Bun et al. (2019) for comparison. The
algorithm of Bun et al. (2019) involves an application of the exponential mechanism McSherry and
Talwar (2007), but it is more than just that. It is also a very general-purpose algorithm. While
simpler applications of the exponential mechanism could be made computationally efficient, doing
that for the algorithm in Bun et al. (2019) for our case does not seem straightforward. Intuitively,
in their work, the score function of a point in the output space is also based on its tournaments with
all the other points in the output space (as opposed to just with respect to the dataset), which means
that sampling a point from that space via the exponential mechanism becomes inefficient as there is
no way to efficiently determine the score of that point itself.

1.4. Motivation and Broader Impact

We would like to remark that in this recent line of work on computationally efficient, pure DP statis-
tical estimation, our work deals with a very fundamental distribution under a tricky, direction-wise
error metric (total-variation distance). Therefore, while it closes a long-standing open problem, it
also contributes to the diverse body of algorithmic tools and ideas available in DP literature for sta-
tistical estimation tasks. Could the techniques in our work be directly applied to other distributions?
The answer is not obvious because different families of distributions have different properties and
the way distance metrics are characterised for them could be very different. However, the high-level
idea of performing private preconditioning can be and has been certainly useful in DP statistical es-
timation tasks. Also, we believe that it might be possible to estimate certain families of distributions
(say, a subset of those with finite domains) in metrics that are similar to χ2-divergence using ideas
from our algorithm, just like we do in this work.
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Additionally, our work also shows that even though heavy and general-purpose machinery, such
as Hopkins et al. (2022b), might be available at our disposal, many tasks (like the problem we
address) may still not have simple solutions. As we point out in Section 1.3, a lot of non-trivial
steps often need to be taken in order to effectively use these tools.

Computationally efficient statistical estimation under pure DP has been a topic of recent interest
in the DP community, mostly because many pure DP algorithms, even though they may have optimal
sample complexity, are not very practical as they tend to have exponential running times. Pure
DP gives us much stronger privacy guarantees, and if we have as practical and sample-efficient
algorithms as the ones under the weaker privacy notions (such as approximate DP) to solve problems
under this regime, then we have the best of both worlds. Hence, our goal was also to fill in another
gap in this literature and provide new algorithms in this broader line of work for the community
interested in DP statistical estimation.

Estimating binary product distributions is a fundamental statistical problem, so we answered it
in the contexts (1) of computationally efficient pure DP estimation and (2) of addressing a folklore
statistical problem under DP constraints. Therefore, we believe that we addressed this question from
both theoretical and practical perspectives.

1.5. Organization of Paper

We describe our main technical results in Section 2. Appendix A contains a detailed discussion of
the relevant prior work. In Appendix B, we state the necessary preliminaries for our work. Then in
Appendices C, D, and E, we state the missing results and proofs from Section 2. Finally, we provide
a discussion of our work relative to some prior work in Appendix F.

2. A Pure DP Product Distribution Estimator

In this section we introduce and analyze our algorithm for learning a product distribution P over
{0, 1}d in total-variation distance. The pseudocode is stated in Algorithm 1, with some additional
observations and information regarding the notations stated in Section 2.1. For simplicity of presen-
tation, we assume that the product distribution has mean, whose marginals are bounded by 1

2 (i.e.,
E [P ] ⪯ 1

2 ), however, we would like to clarify that this assumption is essentially without loss of any
generality, and is easily removable at the cost of a meagre constant factor in the sample complexity.
We make an additional assumption that d ≥ 2 and that β ≤ 1

2 .
The following is the main result of our work. We prove the privacy, the computational effi-

ciency, and the accuracy guarantees of our algorithm in Appendices C and D, and in Section 2.2,
respectively. We defer a few proofs from Section 2.2 to Appendix E.

Theorem 4 For every ε, α, β > 0, there exists an ε-DP algorithm (PUREDPPDE) that takes n
i.i.d. samples from a product distribution P over {0, 1}d, and returns a product distribution Q over
{0, 1}d in poly(n, d, 1ε ,

1
α , log(

1
β )) time, such that if

n ≥ Õα

(
d log2(d/β)

α2
+

d log2(d/εβ)

εα

)
,

where Õα(·) hides polylogarithmic factors in 1
α , then with probability at least 1−β, dTV(P,Q) ≤ α.
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2.1. The Algorithm

We first introduce a notation for the truncated mean of all the points in a dataset. Given a data point
x ∈ {0, 1}d and B ≥ 0, we write

truncB(x) =

{
x if |x| ≤ B
B
|x| · x if |x| > B

to denote the truncation (or clipping) of x to an ℓ1-ball of radius B. Given a dataset X = (X1, . . . , Xm) ∈
{0, 1}m×d and B > 0, we use

tmeanB(X) =
1

m

m∑
i=1

truncB(Xi)

to denote the mean of the truncated data points in X . If one of the data points in X does not satisfy
the norm bound (i.e., its ℓ1 norm is greater than B) when X is served as an input to tmeanB , then
we will say, “truncation occurred,” as a shorthand. We point out a couple of important observations.

• The ℓ1-sensitivity of tmeanB is B
m , while the ℓ1-sensitivity of the un-truncated mean is d

m .

• Unless |Xi| > B for some i ∈ [m], the truncated mean equals the un-truncated mean, i.e.,
tmeanB(X) = 1

m

∑m
i=1Xi.

