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Abstract
A main object of our study is multiset functions — that is, permutation-invariant functions over inputs
of varying sizes. Deep Sets, proposed by Zaheer et al. (2017), provides a universal representation
for continuous multiset functions on scalars via a sum-decomposable model. Restricting the domain
of the functions to finite multisets of D-dimensional vectors, Deep Sets also provides a universal
approximation that requires a latent space dimension of O(ND) — where N is an upper bound
on the size of input multisets. In this paper, we strengthen this result by proving that universal
representation is guaranteed for continuous and discontinuous multiset functions through a latent
space dimension of O(ND) (which we will further improve upon). We then introduce identifiable
multisets for which we can uniquely label their elements using an identifier function, namely, finite-
precision vectors are identifiable. Based on our analysis of identifiable multisets, we prove that a
sum-decomposable model, for general continuous multiset functions requires only a latent dimension
of 2DN , as opposed to O(ND). We further show that both encoder and decoder functions of the
model are continuous — our main contribution to the existing work which lacks such a guarantee.
Additionally, this provides a significant improvement over the aforementioned O(ND) bound,
derived for the universal representation of both continuous and discontinuous multiset functions. We
then extend our results and provide special sum-decomposition structures to universally represent
permutation-invariant tensor functions on identifiable tensors. These families of sum-decomposition
models enable us to design deep network architectures and deploy them on a variety of learning
tasks on sequences, images, and graphs.
Keywords: Deep learning, permutation-invariance, multiset functions, identifiable tensor functions,
universal representation

1. Introduction

There is a wide gamut of machine learning problems that aim to identify an optimal function for
unordered collections of entities, such as sets and multisets. Tasks such as set or audience expansion in
image tagging, computational advertisement, and astrophysics (Ntampaka et al., 2016; Ravanbakhsh
et al., 2016a), parsing objects in a scene (Eslami et al., 2016; Kosiorek et al., 2018), population
statistics (Póczos et al., 2013), inference on point clouds (Qi et al., 2017a,b), min-cut and routing on
a graph, reinforcement learning (Sunehag et al., 2017), and modeling interactions between objects in
a set (Lee et al., 2019) exemplify these problems. Popular machine learning models are designed for
ordered algebraic objects, such as vectors, matrices, and tensors. To adapt these standard models to
operate on multisets, we must enforce various permutation invariance properties (Oliva et al., 2013;
Szabó et al., 2016; Muandet et al., 2013, 2012; Shawe-Taylor, 1993).

To characterize a general class of multiset (or permutation-invariant) functions, several authors
have proposed sum-decomposition models (Ravanbakhsh et al., 2016b; Zaheer et al., 2017). Notably,
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Deep Sets provides a universal representation for continuous multiset functions on scalars. This
model is a form of Janossy pooling, which is easy to implement and parallelize (Murphy et al.,
2018). At its core, it maps elements of the input multiset X individually via ϕ and then aggregates
them to uniquely encode the input multiset. That is, Φ(X) =

∑
x∈X ϕ(x) ∈ RM provides a unique

encoding for X , indicating that Φ is an injective map. Injectivity is the most important property of
the encoder Φ as it operates as an intermediate feature extraction step by uniquely mapping multisets
to vectors. Then, to represent a multiset function f(X), we map the resulting feature Φ(X) to
f(X), i.e., f(X) = ρ ◦ Φ(X), where ρ belongs to a rich class of unconstrained functions. The
existence of a continuous sum-decomposable model — a continuous encoder Φ and decoder ρ — is
guaranteed only if the dimension of the model’s intermediate features (M ) is sufficiently large. If
we reduce this dimension, Wagstaff et al. (2022) proves that no continuous decoder ρ exists such
that ρ ◦ Φ can approximate some multiset functions better than a naive constant baseline. Regarding
multiset functions on vectors, the best available result is given by Zaheer et al. (2017), which only
provides a universal approximation for continuous multiset functions by analyzing their finite-order
Taylor approximation. As our first contribution, we provide a universal representation, through the
sum-decomposable model, for continuous and discontinuous multiset functions on vectors, which
generalizes the existing universal approximation results. It is important to note that all universal
representation results are stronger than their universal approximation counterparts, as the former
results imply the latter ones.

Beyond permutation-invariant functions on scalars and vectors, SignNet and BasisNet (Lim
et al., 2022), along with other works, are neural network architectures (Dwivedi and Bresson, 2020;
Dwivedi et al., 2020, 2021; Beaini et al., 2021; Kreuzer et al., 2021; Mialon et al., 2021; Kim et al.,
2022), that provide sign and orthonormal basis invariances as displayed by eigenspaces (Eastment
and Krzanowski, 1982; Rustamov et al., 2007; Bro et al., 2008; Ovsjanikov et al., 2008). Laplacian
eigenvectors capture connectivity, clusters, subgraph frequencies, and help derive graph positional
encodings to generalize Transformers to graphs, improving the performance of Graph Neural
Networks (GNNs) (Dwivedi et al., 2020, 2021) and other useful graph properties (Von Luxburg,
2007; Cvetkovic et al., 1997). Under certain conditions, these network structures can universally
approximate any continuous function with the desired invariances. Both networks utilize Invariant
Graph Networks (IGNs) (Maron et al., 2018) to build permutation invariance or equivariance
properties for functions on matrices. IGN treats graphs (with nodes and edges) as tensors. Its
architecture involves permutation-invariant and equivariant linear layers for tensor input and output
data. As the tensor order reaches O(N4), it achieves universality for graphs of size N (Azizian and
Lelarge, 2020; Maron et al., 2019b; Keriven and Peyré, 2019).

The type of injective multiset functions, as introduced earlier, is useful in studying the separation
power of Message-Passing Neural Networks and its relation to the Weisfeiler-Leman (WL) graph
isomorphism test (Xu et al., 2018). They are also used to show the equivalence of high-order GNNs to
high-order WL tests (Morris et al., 2019; Maron et al., 2019a), and results related to geometric GNNs
and WL tests (Hordan et al., 2023; Joshi et al., 2023; Pozdnyakov and Ceriotti, 2022). Amir et al.
(2023) provide a theoretical analysis of the required latent dimension for nonpolynomial encoders —
namely, sigmoid, hyperbolic tangent, sinusoid — to achieve an injective multiset function.

Contributions. In this paper, we primarily focus on the study of multivariate multiset functions,
that is, functions on multisets containing at most N vectors of dimension D. When D = 1, this
simplifies to multiset functions on scalars. Our main contributions are as follows:
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1. We propose extended versions of the sum-decomposition models of multiset functions on
vectors (Zaheer et al., 2017). Multiset functions encompass permutation-invariant functions
as they are invariant to the specific ordering of the input elements. We use the term “multiset
function” to emphasize that the number of input elements can vary, unlike permutation-
invariant functions. Our initial contribution, in Section 3, presents the universal representation
for continuous and discontinuous multiset functions over D-dimensional vectors through
a sum-decomposable model; refer to Theorem 8. The latent dimension of this model is(
N+D
D

)
− 1, where N is the upper bound on the size of input multisets. For universal

representation of continuous multiset functions, we show that both encoder and decoder
functions of the sum-decomposable model are also continuous; see Theorem 3. In the case of
a scalar domain (D = 1), this latent dimension aligns with the one in (Wagstaff et al., 2019,
2022):

(
N+1
1

)
− 1 = N . Our Theorems 3 and 8 contribute as novel additions to the existing

universal approximation results for continuous multiset functions (Zaheer et al., 2017; Maron
et al., 2019a; Segol and Lipman, 2019) where the same latent dimension is only achieved
for universal approximation for D > 1. Universal approximation results rely on finite-order
Taylor approximation of continuous multiset functions. This technique does not work for (1)
universal representation and (2) discontinuous multiset functions. What’s more, as we will
see next, we will further significantly reduce this latent dimension bound for representing
continuous multiset functions via a novel technique through the use of identifiable multisets.