We also use the following notational conventions. Given a data point Xi ∈ {0, 1}d, we
use Xi[j] to refer to its j-th coordinate, and for a subset of coordinates S ⊆ [d], the notation
Xi[S] = (Xi[j])j∈S to refer to the vector Xi with coordinates restricted to S. Given a dataset
X = (X1, . . . , Xm), we use the notation X[S] = (X1[S], . . . , Xm[S]) to refer to the dataset con-
sisting of each Xi[S]. Next, for a domain X , a variable x ∈ X , and a probability distribution D
over X , we write “x ←R D” to indicate that a sample has been drawn from D, and assigned to x.
Finally, in Algorithm 1, we use Cα to denote the polylog(1/α) quantity in the sample complexity
from Theorem 29.

We first briefly describe Algorithm 1 here. The algorithm runs in two phases, essentially –
partitioning and final phases.

• Partitioning: This is an iterative phase. In each iteration, the algorithm truncates all the
points in the dataset according to an upper bound, and computes the empirical mean of all
the truncated points, and then adds independent Laplace noise to each of the remaining co-
ordinates of the mean vector in that iteration, and works with only the noisy values of those
coordinates. The coordinates with noisy values above a certain threshold are put aside, while
those with noisy values below that threshold are the remaining coordinates to work with in
the next iteration or in the final phase. The important observation is that the noisy values that
appear large cannot actually be small without the noise with high probability, and vice versa,
which we show later in the analysis. This helps us separate out the large coordinates with
high confidence. In the next iteration, we reduce the upper bound and the threshold because
the larger coordinates were separated out already, and we are now left with the ones with
lower magnitudes. When the number of remaining coordinates is small enough, we exit the
loop. At this point, we have all the batches of “similar” coordinates partitioned, so we scale
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the coordinates of all the batches up according to their respective upper bounds that we had
used in the previous iterations in which they were separated out, so that they all now have
magnitudes that are within a constant factor of one another. Then we apply the learner from
Theorem 29, which gives us an accurate estimate of that scaled vector in ℓ2 distance. We
rescale the coordinates of that estimate with the inverse of their respective, original scaling
factors, which gives us an accurate total-variation estimate of those coordinates.

• Final: This is a “one-shot” phase. The coordinates, which were not estimated in the previous
phase, are estimated in this phase. Here, the algorithm simply truncates all the points in the
dataset as per a small upper bound, and computes their empirical mean, and then adds inde-
pendent Laplace noise to all these remaining coordinates of the mean vector. The important
observation here is that because the means of all these coordinates are small enough, we do
not end up requiring a lot of noise to ensure privacy, so we are able to obtain an accurate ℓ1
estimate, which is sufficient to get an accurate total-variation estimate, at a low cost in the
sample complexity.

In the end, the estimates from both the phases are combined appropriately, and released.

2.2. Accuracy Analysis

In this section we prove the following proposition bounding the sample complexity required by
PUREDPPDE to be accurate.

Proposition 5 For every d ∈ N, every product distribution P over {0, 1}d, and every ε, α, β > 0,
if X = (X1, . . . , Xn) are independent samples from P , where

n ≥ Õα

(
d log2(d/β)

α2
+

d log2(d/εβ)

αε

)
,

then with probability at least 1−O(β), PUREDPPDEε,α,β(X) outputs Q, such that dTV(P,Q) ≤
α. The notation Õα(·) hides polylogarithmic factors in 1

α .

2.2.1. ANALYSIS OF THE PARTITIONING ROUNDS

In this section we analyze the progress made during the partitioning rounds. We show two properties
for any round r: (1) any coordinate j such that qr[j] was filtered out during the partitioning rounds
has a large mean, and (2) any coordinate j, such that qr[j] was moved on to the next round, has a
small mean. We capture the properties of the partitioning rounds that will be necessary for the proof
of Theorem 5 in the following lemma.

Lemma 6 (Partitioning Rounds) If Y 1, . . . , Y R each contain at least

m ≥ 2048d log(d/β) +
2048d log(d/εβ)

ε

i.i.d. samples from P , and Z contains

m0 ≥ Õα

(
d+ log(1/β)

α2
+

d+ log(1/β)

αε
+

d log(d)

ε

)
i.i.d. samples from P (where Õα(·) hides polylogarithmic factors in 1

α ), then with probability at
least 1−O(β), in every partitioning round r ∈ [R], we have the following.
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Algorithm 1: Pure DP Product Distribution Estimator PUREDPPDEε,α,β(X)

Input: Samples X1, . . . , Xn ∈ {0, 1}d from an unknown product distribution P satisfying
E [P ] ⪯ 1

2 . Parameters ε, α, β > 0.
Output: A product distribution Q over {0, 1}d such that dTV(P,Q) ≤ α.

Set parameters: R← log2 (d/2) m← 2048d log(d/β) + 2048d log(d/εβ)
ε

m0 ← Cα

(
d+log(1/β)

α2 + d+log(1/β)
αε + d log(d)

ε

)
m1 ← 128d log(d/β)

α2 + 256d log(d/εαβ)
εα

Split X into three datasets Y , Y F , and Z, of sizes mR, m1, and m0, respectively.
Split Y into R blocks Y 1, . . . , Y R of sizes m each, denoted by Y r = (Y r

1 , . . . , Y
r
m).

Let q ∈ (0, 1)d with q[j]← 0 for every j ∈ [d], and let S1 = [d], u1 ← 1
2 , τ1 ← 3

16 , and r ← 1.