2. In Section 4, we introduce the concept of identifiable multisets. These are multisets whose
distinct elements can be uniquely labeled via a continuous functional; for instance, multisets
containing finite-precision vectors are identifiable through a linear functional. We show that
on identifiable D-dimensional vector multisets, the latent dimension of the sum-decomposable
representations can be reduced to 2DN from the original

(
N+D
D

)
− 1. More importantly,

by analyzing identifiable multisets, we establish that universal representation of continuous
multiset functions, where both encoder and decoder functions are continuous, is possible with
a latent dimension of 2DN ; refer to Theorem 6. The techniques used to derive these results
focus on the concept of an identifier function, which distinguishes our approach from prior
works using polynomial and nonpolynomial-based encoders (Zaheer et al., 2017; Dym and
Gortler, 2022). While our result in Theorem 3 is suboptimal compared to this new result
(Theorem 6), we still include Section 3 as it yields a better result compared to the existing
work based on polynomial-based encoders (common in approximation approaches), making it
of independent interest. In summary, the main contribution of our results to existing literature
are (1) the lowest latent dimension bound, and (2) the continuity guarantee for the decoder
function.

3. Finally, we offer universal representation for continuous and discontinuous permutation-
invariant tensor functions of arbitrary order. We derive a nested sum-decomposable representa-
tion specifically for what we term identifiable tensors, akin to identifiable multisets. Depending
on the chosen identifier function, we provide distinct bounds on the latent dimensions for this
representation. This mirrors an existing decomposition result on permutation-equivariant func-
tions on matrices (tensors of order two) (Fereydounian et al., 2022). However, our proposition
introduces a modified encoder function that (1) yields a reduced latent dimension of 2DN
compared to

(
D
2

)
N , (2) extends the sum-decomposition representation to tensors of arbitrary

order, and (3) guarantees injectivity.
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Input Latent Representation Approximation Continuity

Zaheer et al. (2017) D = 1 N + 1 ✓ ✓ ✓
Zaheer et al. (2017) D > 1 — ✗ ✓ ✓
Wagstaff et al. (2019) D = 1 N ✓ ✓ ✓
Segol and Lipman (2019) D > 1

(
N+D
D

)
− 1 ✗ ✓ ✓

Wang et al. (2023) D > 1 poly(N,D) ✓ ✓ ✓
Dym and Gortler (2022) D > 1 2DN + 1 ✓∗ ✗ ✗
Amir et al. (2023) D > 1 2N(D + 1) + 1 ✓∗ ✗ ✗
Ours D > 1 2ND ✓ ✓ ✓

Table 1: Summary of recent results in sum-decomposable representation of permutation-invariant
functions. We list the input dimension of each element in the (multi)set (Input), the
latent dimension (Latent), continuity of the decoder function ρ (Continuity). We denote
the universal approximation and representation in a compact domain by ✓ and universal
representation on a subset subdomain by ✓∗.

More on related work. The most notable work on universal representation of nonlinear multiset
functions concerns scalar-valued domains (Wagstaff et al., 2019, 2022). Much of the existing literature
focuses on universal approximations for permutation-invariant and -equivariant functions. The sum-
decomposition of multiset functions on multidimensional entities has been primarily approached
through the universal approximation power of polynomial functions (Zaheer et al., 2017; Segol and
Lipman, 2019). Wagstaff et al. (2022) thoroughly investigate the theoretical distinction between
universal representation and approximation of multiset functions on scalars. However, this remains
an open question for multiset functions on multivariate elements. Invariant and equivariant linear
functions have been thoroughly studied in the literature (Maron et al., 2018; Ravanbakhsh, 2020).
In comparison, our nonlinear model generalizes the permutation-invariant linear layers utilized in
IGNs (Maron et al., 2018). For universal approximation on N points, the IGNs require Ω(NN )-sized
intermediate tensors (Cai and Wang, 2022). An important class of permutation-compatible (invariant
or equivariant) nonlinear functions is GNN — the primary iterative-based models for learning
information over graphs. A substantial body of work aims to understand the expressive power of
GNNs Maron et al. (2019b,a); Keriven and Peyré (2019); Garg et al. (2020); Azizian and Lelarge
(2020); Bevilacqua et al. (2021). To provide insight into the capability of GNNs in representing
graph functions, Fereydounian et al. (2022) introduces an algebraic formulation — akin to the
sum-decomposition model for multiset functions — to represent permutation-equivariant nonlinear
functions on matrices in terms of the composition of simple encoder and decoder functions. One can
connect the notion of permutation-compatible functions (on 2-tensors) to our proposed algebraic form
of permutation-invariant functions on k-tensors. However, by focusing on identifiable tensors, we
lower the latent dimension required for representing 2-tensors to O(DN) — compared to O(D2N)
in (Fereydounian et al., 2022) — and guarantee the injectivity of the encoding function. In Table 1,
we compare some of the most recent results in the literature.

Organization. In Section 2, we review the existing sum-decomposition results for multiset func-
tions on scalars. Then, in Section 3, we present our universal representation results for multivariate
multiset functions. In Section 4, we introduce identifiable multisets and show how they can be used
to derive a lowered latent dimension bound for the continuous sum-decomposition of continuous mul-
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tiset functions. Finally, focusing on permutation invariance, we propose a nested sum-decomposition
model to represent invariant functions over k-tensors in Section 5. Identifiability for tensors is the
main concept necessary to establish the aforementioned decomposition models. We relegate all
proofs, supplementary results, and discussions to the Appendix.

Notations. We denote the nonnegative reals by R+ = {x ∈ R : x ≥ 0}. For any N ∈ N, we let
[N ] = {1, . . . , N}. The function f maps elements from its domain to elements in its codomain,
meaning f : dom(f) → codom(f) where codom(f) = {f(x) : x ∈ dom(f)}. Examples of
domains include R, RD, N, and Q. We denote the collection of subsets of a domain D as 2D. Let
D be a domain and f : D → codom(f). We then let f(D1)

def
= {f(x) : x ∈ D1} ⊆ codom(f)

where D1 ⊆ D. A multiset is a pair (X,m) where X is a set of objects and m is a map from X
to cardinals (representing the multiplicity of each element in X). We simplify this notation by
identifying multisets by “multiset X” or using double curly brackets, namely, X = {{1, 1, 2}} has
three elements but X = {1, 1, 2} = {1, 2} has two elements. For any domain D and multiset X ,
X ⊆ D means that the underlying set for X (repetitive elements removed) is a subset of D, and
|X| is the size of the multiset (repetitive elements included). For N ∈ N and domain D, we let
XD,N = {multiset X ⊆ D : |X| = N}, XD,S = {multiset X ⊆ D : |X| ∈ S} where | · | returns the
cardinality of its input set (or multiset) and S ⊆ N, namely, XD,[N ] = {multiset X ⊆ D : 1 ≤ |X| ≤
N}. We denote multisets (and sets) with X and tensors (and matrices) with T .

2. Review of the Sum-decomposable Model for Multiset Functions on Scalars

Standard machine learning algorithms operate on data arranged in canonical ways — namely, vectors,
matrices, and tensors. However, in statistical estimation, set expansion, outlier detection (Zaheer
et al., 2017), and problems involving point clouds or groups of atoms forming a molecule (Wagstaff
et al., 2022), we often aim to learn maps defined on an unordered collection of entities, that is, a set or
a multiset. Throughout this paper, we treat functions defined on sets and multisets differently. Here,
we use a (multi)set function over D to refer to a function whose domain consists of sub(multi)sets of
a domain D. In other words, a multiset function assigns a value for every possible submultiset of the
domain D. A multiset function f must satisfy two key criteria: (1) be invariant to the ordering of its
input elements (permutation invariance), and (2) be well-defined on multisets of different sizes.

Generally, when aiming to model a multiset function, it is not immediately evident how to ensure
that the function satisfies condition (1), i.e., permutation invariance concerning the ordering of
elements in input multisets. One powerful approach to address this challenge is to initially establish
a complete representation of multiset functions through a specific composition of unconstrained
functions — referred to here as encoder and decoder functions. This decomposition not only
characterizes multiset functions but also holds crucial significance in the learning context. For
instance, these unconstrained functions can be modeled (and learned) using neural networks, as seen
in the popular Deep Sets architecture (Zaheer et al., 2017). A particular form of this composition is
known as a sum-decomposable representation. The following provides such a result for set functions
defined on a countable domain.

Theorem 1 (Zaheer et al. 2017) Let f : 2D → codom(f) where D is a countable domain. Then,

∀X ⊆ D : f(X) = ρ ◦ Φ(X), Φ(X) =
∑
x∈X

ϕ(x), (1)
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where ϕ : D → codom(ϕ) ⊂ R, ρ : codom(Φ) → codom(f), and codom(Φ) = [0, 1] ⊂ R.

Theorem 1 provides an algebraic construct for universal representation for set functions on
countable sets. We use the term universal representation to distinguish it from the weaker universal
approximation results in the literature. This universal representation is obtained via the so-called
sum-decomposable representation formally defined as follows:

Definition 1 A (multi)set function f over D is sum-decomposable, or it has a sum-decomposable
representation, if it can be written as f(X) = ρ ◦ Φ(X) for any (multi)set X ⊆ D, where
Φ(X) =

∑
x∈X ϕ(x). We refer to ϕ, Φ and ρ as the element-encoder, (multi)set-encoder, and

decoder functions, respectively. We also may call ϕ and Φ sometimes simply as encoder functions.
Furthermore, suppose ϕ : D → codom(ϕ) ⊆ RM , then we refer to RM (which is the ambient space
of codom(ϕ)) as the decomposition model’s latent space, and say that f is sum-decomposable via
RM . The latent dimension of this sum-decomposition is M . A continuous multiset function f is
continuously sum-decomposable if has a sum-decomposable representation where both the encoder
and decoder functions, that is, ϕ (and thus Φ) and ρ are continuous in the entire ambient space of
their respective domains.

Theorem 1 states that a set function over a countable set is essentially sum-decomposable via R,
and the latent dimension is one. Interestingly, (Wagstaff et al., 2022) shows that set functions on an
uncountable domain D do not admit this sum-decomposable representation. Nevertheless, there is an
extension of Theorem 1 to finite-sized multisets (Wagstaff et al., 2022).

Theorem 2 (Wagstaff et al. 2019) Let N ∈ N, and f : XD,[N ] → R be a continuous multiset
function where D = [0, 1]. Then, it is continuously sum-decomposable (see Definition 1) via RN —
that is, the latent space is a subset of RN — and vice versa.

Recall that XD,[N ] represents the collection of all multisets over D with a cardinality of at most N .
Given that D in the above theorem is [0, 1] ⊂ R, the result asserts that a continuous multiset function
over scalars is continuously sum-decomposable via RN , where N is the maximum cardinality of
input multisets. The continuity of the decoder ρ comes at the cost of an increased latent space
dimension — compare universal representation in Theorems 1 and 2. This latent dimension is tight
in the worst case, that is, there does not exist a sum-decomposition via a latent space with dimension
less than N (Wagstaff et al., 2022). However, in practical scenarios, a specific multiset function
may allow for a sum-decomposition with a significantly lower latent dimension. While one might
anticipate a reduction in the latent dimension for universal approximation, it is interesting that, at
least for multiset functions over scalars, contrary to intuitive expectations, universal approximation is
not achievable (for all multiset functions) by reducing the latent dimension from N (Wagstaff et al.,
2022).

3. Warmup: Sum-decomposable Model for Multiset Functions on Vectors

Theorem 2 pertains to multiset functions operating on scalar-valued elements (that is, the input is a
multiset with elements from R). In practice, we often encounter applications involving vector-valued
multisets. For instance, a multiset of ≤ N points in RD can be represented as a multiset of cardinality
≤ N over RD. Similarly, in graph learning settings, we may have a set of N nodes in a graph with
D-dimensional node features. In what follows, we focus on multiset functions over vectors in RD,
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that is, functions of the form f : XD,[N ] → R where D ⊂ RD. For simplicity, we initially consider
functions over multisets of precisely cardinality N , that is, f : XD,N → R. Our primary result in this
section is the following theorem:

Theorem 3 A continuous multivariate multiset function f : XD,N → codom(f)(⊆ Rn), over a

multisets of N elements in a compact set D ⊆ RD, is continuously sum-decomposable via R(
N+D

D )−1.
That is, encoder ϕ is continuous over D, and decoder ρ is continuous over R(

N+D
D )−1.

The above theorem asserts that a continuous multiset function over multisets of N vectors from
D ⊂ RD is continuously sum-decomposable via a latent dimension of

(
N+D
D

)
−1. In the special case

of D = 1, this aligns with the previous result for multiset functions over scalars in Theorem 2. In
Section 4, we present a stronger result with a significantly lower latent dimension. Nevertheless, we
include this result for two reasons: (1) it is obtained using a similar proof technique to Theorem 2 by
employing polynomial-based encoders, and (2) this novel finding arrives at the same latent dimension
reported in (Zaheer et al., 2017) for the universal approximation of continuous multiset functions.
Detailed proofs are provided in Appendices A and B. A high-level description is outlined here.

In the remainder of this section, we designate D ⊂ RD as a compact subset of RD. Following
the proof technique outlined in (Zaheer et al., 2017), to show the existence of a sum-decomposition
of f = ρ ◦ Φ, our aim is to construct a multiset encoder Φ that is injective over XD,N . Once we
establish an injective encoder Φ, we can then define ρ = f ◦ Φ−1 for all admissible inputs, that is,
within codom(Φ). The encoder Φ is inherently continuous by construction. The primary challenge
lies in proving that ρ = f ◦ Φ−1 is not only well-defined but also continuous across the latent space
codom(Φ).

To construct an injective multiset function Φ(X) =
∑

x∈X ϕ(x), we use permutation-invariant
polynomials as in (Maron et al., 2019a; Segol and Lipman, 2019). We express these polynomials as
follows:

∀X ∈ XRD,N : p(X) = poly(e1(X), · · · , eK(X)), (2)

where ek(X) =
∑

x∈X
∏D

d=1 x
kd
d is a power-sum multi-symmetric polynomial, k1 . . . kD is the

D-digit representation of k ∈ [K] in base N + 1, K =
(
N+D
D

)
− 1, and poly is a polynomial

function (Rydh, 2007).

Remark 1 It is known that one can universally approximate continuous multivariate multiset func-
tions over a compact set with a multiset polynomial in equation (2). Given K =

(
N+D
D

)
− 1

power-sum multi-symmetric polynomial bases
(
ek(X)

)
k∈[K]

, we can design an encoder ϕ to provide
a universally approximate sum-decomposable model for multivariate continuous multiset functions
via R(

N+D
D )−1; refer to Theorem 9 in (Zaheer et al., 2017).

In Appendix A, we first state Theorem 8, which ensures a universal representation (not universal
approximation, as mentioned in the preceding remark) of any multivariate (D > 1) multiset functions
— whether continuous or discontinuous — through the sum-decomposable model using R(

N+D
D )−1.

The resulting decoder ρ constructed this way may not be continuous; however, this contributes
significantly to the existing literature. From a technical standpoint, Theorem 8 is valuable as it does
not rely on approximating the multiset function f using finite-order polynomials. Instead, it aims to
show the injectivity of Φ through an analysis of the parameterized roots of a class of multivariate
polynomials. Building upon Theorem 8, in Appendix B, we establish that if f is a continuous multiset
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function, then its decoder ρ = f ◦ Φ−1 maintains continuity in the ambient space of codom(Φ), i.e.,
R(

N+D
D )−1. The key approach involves proving that (1) Φ−1 is a continuous function on codom(Φ)

and (2) codom(Φ) is a compact subset of R(
N+D

D )−1. This concludes the proof of Theorem 3.
We can further generalize the results in Theorems 3 and 8 to multisets of varying sizes.

Theorem 4 Theorems 3 and 8 are valid for multivariate multiset functions of at most N elements
from a compact subset D ⊂ RD, that is, XD,[N ].

As a direct consequence of the proof technique in Theorem 4 — particularly noting that the
construction of the injective multiset encoder Φ is independent of the multiset function f being
represented — in Proposition 1, we show that when dealing with functions on the product of distinct
multisets of D-dimensional vectors, we can use the same encoder within its sum-decomposable
model.

Proposition 1 A (continuous) multiset function f : XD,[N1] × XD,[N2] → codom(f), where D is

compact subset of RD, is (continuously) sum-decomposable via R(
N+D

D )−1 × R(
N+D

D )−1, that is,

∀X ∈ XD,[N1], X
′ ∈ XD,[N2] : f(X,X

′) = ρ
( ∑
x∈X

ϕ(x),
∑
x′∈X′

ϕ(x′)
)
,

where continuous ϕ : RD → R(
N+D

D )−1, N = max{N1, N2} and (continuous) ρ : R(
N+D

D )−1 ×
R(

N+D
D )−1 → codom(ρ), and codom(f) ⊂ codom(ρ).