// Partitioning rounds.
Let TP ← ∅.
while ur |Sr| ≥ 1 and r ≤ R do

Let Sr+1, Tr ← ∅.
Let Br ← 3ur|Sr| log(mR/β).
Let zr ←R Lap

(
Br
ε

)⊗|Sr| and qr[Sr]← tmeanBr(Y
r[Sr]) + zr.

for j ∈ Sr do
if qr[j] < τr then

Add j to Sr+1.
else

Add j to Tr.
end

end
Set Z[Tr]← 1√

ur
· Z[Tr].

Set TP ← TP ∪ Tr.
// Update the loop’s parameters.
Set ur+1 ← 1

2ur, τr+1 ← 1
2τr, and r ← r + 1.

end
// Run the sub-Gaussian learner from Hopkins et al. (2022b)

restricted to TP.
Let q̂[TP ]←R DPSGLEARNERε,α

5
,β,

√
d(Z[TP ]).

for i ∈ [r − 1] do
Set q[Ti]←

√
ui · q̂[Ti].

end
// Final round.
Let SF ← [d] \ TP .
if |SF | ≥ 1 then

Let BF ← 4 log(m1/β).

Let z ←R Lap
(
BF
ε

)⊗|SF |
and q[SF ]← tmeanBF

(Y F [SF ]) + z.

end
// Return the final estimate.
return Q = Ber(q[1])⊗ · · · ⊗ Ber(q[d]).
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1. If a coordinate j is filtered out in round r (i.e., qr[j] ≥ τr), then p[j] is large:

p[j] ≥ 15τr
17 .

2. If a coordinate j is not filtered out in round r (i.e., qr[j] < τr), then p[j] is small:

p[j] ≤ ur+1 =
ur
2
.

Therefore, if SP ⊆ [d] is the set of all the coordinates estimated in the partitioning rounds, then
with probability at least 1−O(β), dTV(P [SP ], Q[SP ]) ≤ α

2 .

Proof We will prove the lemma by induction on r. Therefore, we will assume that in every round r,
p[j] ≤ ur for every j ∈ Sr and prove that if this bound holds, then the two claims in the lemma hold.
For the base of the induction, observe that, by assumption, p[j] ≤ u1 = 1

2 for every j ∈ S1 = [d].
In what follows we fix an arbitrary round r ∈ [R]. Throughout the proof, we will use the notation
p̃r =

1
m

∑m
i=1 Y

r
i to denote the empirical mean of the r-th block of samples.

Claim 7 (Sampling Error in Partioning Rounds) If p̃r[j] = 1
m

∑m
i=1 Y

r
i [j] and m ≥ 1024d log(dR/β),

then with probability at least 1− 2β
R ,

∀j ∈ Sr |p[j]− p̃r[j]| ≤

√√√√4p[j] log
(
dR
β

)
m

.

Furthermore, if p[j] ≥ 1
d , then

|p[j]− p̃r[j]| ≤
p[j]

16
.

Claim 8 (No Truncation in Partioning Rounds) In round r, with probability at least 1 − β
R , for

every Y r
i ∈ Y r, we have that |Y r

i | ≤ Br. So, no rows of Y r are truncated while computing
tmeanBr(Y

r).

Claim 9 (Error due to Privacy in Partioning Rounds) With probability at least 1− 2β
R ,

∀j ∈ Sr |p̃r[j]− qr[j]| ≤
3ur|Sr| log

(
mR
β

)
log

(
dR
β

)
εm

.

Applying the triangle inequality and simplifying, using our choice of m, and noting that in our
algorithm, τr = 3ur

8 , we get that in each round r, with probability at least 1− 4β
R ,

|p[j]− qr[j]| ≤

√√√√4p[j] log
(
dR
β

)
m

+
3ur|Sr| log

(
mR
β

)
log

(
dR
β

)
εm

≤ p[j]

16
+

3ur
128

(1)

=
p[j]

16
+

τr
16

. (2)

To simplify our calculations, we will define er,j to be the quantity on the right-hand-side of Inequal-
ity 2.
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Claim 10 (Noisy Estimates above Threshold) With probability at least 1− 4β
R , for every j ∈ Sr,

qr[j] ≥ τr =⇒ p[j] ≥ 15τr
17

.

Proof We know that |pj − qr[j]| ≤ er,j with high probability, which implies that p[j] ≥ qr[j]−er,j .
Now, given that qr[j] ≥ τr and the bound on er,j from Inequality 2, we have the following.

p[j] ≥ qr[j]− er,j ≥ τr −
p[j]

16
− τr

16
=⇒ p[j] ≥ 15τr

17

This completes the proof.

Claim 11 (Noisy Estimates below Threshold) With probability at least 1− 4β
R , for every j ∈ Sr,

qr[j] < τr =⇒ p[j] ≤ ur+1 =
ur
2
.

Proof We know that with high probability, pj ≤ qr[j] + er,j . But since qr[j] < τj , we know
that p[j] < τr + er,j . Also, we set τr = 3

4ur+1 in our algorithm. Using the bound on er,j from
Inequality 1, this gives us the following.

p[j] < τr+er,j ≤
3ur+1

4
+
p[j]

16
+
3ur
128

=
3ur+1

4
+
p[j]

16
+
3ur+1

256
=⇒ p[j] ≤ 13ur+1

16
< ur+1 =

ur
2

Our proof is complete.

Claim 11 completes the inductive step of the proof. It establishes that at the beginning of round
r + 1, pj ≤ ur+1 for all j ∈ Sr+1.

Finally, we analyse the accuracy of the coordinates collected in TP over all the partitioning
rounds by the call to DPSGLEARNER. We can bound the total-variation distance between P [SP ]
and Q[SP ] by computing the χ2 divergence between the two. We make two key observations here.

• In round r, we scale Z[Tr] by 1√
ur

, which means that the (scaled product) distribution of that

subset of the coordinates (denoted by P̂ [Tr]) is over
{
0, 1√

ur

}
. Let ΣTr be its covariance

matrix. Then we can observe that the eigenvalues of ΣTr lie between τr(1−τr)
ur

=
3(1− 3ur

8
)

8 ≥
39
64 and ur(1−ur)

ur
= 1 − ur ≤ 1. Since this is true for any r, this must be true for the entire

P̂ [TP ], as well.

• Let the output product distribution from invoking DPSGLEARNER on Z[TP ] be Q̂[TP ] (which
has mean q̂[TP ]). Suppose the covariance matrix of P̂ [TP ] is ΣPP

, and the value of r before
the update in the end of the final iteration of the While-loop was r∗. Then from Theorem 29
(accuracy guarantees of DPSGLEARNER) and our setting of the accuracy parameters in the
call to DPSGLEARNER in Algorithm 1, with probability at least 1−β, the squared ℓ2 distance

10
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between P̂ [TP ] and Q̂[TP ] is given by,

α2

25
≥ ∥q̂[TP ]− p̂[TP ]∥22

=
∑
i∈[r∗]

∥q̂[Ti]− p̂[Ti]∥22

=
∑
i∈[r∗]

∥q[Ti]− p[Ti]∥22
ui

=
∑
i∈[r∗]

3∥q[Ti]− p[Ti]∥22
8τi

(τi = 3ui
8 )

≥
∑
i∈[r∗]

∑
j∈Ti

45 · (q[j]− p[j])2

136 · p[j]
(Claim 10)

=
45

544
·
∑
j∈TP

4(q[j]− p[j])2

p[j]
.

On rearranging the above, this implies that,∑
j∈TP

4(q[j]− p[j])2

p[j]
≤ α2

2
.

The above, on combining with Lemmata 18, 19, and 20, implies that dTV(P [TP ], Q[TP ]) ≤ α
2 .

Now, we can take the union bound over all the failure events in all the rounds and over the
failure of DPSGLEARNER, so that the conclusions of Lemma 6 hold with probability 1− 5β. This
completes the proof.

2.2.2. ANALYSIS OF THE FINAL ROUND

In this section we show that the TV error of the coordinates j, such that q[j] was set in the final
round, is small.

Lemma 12 (Final Round) In the final round, let k ∈ [R + 1] for which uk|Sk| < 1. If p[j] ≤ uk
for every j ∈ SF , and Y F contains at least

m1 =
128d log(d/β)

α2
+

256d log(d/εαβ)

αε

i.i.d. samples from P , then with probability at least 1−O(β), then dTV(P [SF ], Q[SF ]) ≤ α
2 .

Proof Again, we use the notation, p̃ = 1
m1

∑m1
i=1 Y

F
i , for the rest of this proof. First, we have two

claims that bound the difference between p[j] and p̃[j].

Claim 13 (Sampling Error for Large Coordinates in Final Round) For each j ∈ SF , such that
pj >

1
d , with probability at least 1− 2β/d, we have,

|p[j]− p̃[j]| ≤

√√√√4p[j] log
(

d
β

)
m1

.

11
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Claim 14 (Sampling Error for Small Coordinates in Final Round) For each j ∈ SF , such that
pj ≤ 1

d , with probability at least 1− 2β/d, we have,

|p[j]− p̃[j]| ≤ α

8d
.

Claim 15 (No Truncation in Final Round) With probability at least 1 − β, for every Y F
i ∈ Y F ,∣∣Y F

i

∣∣ ≤ BF , so no rows of Y F are truncated in the computation of tmeanBF
(Y F ).

Claim 16 (Error due to Privacy in Final Round) With probability at least 1− 2β,

∀j ∈ Sr |p̃[j]− qr[j]| ≤
4 log

(
m1
β

)
log

(
d
β

)
εm1

.

Note that because no truncation happens in this round, the sampling error without the Laplace
noise is bounded by the quantity as specified in Claims 13 and 14. Because of the possible difference
in magnitudes of the means of the marginals in SF , we establish their error guarantees separately.
Let H ⊂ SF be the set of all coordinates, whose means are greater than 1

d , i.e., H := {j ∈ SF :
p[j] > 1/d}. Likewise, let L ⊆ SF be the set of lighter coordinates, i.e., L := SF \H .