Remark 2 Proposition 1 simply follows from the injectivity of the multiset encoding function Φ. This
is completely different than the universal approximation approach where we rely on approximating
the function using finite order permutation-invariant polynomials and finding the complete set of

“basis” for them. Using the polynomial approximation approach, it is rather challenging to arrive
at the sum-decomposition in Proposition 1. This issue is compounded when we consider deriving
a decomposition for functions defined on multisets of multisets. This is yet another reason why we
focus on universal representations as opposed to universal approximations.

Relation to the results of Fereydounian et al. (2022). We note that Fereydounian et al. (2022)
propose an encoder Φ that is injective over particular (multi)sets Xs

N,D (not all multisets) of D-
dimensional vectors. The function Φ provides unique encodings for these (multi)sets in codom(Φ) ⊂
R(

D
2)N — where codom(Φ) = {Φ(X) : X ∈ Xs

N,D} and N is the size of the input (multi)sets.
This leads to a sum-decomposition for functions over (multi)sets in Xs

N,D. More importantly, for a
continuous multiset function, a continuous sum-decomposition f = ρ ◦ Φ is not guaranteed over all
multisets; in particular, the continuity of ρ = f ◦Φ−1 is only guaranteed over codom(Φ) — an open
subset of R(

D
2)N . Therefore, it does not guarantee the existence of a continuous extension for ρ to

R(
D
2)N ; see Appendix L for a detailed discussion.

4. Sum-decomposable Models on Identifiable Multisets

Inspired by the theoretical difference in latent space dimensions for sum-decomposition represen-
tations between set and multiset functions (refer to the result in (Fereydounian et al., 2022)), our
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objective is to reduce the dimension of the latent space. In this section, we present an approach to
achieve this by first restricting the domain to what we term “identifiable multisets,” introduced below.
Subsequently, we will show the extension of these results to scenarios where this restriction is lifted.

Definition 2 Let l : D → R be a continuous function and D be a domain. We denote Xl
D,N = {X ∈

XD,N : ∀x, x′ ∈ X, l(x) = l(x′) → x = x′}, as the set of multisets of size N that are identifiable
via l, that is, l-identifiable.

According to Definition 2, the continuous identifier function l uniquely labels distinct elements of
multisets in Xl

D,N . In Theorem 5 and Proposition 2 we provide improved bounds on latent dimensions
given in Theorems 4 and 8 — by restricting the domain of multiset functions to l-identifiable multisets.

Theorem 5 Let f : XRD,N → codom(f) be a multiset function and ℓ : RD → codom(l) ⊆ R be
continuous. Then, there is a continuous function ϕ : RD → codom(ϕ) ⊂ CD×N such that

∀X ∈ Xl
RD,N : f(X) = ρ

( ∑
x∈X

ϕ(x)
)
= ρ ◦ Φ(X),

where ρ : Φ(Xl
RD,N

) → codom(f) and Φ(Xl
RD,N

)
def
= {Φ(X) : X ∈ Xl

RD,N
}.

Proposition 2 Theorem 5 is valid for multivariate multiset functions of at most N elements from a
compact subset of RD.

Remark 3 Theorem 5 asserts the feasibility of sum-decomposition for arbitrary (continuous or
discontinuous) multiset functions via a latent dimension of O(ND) on inputs that are identifi-
able through a continuous identifier l : RD → codom(l) ⊆ R. In comparison, the universal
representation results in Theorems 3 and 4 require a latent space dimension of O(ND), which
becomes impractical even for a small number of features. Additionally, the bound in Theorem 5
improves from the O(ND2) bound proposed in (Fereydounian et al., 2022). Furthermore, we pro-
pose a concrete characterization of the input domain in Definition 2, adaptable for any continuous
function l designed for specific applications. However, as the set of identifiable multisets Xl

D,N
(where D is a compact subset of RD) does not form a compact set, there is no guarantee that
ρ : codom(Xl

D,N ) → codom(f) has a continuous extension to CD×N . In other words, using the
multiset encoding function Φ (introduced in the proofs), some multiset functions f , there may not
exits a continuous ρ : CD×N → codom(ρ) enabling the sum-decomposition. However, we address
this issue in Section 4.1. It is worth noting that our specific multiset encoder Φ maps multisets
to complex-valued matrices in CD×N , which, without causing technical issues, can be viewed as
R2D×N .

Remark 4 The multiset encoding function Φ in Proposition 2 resembles the notion of separating
invariants introduced in (Dym and Gortler, 2022). In this context, the quantity Φ(X) remains
invariant under permutations, treated as group actions. However, a subtle distinction exists; multiset
functions are permutation-invariant, but the converse is not necessarily true, as multiset functions
may accommodate varying-sized inputs. In the work by Dym and Gortler (2022), they claim that
for randomized invariants of dimension 2DN + 1 (compared to ours, which is 2DN ), almost
all matrices in RD×N can be identified up to the permutation of their columns using separating
invariants. They achieve this by applying linear projections on multidimensional elements to obtain
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scalars and then using a continuous separating (injective) map on them. They prove that the measure
of matrices that can not be identified via the permutation-invariant encoding is zero. Consequently,
the sum-decomposition does not apply to all matrices (similar to multisets in our paper), and there is
no guarantee for the existence of a continuous decoder ρ (over the ambient space) to represent a
continuous permutation-invariant function. On another note, Amir et al. (2023) propose utilizing
a nonpolynomial element-encoder, denoted as ϕ in our notation, to construct an injective multiset
function Φ. They arrive at a latent dimension of 2N(D + 1) + 1. However, their construction of
ϕ requires random parameter selection, and the injectivity only holds in the almost surely sense.
Therefore, it may not work for certain parameters. Zweig and Bruna (2022) study a theoretical
bottleneck for the latent dimension of sum-decomposable models. Very recently, we were made
aware of a concurrent work (Wang et al., 2023): They provide polynomial bounds for the latent
dimension of sum-decomposable models with feature maps from specific function classes, in particular,
multidimensional features ϕ(w⊤x) — where ϕ is the exponential function — require latent dimension
in the range [N(D+1), N5D2]; and if ϕ is a power mapping, the range of latent dimension becomes
[ND,N4D2]. This is a great contribution to the previous work as it ensures the continuity of the
decoder function ρ while offering reduced latent dimensions. In comparison, we provide a latent
dimension that is linear in both N and D and guarantee the continuity of the decoder function.

4.1. Towards a Continuous Decoder

In Theorem 5, we prove how our concept of ℓ-identifiable multisets enables a reduced latent dimension
for the sum-decomposition representation of multiset functions. Current leading approaches that allow
such reduced-dimensional representations rely on probabilistic arguments, specifically excluding
multisets of measure zero from all valid multisets; refer to Remark 4. However, these approaches
do not yet yield a continuous sum-decomposition, particularly a continuous decoder function ρ. In
what follows, we focus on utilizing ℓ-identifiable multisets, aiming to facilitate the representation
on a dense subset of multisets, as indicated by Proposition 3 and Lemma 1 below. Our goal is to
ultimately achieve a continuous sum-decomposition, akin to Theorem 6. You can find the proofs of
all these results in Appendices G to I.

Proposition 3 Let XQD,N be the set of all multisets of N vectors from QD where Q denotes the set
of rational numbers. Then, XQD,N is an l-identifiable subset of XRD,N .

Lemma 1 Let D ⊆ RD be a compact set with continuous nonempty interior, Q(D) = D ∩QD be
the set of all vectors with rational elements in D. Then, XQ(D),N is a dense subset of XD,N . Similarly,
Φ(XQ(D),N ) is a dense subset of Φ(XD,N ) where Φ is the multiset encoder in Theorem 5.