We analyse the heavier coordinates in H first. Let P̃ [H] be the product distribution over the
coordinates in H with mean p̃[H]. For all j ∈ H , using Claim 13 and our choice of m1, we know
that

|p̃[j]− p[j]| ≤

√√√√4p[j] log
(

d
β

)
m1

=⇒ 4(p[j]− p̃[j])2

p[j]
≤

16 log
(

d
β

)
m1

≤ α2

32d
,

which (by Lemma 18) means that dχ2(P̃ [j], P [j]) ≤ α2

32 . Combined with Lemma 20, this implies
that dTV(P [j], P̃ [j]) ≤ α

8d . Now, from Claim 16 and our choice of m1, we know that for all j ∈ H ,

|p̃[j]− q[j]| ≤
4 log

(
m1
β

)
log

(
d
β

)
εm1

≤ α

8d
,

which implies that dTV(P̃ [j], Q[j]) ≤ α
8d . Therefore, by triangle inequality, dTV(P [j], Q[j]) ≤ α

4d .
Finally, from Lemma 19, we have that dTV(P [H], Q[H]) ≤ α

4 .
Next, we bound the error on the lighter coordinates in L. Claims 14 and 16, the triangle inequal-

ity, and our choice of m1 show that for all j ∈ L,

|p[j]− q[j]| ≤ α

8d
+

4 log
(
m1
β

)
log

(
d
β

)
εm1

≤ α

8d
+

α

8d

=
α

4d
.

This implies that for all j ∈ L, dTV(P [j], Q[j]) ≤ α
4d . Therefore, from Lemma 19, dTV(P [L], Q[L]) ≤

α
4 .

Finally, through an application of Lemma 19 again, we obtain that

dTV(P [SF ], Q[SF ]) ≤ dTV(P [H], Q[H]) + dTV(P [L], Q[L]) ≤ α

2
.

This completes our proof.
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2.2.3. PUTTING IT ALL TOGETHER

In this section, we combine Lemmata 6 and 12 to prove Proposition 5. First, by Lemma 6, with
probability at least 1 − O(β), if SP is the set of coordinates j, such that q[j] was set in any of the
partitioning rounds, then,

1. dTV(P [SP ], Q[SP ]) ≤ α
2 and

2. if j ̸∈ SF and k is the index of the final round, then p[j] ≤ uk and uk |SF | < 1.

Next, due to the second consequence listed above, we can apply Lemma 12 to obtain that if
SF consists of all coordinates set in the final round, then with probability at least 1 − O(β),
dTV(P [SF ], Q[SF ]) ≤ α

2 . Finally, we use the union bound and Lemma 19 to conclude that, with
probability at least 1−O(β),

dTV(P,Q) ≤ dTV(P [SP ], Q[SP ]) + dTV(P [SF ], Q[SF ]) ≤ α.

This completes the proof of Proposition 5.
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Appendix A. Related Work

Besides a large selection of folklore work in non-private estimation of distributions, there has been
a lot of work in recent years on differentially private statistical estimation. Mean estimation is pos-
sibly the most fundamental question in this space, enjoying significant attention (e.g., Barber and
Duchi (2014); Duchi et al. (2013); Karwa and Vadhan (2018); Bun and Steinke (2019); Kamath et al.
(2019a, 2020); Wang et al. (2020); Du et al. (2020); Biswas et al. (2020); Cai et al. (2021); Brown
et al. (2021); Huang et al. (2021); Liu et al. (2021, 2022); Kamath et al. (2022a); Hopkins et al.
(2022a); Kothari et al. (2022); Tsfadia et al. (2022); Duchi et al. (2023); Covington et al. (2021);
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Nikolov and Tang (2023); Kamath et al. (2023)). Other related problems include private covari-
ance or density estimation Bun et al. (2015, 2019); Aden-Ali et al. (2021a); Kamath et al. (2022c);
Ashtiani and Liaw (2022); Alabi et al. (2022); Hopkins et al. (2022b); Kothari et al. (2022); Ts-
fadia et al. (2022); Liu et al. (2022); Biswas et al. (2020). Beyond these settings, other works
have examined statistical estimation under differential privacy constraints for mixtures of Gaus-
sians Kamath et al. (2019b); Aden-Ali et al. (2021b); Chen et al. (2023), graphical models Zhang
et al. (2020), discrete distributions Diakonikolas et al. (2015), median estimation Avella-Medina
and Brunel (2019); Tzamos et al. (2020); Ramsay and Chenouri (2021); Ramsay et al. (2022);
Ben-Eliezer et al. (2022); Cummings and Durfee (2020), and more. Several recent works have ex-
plored the connections between privacy and robustness Liu et al. (2021); Hopkins et al. (2022a);
Georgiev and Hopkins (2022); Liu et al. (2022); Kothari et al. (2022); Alabi et al. (2022); Hop-
kins et al. (2022b); Chen et al. (2023), and between privacy and generalization Hardt and Ullman
(2014); Dwork et al. (2015a); Steinke and Ullman (2015); Bassily et al. (2016); Rogers et al. (2016);
Feldman and Steinke (2017). Upcoming directions of interest include ensuring privacy when one
individual may contribute multiple data points Liu et al. (2020); Levy et al. (2021); George et al.
(2022) (or what is known as, user-level differential privacy), a combination of local and central
DP for different users Avent et al. (2019), and estimation with access to trace amounts of public
data Bie et al. (2022). We refer the reader to Kamath and Ullman (2020) for more coverage of the
recent work on differentially private statistical estimation. Differentially private statistical inference
also has been an active area of research for over a decade (e.g., Dwork and Lei (2009); Vu and
Slavković (2009); Wasserman and Zhou (2010); Smith (2011)), but the literature is too broad to
fully summarize here.