Remark 5 To illustrate the utility of Theorem 5, consider its application in circuit design tasks.
These tasks encompass various electronic design aspects, such as routed wire length prediction (Xie
et al., 2021), circuit partitioning (Lu et al., 2020), logic synthesis (Zhu et al., 2020), and placement
optimization (Li et al., 2020). Circuits can be represented as geometric graphs, where nodes are
positioned on integer-valued vector coordinates, each node possessing multidimensional features that
characterize circuit elements. As supported by Proposition 3, we are able to uniquely identify each
node using a continuous identifier. Given their significance as a subset of ℓ-identifiable multisets,
Corollary 1 specializes Theorem 5 to rational-valued multisets.
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Corollary 1 Let f : XRD,N → codom(f) be a multiset function. Then, there is a continuous
function ϕ : RD → codom(ϕ) ⊂ CD×N such that

∀X ∈ XQD,N : f(X) = ρ
( ∑
x∈X

ϕ(x)
)
= ρ ◦ Φ(X),

and ρ : Φ(XQD,N ) → codom(f).

Corollary 1 states that the sum-decomposable model is valid — via a latent dimension of 2DN
— on a dense subset of multisets in XRD,N ; see Lemma 1. However, this representation has some
drawbacks: (1) the measure of valid multisets XQD,N is zero and (2) there is no guarantee on the
existence of a continuous extension of ρ to CD×N . It is important to note that we choose to focus
on XQD,N despite the fact that it has a measure zero. We argue that one should not focus on the
measure of valid multisets XQD,N ; but rather take advantage of the fact that valid multisets form a
dense subset of all multisets, that is, XRD,N . In Theorem 6, we leverage this fact and resolve both
aforementioned issues by focusing on the sum-decomposable representation of continuous multiset
function.

Theorem 6 Consider a compact set D ⊂ RD with nonempty interior. Let f : XD,N → codom(f)
be a continuous multiset function and Φ : XD,N → codom(Φ) be the function in Theorem 5. Then,
there exists a continuous function ρ : CD×N → codom(ρ) ⊆ f(XD,N ) such that

∀X ∈ XD,N : f(X) = ρ ◦ Φ(X).

The major contribution of Theorem 6 is the continuity of ρ over the whole latent space. The detailed
proof of this key theorem is in Appendix I. At the high level, we begin with the result in Corollary 1.
There, we claim that there exits decoding function ρ : Φ(XQ(D),N ) → codom(ρ) such that the
stated decomposition remains valid on rational-valued vectors in D ⊂ CD×N . This result does not
guarantee the continuity of ρ in CD×N . However, we leverage the facts that (1) f is a continuous
multiset function and (2) Φ(XQ(D),N ) is a dense (noncompact) subset of Φ(XD,N ) and prove that
ρ has a continuous extension to Φ(XD,N ) —- a compact subset of CD×N — and therefore has a
continuous extension to CD×N . The continuity guarantee of the decoder function ρ is the major
contribution of Theorem 6 over existing results in (Dym and Gortler, 2022) and (Fereydounian et al.,
2022).

Remark 6 With regard to machine learning applications, we note that one could implement a
network structure of the form ρ ◦

∑
x∈X ϕ(x) where ρ and ϕ are two parameterized neural nets.

However, without the result of Theorem 6, it is not guaranteed that this composite network (of any
depth) can even approximate an arbitrary target function f — even if f is a continuous permutation-
invariant function. For instance, a target function f might only allow a discontinuous decoder ρ —
which neural nets are not guaranteed to be able to approximate. However, Theorem 6 proves the
continuity of both encoder and decoder functions when they meet the latent dimension requirements.

5. Permutation-Invariant Tensor Functions

Data with underlying a hypergraph structure — that is, nodes connected with weighted (hyper)edges
— are ubiquitous in many applications (Chen et al., 2019; Ma et al., 2018; Wang et al., 2019; Yang
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et al., 2019). Inspired by such data, we study functions defined on tensors and adopt graph-theoretic
notions to describe relevant concepts. The tensor setting is also used for the higher order graph neural
network called IGN (Invariant graph network) (Maron et al., 2018).

Definition 3 Let N,K ∈ N. We denote TN,K as the set of K-th order D-dimensional tensors on
N entities, that is, TN,K = RNK×D.

We can use tensors to represent (1) node features, (2) graph adjacency matrix (second order tensor),
and (3) hypergraph hyperedges with multidimensional features. In Definition 4, we introduce a tensor
notation for permuting node entities.

Definition 4 Let N ∈ N, Π(N) be the set of permutations over [N ], and π ∈ Π(N). Then, we let

T, T ′ ∈ TN,K : T ′ = π(T ) ⇐⇒ T ′
n1...nK

= Tπ(n1)...π(nK) for all n1, . . . , nK ∈ [N ].

Tensors T, T ′ ∈ TN,K are congruent, denoted by T ≡ T ′, if there is π ∈ Π(N) such that T ′ = π(T ).

Similar to multiset functions, tensor functions must also exhibit permutation invariance. Using the
notation in Definition 4, a permutation-invariant tensor function f : TN,K → codom(f) satisfies
f(T ) = f(π(T )) for all T ∈ TN,K and the permutation operator π : [N ] → [N ]. This represents a
specific form of G-invariant functions (Maron et al., 2019b), where G is the permutation group. It
extends the notion of permutation-compatible functions, originally established for 2-tensors denoting
input graphs with node features and an adjacency second-order tensor (matrix) (Fereydounian et al.,
2022).

Hereafter, we introduce a sum-decomposable model to universally represent permutation-
invariant tensor functions of arbitrary order. Our algebraic approach hinges on assigning a unique
label to each node. This becomes applicable when dealing with tensors accompanied by distinct node
features or hypergraph structures that allow for this unique labeling. In Definition 5, we formalize
the set of all tensors that permit this necessary unique labeling

Definition 5 Let l : TN,K → RN×M be an identifier — with M -dimensional labels — such that

∀T ∈ T ∈ TN,M : l(π(T )) = πl(T )

We denote the set of tensors that are identifiable via l, that is, l-identifiable, as Tl
N,K ⊂ TN,K such

that ∀T ∈ Tl
N,K the multiset {{e⊤n l(T ) ∈ RM : n ∈ [N ]}} consists of distinct elements where en is

the n-th standard bais of RN and n ∈ [N ].

In the first step of our approach, given a tensor and an identifier, we first construct a set that remains
invariant with respect to the permutation of the node entities.

Definition 6 Let K,N ∈ N. For any l-identifiable tensor T ∈ Tl
N,K , let αK

n1...nK
(T ) = Tn1...nK ∈

RD for all n1, . . . , nK ∈ [N ]. Then, we define recursively that:

∀k ∈ K down to 1, n1, . . . , nk−1 ∈ [N ] : αk−1
n1...nk−1

(T ) = {
(
e⊤nk

l(T ), αk
n1...nk

(T )
)
: nk ∈ [N ]}.

We define the set S(T ) = {
(
e⊤n1

l(T ), α1
n1
(T )

)
: n1 ∈ [N ]}.

Proposition 4 Let K,N ∈ N and T, T ′ ∈ Tl
N,K . Then, we have S(T ) = S(T ′) if and only if

T ′ = π(T ) for a permutation π ∈ Π(N), that is, T ≡ T ′.
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Proposition 4 establishes a bijection between identifiable tensors TlN,K — up to a permutation
factor — and sets in S(TlN,K). In Theorem 7, we provide an algebraic characterization of
(nonlinear) permutation-invariant tensor functions with distinct node features, showing that the
sum-decomposable model is applicable only on identifiable tensors.

Theorem 7 Let K,N ∈ N. Let f : TN,K → codom(f) be a permutation-invariant tensor function.
Then we have

∀T ∈ Tl
N,K : f(T ) = ρ

( ∑
n1∈[N ]

ϕ1(e
⊤
n1
l(T ), β1n1

(T ))
)

where l : TN,K → codom(l) is an identifier function, βKn1...nK
(T ) = Tn1...nK ∈ RD for all

n1, . . . , nK ∈ [N ], and

∀k ∈ [K], n1, . . . , nk−1 ∈ [N ] : βk−1
n1...nk−1

(T ) =
∑

nk∈[N ]

ϕk(e
⊤
nk
l(T ), βkn1...nk

(T )),

where ϕk is continuous over its compact domain and its codomain resides in RDk (k ∈ [K]), and

1. Dk = 2(M +Dk+1)N if codom(l) ⊂ QN×M

2. Dk =
(N+Dk+1

N

)
− 1 if codom(l) ⊂ RN×M

for all k ∈ [K − 1] and DK = D. The function ρ is defined on D ⊂ RD1 where

D = {
∑

n1∈[N ]

ϕ1(e
⊤
n1
l(T ), β1n1

(T )) : T ∈ Tl
N,K},

and it is not guaranteed to have a continuous extension to RD1 .

6. Conclusion

In this work, we present several contributions concerning the universal representation theory of
multiset functions and permutation-invariant tensor functions. We show the existence of a universal
sum-decomposition model for multivariate multiset functions and provide the most optimal dimension
bound for encoded multiset features available to date. Our extensive analyses are built upon the
novel notion of ℓ-identifiable multisets, enabling us to uniquely label distinct elements within
multisets. Furthermore, our proposed decomposable model for permutation-invariant tensor functions
extends existing models designed for linear permutation invariant tensor functions, which are
commonly employed as layers in IGNs. It is worth noting that our universal representation via
sum-decomposables is stronger than the concept of universal approximation, as the former imply the
latter. All these findings lead to universal approximation results for multiset (or tensor) functions
using sum-decomposables—a proposition that indicates natural architectures for neural networks,
akin to Deep Sets.
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Appendix A. Theorem 8 and Its Proof

Theorem 8 Any multivariate multiset function f : XRD,N → codom(f) — over a multisets of N

elements in RD — is sum-decomposable via R(
N+D

D )−1, that is,

∀X ∈ XRD,N : f(X) = ρ ◦ Φ(X), where Φ(X)
def
=

∑
x∈X

ϕ(x),

where ϕ : RD → codom(ϕ) ⊆ R(
N+D

D )−1 is a continuous function and ρ : codom(Φ) →
codom(f).

Note that compared to Theorem 3, the function f in Theorem 8 is not necessarily continuous,
and the decoder function ρ is not necessarily continuous as well.

A.1. Proof

LetN,D ∈ N. We want to prove that for any multivariate multiset function f : XRD,N → codom(f),

there exists a sum-decomposition via R(
N+D

D )−1.
Trivial case of N = 1. We define functions ϕ and ρ as follows:

∀x ∈ RD : ϕ(x) = x, and ρ(x) = f({{x}}),

where dom(ϕ) = RD. Since Φ({{x}}) = ϕ(x), codom(ρ) = codom(Φ) = codom(ϕ) = RD =

R(
1+D
D )−1, codom(ρ) = codom(f), and f({{x}}) = ρ ◦ Φ({{x}}), we arrive at the theorem’s

statement for N = 1.

Remark 7 In our notation, depending on the context, xn can mean either (1) the n-th coordinate
(element) of vector x (say in RD) or (2) a vector indexed by n, for example, x1, . . . , xN ∈ RD. In
the latter case, we do emphasize the domain of the vector a priori, that is, xn ∈ RD.

General case of N ≥ 2. We break down our approach into two steps:

1. We show that there exists a function ϕ : RD → codom(ϕ) ⊆ R(
N+D

D )−1 such that Φ(X) =∑
x∈X ϕ(x) is an injective multiset function, that is, Φ−1 is well-defined on codom(Φ).

2. Let ρ = f ◦ Φ−1. This immediately proves f = ρ ◦ Φ(X) = ρ
(∑

x∈X ϕ(x)
)
.

This is an extension to the existing univariate result (that is, D = 1); refer Theorem 2 in (Zaheer
et al., 2017). In the one-dimensional case, Zaheer et al. (2017) prove that Φ is an invertible function
by showing that, given Φ(X), one can construct a univariate polynomial p(t; Φ(X)) whose roots are
X , that is, Φ−1 ◦ Φ(X) = roots ◦ p(t; Φ(X)) = X where roots returns the multiset of roots of a
polynomial equation. Moreover, the appropriate choice for the basis function ϕ — which makes this
analysis tractable — gives a bound for the latent dimension, that is, dimension of the ambient vector
space containing codom(Φ).

In our approach, we arrive at the appropriate choice for ϕ constructing a multivariate polynomial
whose parameterized roots are related to X . In what follows, we (1) introduce the basis function ϕ,
(2) construct an appropriate multivariate polynomial p(t; z,Φ(X)) — parameterized by both t ∈ R
and z ∈ RD — and (3) extract X from its parameterized roots. In step (3), we introduce novel
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Figure 1: Proof sketch for the injectivity of Φ.

techniques for analyzing parameterized multisets — akin to computing directional derivatives for
multivariate functions. We summarize these steps in Figure 1.

The following definition introduces several frequently used functions in this proof.

Definition 7 For any multiset of real scalars X = {{xn ∈ R : n ∈ [N ]}} where N ≥ 2, we let

gap(X) = min
n,n′∈[N ]
xn ̸=x′

n

|xn − xn′ |, diam(X) = max
n,n′∈[N ]
n̸=n′

|xn − xn′ |,

unique(X) = {xn : n ∈ [N ]}, sort(X) =
(
xπ(n)

)
n∈[N ]

∈ RN ,

where π : [N ] → [N ] is a permutation operator such that xπ(1) ≥ xπ(2) ≥ · · · ≥ xπ(N).

Remark 8 If xn, xn′ ∈ X where xn = xn′ for distinct n, n′ ∈ [N ], then the permutation operator
π in Definition 7 is not unique; but any such permutation π results in the same sorted vector
(xπ(n))n∈[N ]. Hence, sort(X) is well-defined for any multiset of real-valued scalars X .

Remark 9 Let X be a multiset of real scalars. Then, gap(X) is well-defined only if the cardinality
of unique(X) is strictly greater than one, that is, |unique(X)| > 1.

We consider a class of multivariate polynomials paramterized with t ∈ R and z ∈ RD. In Proposi-
tion 5, we introduce a function ϕ that enables us to construct each polynomial — in the aforemen-
tioned class — using only Φ(X) =

∑
x∈X ϕ(x). In other words, knowing t, z and Φ(X), we can

represent the polynomial
∏

x∈X(t− z⊤x). This allows us to write the polynomial
∏

x∈X(t− z⊤x)
as a function depending on variables t, z and Φ(X), which we call p(t; z,Φ(X)).

Proposition 5 Let N,D ∈ N and ϕ : RD → codom(ϕ) ⊆ R(
N+D

D )−1 be the following continuous
function:

∀x ∈ RD : ϕ(x) =
( D∏
d=1

xkdd
)
k∈KD

N
∈ R(

N+D
D )−1,

where k = (kd)d∈[D] is a D-tuple and KD
N = {(kd)d∈[D] : k1 + . . .+ kD ∈ [N ], k1, . . . , kD ≥ 0}.

Then, for all X ∈ XRD,N , Φ(X) =
∑

x∈X ϕ(x) suffices to construct the following multivariate
polynomial:

∀t ∈ R, z ∈ RD :
∏
x∈X

(t− z⊤x) = p
(
t; z,Φ(X)

)
. (3)

To show that Φ is an invertible function, we want to argue that the multiset X can be uniquely
recovered form the multivariate polynomial in equation (3), that is, p

(
t; z,Φ(X)

)
. Let us proceed

with the following definitions.
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Definition 8 For any z ∈ RD, multiset X of at least two D-dimensional vectors, and multivariate
polynomial p

(
t; z,Φ(X)

)
in the equation (3), we formalize the following functions:

• roots ◦ p
(
t; z,Φ(X)

)
= {{t : p

(
t; z,Φ(X)

)
= 0}} = {{z⊤x : x ∈ X}} def

= z⊤X

• separators ◦ p
(
t; z,Φ(X)

)
= argmaxz∈RD |unique ◦ roots ◦ p

(
t; z,Φ(X)| ,

where | · | returns the cardinality of its input set.

Definition 9 Let X be a multiset of at least two D-dimensional vectors. If exists, the directional
derivative of sort

(
z⊤X

)
— where z⊤X = {{z⊤x : x ∈ X}} — at z ∈ RD in the direction of unit

norm v ∈ RD is given as follows:

∇vsort
(
z⊤X

)
= lim

δ→0

1

δ

(
sort

(
(z + δv)⊤X

)
− sort

(
z⊤X

))
. (4)

In Proposition 6, we show how to retrieve X from roots ◦ p
(
t; z,Φ(X)

)
, that is, the parameterized

multiset z⊤X .