Another broader line of work includes those on the minimax sample complexities for various
differentially private statistical estimation tasks. The first minimax sample complexity bounds to
show an asymptotic separation between private and non-private estimation for private mean esti-
mation were proved in Bun et al. (2014), and subsequently sharpened and generalized in several
ways Dwork et al. (2015b); Bun et al. (2017); Steinke and Ullman (2017a,b); Kamath et al. (2019a).
Recently, Cai et al. (2021) extended these bounds to sparse estimation and regression problems.
Acharya et al. (2021) provides an alternative, user-friendly approach to proving sample complex-
ity bounds, which is directly analogous to the classical approaches in statistics and learning theory
for proving minimax lower bounds. Kamath et al. (2022b) also provides a generalized version of
the well-known “fingerprinting technique” that is used to prove hardness results for these kinds of
problems under approximate DP.

The two prior works most relevant to ours among the above are those by Kamath et al. (2019a);
Hopkins et al. (2022b) on learning binary product distributions under concentrated and approximate
DP, and estimating means of sub-Gaussian distributions under pure DP, respectively. The question
of learning binary product distributions optimally in polynomial time under pure DP has stayed
open for a while now. In our work, we modify and use a combination of their techniques to solve
this problem.

Appendix B. Preliminaries

For the utility analysis, we mostly rely on the concentration properties of Bernoulli distributions and
the Laplace distribution, and on the relationships among different distance metrics for probability
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distributions. The privacy analysis is much simpler, and we use the privacy guarantees of the existing
differentially private mechanisms. We describe all these notions and results in this section.

B.1. Statistics Preliminaries

Here, we state the essential definitions and results from statistics that would be used throughout the
draft. They include descriptions of various metrics for probability distributions, and a few useful
concentration inequalities.

Notations. Let P1, . . . , Pk be distributions over domains X1, . . . ,Xk, respectively. Then we say
that P = P1⊗· · ·⊗Pk is a product distribution over X1⊗· · ·⊗Xk. Next, for a distribution P over
domain X , we use P⊗k = P ⊗· · ·⊗P (k times) to denote the product distribution over X ⊗· · ·⊗X
(k times), where each marginal is P . Also, for 0 ≤ p ≤ 1, we use Ber(p) to denote a Bernoulli
random variable with mean p. Finally, for any v = (v1, . . . , vd) ∈ Rd, we use |v| to denote its ℓ1

norm, i.e., |v| =
d∑

i=1
|vi|.

B.1.1. DISTANCES BETWEEN DISTRIBUTIONS

We use several notions of distance metrics between distributions.

Definition 17 If P,Q are distributions, then,

• the statistical distance or the total-variation distance is dTV(P,Q) = 1
2

∑
x |P (x)−Q(x)|,

• the χ2-divergence is dχ2(P∥Q) =
∑

x
(P (x)−Q(x))2

Q(x) , and

• the KL-divergence is dKL(P∥Q) =
∑

x P (x) log P (x)
Q(x) .

Next, we have the following bound on the χ2-divergence between two Bernoulli distributions.

Lemma 18 (χ2-Divergence between Bernoulli Distributions) For Bernoulli distributions P and
Q over {0, 1} (with means p and q, respectively), such that |p− q| ≤ 1

4 and p ≤ 1
2 ,

dχ2(P,Q) ≤ 4(p− q)2

q
.

Proof The proof is identical to that of Claim 5.12 from Kamath et al. (2019a).

For product distributions P = P1⊗· · ·⊗Pk and Q = Q1⊗· · ·⊗Qk, the KL-divergence is additive,
and the total-variation distance and the χ2-divergence are sub-additive. In particular, we have the
following.

Lemma 19 (Sub-Additivity under Product Distributions) Let P = P1 ⊗ · · · ⊗ Pk and Q =
Q1 ⊗ · · · ⊗Qk be two product distributions. Then,

• dTV (P,Q) ≤
∑d

j=1 dTV(Pj , Qj),

• dχ2(P∥Q) ≤
∑d

j=1 dχ2(Pj∥Qj), and
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• dKL(P∥Q) =
∑d

j=1 dKL(Pj∥Qj).

The three metrics are related to each other in a clean way as follows.

Lemma 20 (Pinsker’s Inequality) For any two distributions P and Q, we have,

2 · dTV(P,Q)2 ≤ dKL(P∥Q) ≤ dχ2(P∥Q).

B.1.2. TAIL BOUNDS

We use a few tail bounds for sums of independent Bernoulli random variables. The first lemma is
an additive form of the Chernoff bound.

Lemma 21 (Bernstein’s Inequality) For every p > 0, if X1, . . . , Xm are i.i.d. samples from
Ber(p), then for every ε > 0,

P

[
1

m

m∑
i=1

Xi ≥ p+ ε

]
≤ e−dKL(p+ε||p)·m and P

[
1

m

m∑
i=1

Xi ≤ p− ε

]
≤ e−dKL(p−ε||p)·m

The second lemma is an multiplicative form of the Chernoff bound.

Lemma 22 (Multiplicative Chernoff Bound) For every p > 0, if X1, . . . , Xm are i.i.d. samples
from Ber(p), then for every δ ≥ 0,

P

[
m∑
i=1

Xi ≥ (1 + δ)pm

]
≤ e−

δ2pm
2+δ

The next lemma follows from Lemma 22, and bounds the norms of points sampled from a binary
product distribution with bounded marginals.

Lemma 23 (Bounded Norms of Rows) Suppose X1, . . . , Xm are sampled i.i.d. from a product
distribution P over {0, 1}t, where the mean of each coordinate is upper bounded by p (i.e., E [P ] ⪯
p). Then,

1. if pt ≥ 1, then for each i, P
[
|Xi| ≥ pt

(
1 + 2 log(mβ )

)]
≤ β

m , and

2. if pt < 1, then for each i, P
[
|Xi| ≥ 4 log(mβ )

]
≤ β

m .