Proposition 6 For any z ∈ RD, multiset X = {{xn ∈ RD : n ∈ [N ]}} where N ≥ 2, and the
multivariate polynomial p

(
t; z,Φ(X)

)
in the equation (3), we have

separators ◦ p
(
t; z,Φ(X)

)
̸= ∅.

Moreover, for any z∗ ∈ separators ◦ p
(
t; z,Φ(X)

)
, the directional derivative of sort ◦ roots ◦

p
(
t; z,Φ(X)

)
is well-defined and we have:

∀d ∈ [D] : ∇edsort ◦ root ◦ p
(
t; z,Φ(X)|z=z∗ = (e⊤d xπz∗ (n))n∈[N ],

where ed ∈ RD is the d-th standard basis vector for RD (d ∈ [D]), and πz∗ : [N ] → [N ] is a
permutation operator that sorts the elements z∗⊤X — see Definition 7.

In summary, given Φ(X) ∈ R(
N+D

D )−1, we can construct a multivariate polynomial p
(
t; z,Φ(X)

)
with parameterized roots z⊤X; see Proposition 5. Then, we can pick a fixed vector z∗ ∈ separators◦
p
(
t; z,Φ(X)

)
̸= ∅; see Definition 8 and Proposition 6. We then prove the following result:

∀d ∈ [D] : ∇edsort ◦ root ◦ p
(
t; z,Φ(X)|z=z∗ = (e⊤d xπz∗ (n))n∈[N ],

where ∇ed computes the directional derivative (see Definition 9) in the direction of ed — the d-th
standard basis of RD — for d ∈ [D], and xn ∈ RD is an element of X indexed by n. We retrieve X
as follows:

{{(e⊤d xπz∗ (n))d∈[D] ∈ RD : n ∈ [N ]}} = {{(e⊤d xn)d∈[D] ∈ RD : n ∈ [N ]}}
= X.

This result does not depend on the specific choices for the permutation operator πz∗ and z∗ ∈
separators ◦ p

(
t; z,Φ(X)

)
. Therefore, Φ is an invertible multiset function, that is,

Φ−1 ◦ Φ(X) = {{


(
∇e1sort ◦ root ◦ p

(
t; z,Φ(X)|z=z∗

)
n

...(
∇eDsort ◦ root ◦ p

(
t; z,Φ(X)|z=z∗

)
n

 ∈ RD : n ∈ [N ]}}, (5)
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where z∗ ∈ separators ◦ p
(
t; z,Φ(X)

)
, and subscript n denotes the n-the element of the N -

dimensional vectors. The function Φ−1 is only well-defined on codom(Φ); see equation (5).
Now we let ρ : codom(Φ) → codom(f) where

∀y ∈ codom(Φ) ⊆ R(
N+D

D )−1 : ρ(y) = f ◦ Φ−1(y).

This proves the sum-decomposition representation claim of the theorem, that is, f = ρ ◦ Φ. In
Appendices A.2 and A.3 we provide proofs of Propositions 5 and 6. In Appendix A.4, we provide
two illustrative examples on computing Φ−1.

A.2. Proof of Proposition 5

We expand the expression in equation (3) as follows:

∀t ∈ R, z ∈ RD :
∏
x∈X

(t− z⊤x) = tN +
∑
n∈[N ]

(−1)nan(z;X)tN−n (6)

where each coefficient an(z;X) is determined using the Newton-Girard formulae (Séroul, 2012),
that is,

an(z;X) =
1

n
det


E1(z;X) 1 0 · · · 0
E2(z;X) E1(z;X) 1 · · · 0

...
...

... · · ·
...

En(z;X) En−1(z;X) En−2(z;X) · · · E1(z;X)

 (7)

for all n ∈ [N ] and z ∈ RD, and En(z;X) =
∑

x∈X(z⊤x)n. Therefore, each coefficient an(z;X)
is a polynomial function of {En(z;X)}Nn=1 — moments of the parameterized multiset {{z⊤x : x ∈
X}} def

= z⊤X . Lemma 2 lets us relate each moment to the elementary symmetric polynomials.

Lemma 2 For any k1, · · · , kD ∈ N ∪ {0} and n ∈ N, let(
n

k1, . . . , kD

)ind

=

{
n!

k1!···kD! if k1 + · · ·+ kD = n

0 otherwise.

Let x, z ∈ RD and n ∈ [N ]. Then, we have (z⊤x)n = ⟨ψ(z, n), ϕ(x)⟩ such that

ψ(z, n) =
(( n

k1, . . . , kD

)ind D∏
d=1

zkdd

)
k∈KD

N

, ϕ(x) =
( D∏
d=1

xkdd
)
k∈KD

N
∈ R(

N+D
D )−1, (8)

where k = (kd)d∈[D] and KD
N = {(kd)d∈[D] : k1 + . . .+ kD ∈ [N ], k1, . . . , kD ≥ 0}.

Proof Let x, z ∈ RD and n ∈ [N ]. Then, we have

(z⊤x)n = (
∑
d∈[D]

zdxd)
n =

∑
k1+...+kD=n

(
n

k1, . . . , kD

) D∏
d=1

zkdd

D∏
d=1

xkdd = ⟨ψ(z, n), ϕ(x)⟩
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where ϕ(x) and ψ(z, n) are given in equation (8). Since the dimension of ϕ(x) — the size of KD
N —

is equivalent to the number of solutions to the following problem:

k1, . . . , kD ∈ N ∪ {0} : 1 ≤
D∑

d=1

kd ≤ N. (9)

We can transform the problem in equation (9) to the following form:

k1, . . . , kD, k◦ ∈ N ∪ {0}, k◦ ̸= N :
D∑

d=1

kd + k◦ = N. (10)

In the occupancy problem, we ask: how many ways can one distribute N indistinguishable objects
into D + 1 distinguishable bins? The number of nonnegative solutions are

(
N+D
D

)
; refer to (Feller,

1967), section 5. However, if k◦ = N , then k1 = k2 = · · · = kD = 0 which is not allowed. If we
exclude this case, we arrive at

(
N+D
D

)
− 1 integer solutions for problems in equations (9) and (10)

Let us now prove the proposition’s statement. Given Φ(X) =
∑

x∈X ϕ(x), we compute

∀z ∈ RD, n ∈ [N ] : En(z;X) =
∑
x∈X

⟨z, x⟩n =
∑
x∈X

⟨ψ(z, n), ϕ(x)⟩ = ⟨ψ(z, n),Φ(X)⟩,

that are, all parameterized moments required to construct
∏

x∈X(t− x⊤z) — refer to Lemma 2, and
equation (7). Therefore, we can uniquely identify the polynomial in equation (3) with only Φ(X).

A.3. Proof of Proposition 6

Proposition 7 For any z ∈ RD, multiset X = {{xn ∈ RD : n ∈ [N ]}} where N ≥ 2, and the
multivariate polynomial p

(
t; z,Φ(X)

)
in the equation (3), we have

separators ◦ p
(
t; z,Φ(X)

)
̸= ∅.

Moreover, for any z∗ ∈ separators ◦ p
(
t; z,Φ(X)

)
, the directional derivative of sort ◦ roots ◦

p
(
t; z,Φ(X)

)
is well-defined and we have:

∀d ∈ [D] : ∇edsort ◦ root ◦ p
(
t; z,Φ(X)|z=z∗ = (e⊤d xπz∗ (n))n∈[N ],

where ed ∈ RD is the d-th standard basis vector for RD (d ∈ [D]), and πz∗ : [N ] → [N ] is a
permutation operator that sorts the elements z∗⊤X — see Definition 7.