Proof In the first case, we apply Lemma 22 after setting δ = 2 log(m/β) and µ = pm, and
by noting that log(m/β) ≥ 1. In the second case, we do the same as in the first case, but set
δ = 2 log(m/β)

pm .

Finally, we describe the concentration of Laplace random variables with mean 0.

Lemma 24 (Laplace Concentration) Let Z ∼ Lap(t). Then P [|Z| > t · ln(1/β)] ≤ β.
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B.2. Privacy Preliminaries

We start with the definition of differential privacy.

Definition 25 (Differential Privacy (DP) Dwork et al. (2006)) A randomized algorithm M : X n →
Y satisfies (ε, δ)-differential privacy ((ε, δ)-DP) if for every pair of neighboring datasets X,X ′ ∈
X n (i.e., datasets that differ in at most one entry, denoted by X ∼ X ′),

∀ Y ⊆ Y, P [M(X) ∈ Y ] ≤ eε · P
[
M(X ′) ∈ Y

]
+ δ.

When δ = 0, we say that M satisfies ε-differential privacy or pure differential privacy.

These definitions of DP are closed under post-processing.

Lemma 26 (Post-Processing Dwork et al. (2006)) If M : X n → Y is (ε, δ)-DP, and P : Y → Z
is any randomized function, then the algorithm P ◦M is (ε, δ)-DP.

B.2.1. KNOWN DIFFERENTIALLY PRIVATE MECHANISMS

We state a standard result on achieving differential privacy via noise addition proportional to the
sensitivity of the function being computed Dwork et al. (2006).

Definition 27 (Sensitivity) Let f : X n → Rd be a function, its ℓ1-sensitivity is

∆f,1 := max
X∼X′∈Xn

∣∣f(X)− f(X ′)
∣∣ .

For a function with bounded ℓ1-sensitivity, we can achieve ε-DP by adding noise from a Laplace
distribution scaled to its ℓ1-sensitivity.

Lemma 28 (Laplace Mechanism) Let f : X n → Rd be a function with ℓ1-sensitivity ∆f,1. Then
the Laplace mechanism

M(X) :=R f(X) + Lap

(
∆f,1

ε

)⊗d

satisfies ε-DP, where “:=R” is a notation we use to define a randomized mechanism.

We finally state the result from Hopkins et al. (2022b) about estimating the means of sub-Gaussian
distributions under pure DP in polynomial time.

Theorem 29 (Sub-Gaussian Learner from (Hopkins et al., 2022b, Theorem 5.1)) Assume that
0 < α, β, ε < 1 and R > 0. Let µ ∈ Rd, where ∥µ∥2 ≤ R, be unknown. There exists an ε-DP
algorithm (DPSGLEARNER) that takes n i.i.d. samples from a sub-Gaussian distribution with mean
µ and covariance 0 ⪯ Σ ⪯ I, such that,

n ≥ Õα

(
d+ log(1/β)

α2
+

d+ log(1/β)

αε
+

d log(R)

ε

)
,

where Õα(·) hides polylogarithmic factors in 1
α , runs in time poly(n, d), and with probability at

least 1− β, outputs µ̂ such that ∥µ− µ̂∥2 ≤ α.
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Appendix C. Privacy Analysis

The privacy analysis of Algorithm 1 is based on the privacy guarantees of the Laplace mechanism
and bounded sensitivity of the truncated mean, along with the privacy guarantees of DPSGLEARNER

(Theorem 29).

Proposition 30 For every ε, α, β > 0, PUREDPPDEε,α,β(X) satisfies ε-DP.

Proof Each individual’s data is used only once in exactly one of these three situations – while
computing tmeanBr(Y

r) in some round r of the partitioning rounds, in the call to DPSGLEARNER

at the end of the While-loop of the partitioning rounds, or in the final round while computing
tmeanBF

(Y F ). In other words, since all the datasets – Y r (for all i ∈ [R]), Y F , and Z – are disjoint
and only used once in the entire algorithm, we do not need to apply composition, but instead, we
just have to show that each individual computation is ε-DP.

In each partitioning round r, we perform an ℓ1 truncation on all rows to within Br, and add
Laplace noise scaled to Br

ε to every coordinate of p̃r[Sr]. By Lemma 28, this satisfies ε-DP. By
similar reasoning, the final round also satisfies ε-DP. Finally, the mean of P has an ℓ2 norm of at
most

√
d. Therefore, from the privacy guarantees of DPSGLEARNER (Theorem 29), we have ε-DP

for this step, as well.

Appendix D. Efficiency Analysis

Here, we prove the computational efficiency of Algorithm 1, which is a key feature of our work.

Proposition 31 There exists a polynomial f : R × R → R, such that for every ε, α, β, n, d > 0
and X ∈ {0, 1}n×d, PUREDPPDEε,α,β(X) has a running time of f(n, d).

Proof There are at most log2(d) iterations in the partitioning rounds, and in each iteration, we
perform O(d) operations. The call to DPSGLEARNER after that costs another fixed polynomial
g(n, d) time, where g : R × R → R (Theorem 29). The final round has an O(d) running time,
as well. Therefore, we have an f(n, d) = O(d log(d)) + g(n, d) + O(d) running time, which is
polynomial in n, d. Note that we are assuming that the cost in the running time due to sampling
from Laplace distribution is very low.

Appendix E. Missing Proofs from Section 2.2

Proof [Proof of Claim 7] We use Lemma 21 and the facts that for all γ > 0 and 0 < p ≤ 1,

dKL(p+ γ||p) ≥ γ2

2(p+ γ)
and dKL(p− γ||p) ≥ γ2

2p
,

and set

γ =

√√√√4p[j] log
(
dR
β

)
m

.
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Note that when p[j] ≥ 1
d , due to our choice of parameters, γ ≤ p[j]

16 . Therefore, 2(p[j]+γ) ≤ 4p[j].
Finally, taking a union bound over the cases when p̃r[j] ≤ p[j]− γ and when p̃r[j] ≥ p[j] + γ, we
prove the claim.

Proof [Proof of Claim 8] By assumption, all marginals specified by Sr are upper bounded by ur.
Now, the expected value of |Xr

i | is at most ur|Sr|. Since Br = 3ur|Sr| log(mR/β), we know that
Br ≥ ur|Sr| (1 + 2 log(mR/β)). The claim now follows from Lemma 23 and a union bound over
the rows of Y r.

Proof [Proof Claim 9] We assume that all marginals specified by Sr are upper bounded by ur. From
Claim 8, we know that, with probability at least 1−β/R, there is no truncation, so tmeanBr(Y

r[Sr]) =
1
m

∑
Y r
i ∈Y r Y r[Sr] = p̃r[Sr]. So, the Laplace noise is added to p̃r[j] for each j ∈ Sr. Therefore,

the only source of error here is the Laplace noise. Using the standard tail bound for Laplace distri-
butions (Lemma 24) after setting,

t =
3ur|Sr| log

(
mR
β

)
εm

,

and taking a union bound over all coordinates in Sr, and the event of truncation, we obtain the claim.

Proof [Proof of Claim 13] The proof is identical to that of Claim 7.

Proof [Proof of Claim 14] We use Lemma 21 and facts that

∀γ > 0 dKL(p+ γ||p) ≥ γ2

2(p+ γ)
and dKL(p− γ||p) ≥ γ2

2p
.

Set γ = α
8d . Then from Lemma 21 and our choice of m1, we have the following.

• For all j ∈ SF , with probability at least 1− β
d , p̃[j] ≤ p[j] + γ.

• For all j ∈ SF , with probability at least 1− β
d , p̃[j] ≥ max{0, p[j]− γ}.

Applying the union bound, we get the required result.

Proof [Proof of Claim 15] Note that all the marginals specified by SF are upper bounded by uk
(where k is the index as specified in Lemma 12) and that uk|SF | < 1. With this, we use Lemma 23
and get the required result because we set the truncation radius BF = 4 log(m1/β).

Proof [Proof of Claim 16] Using the standard tail bound for Laplace random variables (Lemma 24)
with the following parameters,

t =
4 log

(
m1
β

)
εm1

,

and taking the union bound over all the columns of the dataset in that round and the event of trun-
cation, we obtain the claim.
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Appendix F. Discussion

In this work, we solved a fundamental statistical problem of estimating the means of binary product
distributions in total-variation distance under pure DP with optimal sample complexity and under
polynomial running time.

However, we would like to mention again that our techniques hold similarities with those in
Kamath et al. (2019a). That said, we note that private preconditioning steps are commonly seen in
DP statistics now, especially when trickier, direction-wise metrics, such as total-variation distance,
are involved. The goal in these cases is to have direction-wise accuracy, so the choice of the error
metric is crucial. That said, the way this preconditioning is done could depend on the family of
distributions in question according to the way total-variation distance is characterised for those
distributions and on other factors, such as concentration properties and domain. For example, in
Kamath et al. (2019a) and Kamath et al. (2022c), such steps were performed for estimation of
covariances of Gaussians – the idea was to make all the directions of the Gaussian similar to one
another privately, and then estimate them accurately, before reverting the transformation. There, the
preconditioning looked different from what we did here, but the high-level goal was still the same –
adding appropriate amounts of noise in all directions. The problem being solved in our work is also
under total-variation distance, which is why we went back to a preconditioning-style algorithm. Is
there a different (but a more direct) approach to solving this problem efficiently under pure DP that
did not involve any private preconditioning? We do not know the answer yet, but it is an interesting
question to think about.

Now, the steps in our algorithm were motivated by the current tools available to solve this prob-
lem. We realised that the sub-Gaussian mean estimator from Hopkins et al. (2022b) could not be
directly applied to our problem, otherwise the problem would become quite trivial to solve. Since
estimating in total-variation distance requires direction-wise accuracy, we had to adapt the precon-
ditioning approach in Kamath et al. (2019a) for the estimator from Hopkins et al. (2022b) to give us
anything useful. This also led to requiring different technical lemmata at different stages to prove
the accuracy guarantees of our algorithm, thereby creating important and non-trivial differences in
our analyses from those in Kamath et al. (2019a).

We also admit that the recent development of Hopkins et al. (2022b) was an important factor
in our work. Before that, there was no efficient, pure DP method to estimate the means of sub-
Gaussians. However, as we mentioned above, this was not enough by itself because it can only give
an estimate that is accurate to within ℓ2 distance, so our preconditioning approach seemed necessary
to us if we were to use the algorithm from Hopkins et al. (2022b) as a black box.
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