For any z ∈ RD and multiset X = {{xn ∈ RD : n ∈ [N ]}} where N ≥ 2, we have

sort ◦ root ◦ p(t; z,X) = (z⊤xπz(n))n∈[N ] ∈ RN

where πz : [N ] → [N ] is a permutation operator such that z⊤xπz(1) ≥ z⊤xπz(2) ≥ · · · ≥ z⊤xπz(N);
see Definition 7. Given such an ordered list, we want to retrieve the multiset X . If the order of
the elements of X after sorting remains unchanged for a perturbed parameter z + δed — where
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ed ∈ RD is the d-th standard basis for RD and small enough δ ∈ R, that is, xπz+δed
(n) = xπz(n) for

all n ∈ [N ] and d ∈ [D] — then we have the following equality:

1

δ

(
sort((z + δed)

⊤X)− sort(z⊤X)
)
=

1

δ

(
(z + δed)

⊤xπz+δed
(n) − z⊤xπz(n)

)
n∈[N ]

(a)
=

1

δ

(
z⊤xπz(n) + δe⊤d xπz(n) − z⊤xπz(n)

)
n∈[N ]

=
1

δ
(δe⊤d xπz(n))n∈[N ] = (e⊤d xπz(n))n∈[N ],

where (a) is due to our assumption xπz+δed
(n) = xπz(n) for all n ∈ [N ] and d ∈ [D]. If this property

holds true, we can compute the following limit:

lim
δ→

1

δ

(
sort ◦ root ◦ p(t; z + δed, X)− sort ◦ root ◦ p(t; z,X)

)
(11)

= lim
δ→

1

δ

(
sort((z + δed)

⊤X)− sort(z⊤X)
)
,

to retrieve the d-component of the elements in X up to a fixed but unknown permutation πz that
does not depend on ed — that is, (e⊤d xπz(n))n∈[N ] — for all d ∈ [D]. The limit in equation (11)
is well-defined and returns (e⊤d xπz(n))n∈[N ] if there exists a vector z ∈ RD such that it admits a
solution for the following feasibility problem:

find δ∗ > 0 such that xπz+δed
(n) = xπz(n), for all n ∈ [N ], d ∈ [D], δ ≤ δ∗.

As we shall see, any vector z∗ ∈ separators ◦ p
(
t; z,Φ(X)

)
admits a solution to the aforementioned

problem. To prove this result, we first need to derive the following property for the separators.

Lemma 3 For any z ∈ RD, multiset X of at least two D-dimensional vectors, and the multivariate
polynomial p

(
t; z,Φ(X)

)
in the equation (3), we have separators ◦ p

(
t; z,Φ(X)

)
is a nonempty

subset of RD and for all z∗ ∈ separators ◦ p
(
t; z,Φ(X)

)
, we have

|unique ◦ roots ◦ p
(
t; z∗,Φ(X)

)
= maxz∈RD |unique ◦ roots ◦ p

(
t; z,Φ(X)

)
= |unique(X)|.

Proof If |unique(X)| = 1, then separators ◦ p
(
t; z,Φ(X)

)
= RD and the statement is trivial.

Therefore, in what follows, we assume |unique(X)| > 1.
LetX be a multiset of (at least two distinct)D-dimensional vectors and roots◦p

(
t; z,Φ(X) = z⊤X ,

for all z ∈ RD. If x, x′ ∈ X where x ̸= x′, then we have z⊤x = z⊤x′ for z ∈ (x − x′)⊥ ⊂ RD.
Therefore, we have

∀z ∈ RD : |unique(z⊤X)| ≤ |unique(X)|.

We can prove the claim if we show |unique(z⊤X)| achieves its upper bound |unique(X)| over a
subset of RD — namely, separators ◦ p

(
t; z,Φ(X)

)
.

Let Px,x′ = (x− x′)⊥ for distinct x, x′ ∈ unique(X) — that is, x ̸= x′. By construction, Px,x′ is a
(D − 1)-dimensional subspace since x ̸= x′. Since unique(X) contains only distinct elements, we
have

∀z ∈ Px,x′ ⇐⇒ ⟨z, x− x′⟩ = 0,
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for all distinct x, x′ ∈ unique(X). We now construct the following set:

PX =
⋃

x,x′∈unique(X)

x ̸=x′

Px,x′ ,

which is a finite union of (D − 1)-dimensional subspaces. Therefore, PX can not be equal to RD,
that is, RD \ PX is a nonempty set. For any z∗ ∈ RD \ PX , we have

∀x, x′ ∈ X,x ̸= x′ : ⟨z∗, x− x′⟩ = z∗⊤x− z∗⊤x′ ̸= 0

∀x, x′ ∈ X,x = x′ : ⟨z∗, x− x′⟩ = z∗⊤x− z∗⊤x′ = 0.

Hence, we have |unique(z∗⊤X)| = |unique(X)| for all z∗ ∈ separators ◦ p
(
t; z,Φ(X)

)
where

separators ◦ p
(
t; z,Φ(X)

)
= RD \ PX — a nonempty subset of RD.

As a result of Lemma 3, we have

∀z∗ ∈ separators ◦ p
(
t; z,Φ(X)

)
: |unique(z∗⊤X)| = |unique(X)|,

that is, repeated (or distinct) elements in z∗⊤X correspond to identical (or distinct) elements in X .
We now want to show that the following directional derivative is well-defined:

∇vsort
(
z⊤X

)
|z=z∗ = lim

δ→0

1

δ

(
sort

(
(z∗ + δv)⊤X

)
− sort

(
z∗⊤X

))
for all z∗ ∈ separators ◦ p

(
t; z,Φ(X)

)
and unit norm vector v ∈ RD.

We break down the rest of the proof in two cases.
Case 1: |unique(X)| > 1.
Limiting behavior of (z∗ + δv)⊤X as δ → 0.
Let x, x′ be two distinct elements in unique(X), that is, ∥x − x′∥2 > 0. If z∗ ∈ separators ◦
p
(
t; z,Φ(X)

)
, then we have |z∗⊤x − z∗⊤x′| = ε > 0; see Lemma 3. Let z∗v(δ) = z∗ + δv

where v ∈ RD is a unit norm vector and ε = gap(z∗⊤X) > 0 — which is well-defined since
|unique(X)| > 1. Then, we have

∀ distinct x, x′ ∈ unique(X), δ <
ε

2diam(X)
:∥z∗v(δ)⊤(x− x′)∥2 = ∥(z∗ + δv)⊤(x− x′)∥2

(a)
≥ ∥z∗⊤(x− x′)∥2 − δ∥v⊤(x− x′)∥2
(b)
> ε− ε

2diam(X)
∥x− x′∥2

(c)
≥ ε− ε

2
=
ε

2
> 0,

where (a) is due to the triangle inequality, (b) is due to |z∗⊤x− z∗⊤x′| = ε and δ < ε
2diam(X) , and

(c) is due to ∥x − x′∥2 ≤ diam(X). Therefore, the vector z∗v(δ) separates distinct elements of X
in z∗v(δ)

⊤X — for all unit norm vectors v ∈ RD and δ < ε
2diam(X) . On the other hand, if x, x′ are

two identical elements in X , then we have z∗v(δ)
⊤x = z∗v(δ)

⊤x′ — that is, the repeated elements
in X correspond to the repeated elements in z∗v(δ)

⊤X . Therefore, we have |unique(z∗v(δ)⊤X)| =
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|unique(X)|, or equivalently z∗v(δ)
⊤ ∈ separators ◦ p(t; z,X).

Directional derivative of sort ◦ root ◦ p(t; z,X) at z = z∗.
Let z∗ ∈ separators ◦ p

(
t; z,Φ(X)

)
. Then, we have

sort ◦ root ◦ p(t; z∗, X) =
(
z∗⊤xπz∗ (n)

)
n∈[N ]

∈ RN ,

where πz∗ : [N ] → [N ] is a permutation operator such that z∗⊤xπz∗ (1) ≥ z∗⊤xπz∗ (2) ≥ · · · ≥
z∗⊤xπz∗ (N). The repeated elements in X do not change the value of the output of the sort function as
they correspond to the repeated elements in z∗⊤X . In other words, πz∗ is not necessarily unique; but
our results do not depend on the specific choice of the permutation operator. The minimum distance
between distinct elements of z∗⊤X is ε = gap(z∗⊤X) > 0. If z∗v(δ) is the perturbed version of z∗

in direction of v such that ∥z∗ − z∗v(δ)∥2 = δ < ε
2diam(X) , then z∗v(δ) ∈ separators ◦ p(t; z,X) —

see our discussion in the previous paragraph.

Claim 1 The following equality holds true:

∀n ∈ [N ] : xπz∗v(δ)(n)
= xπz∗ (n),

for any unit norm vector v ∈ RD and δ < ε
2diam(X) , and any permutation operator πz∗v(δ) : [N ] →

[N ] such that z∗v(δ)
⊤xπz∗v(δ)(1)

≥ z∗v(δ)
⊤xπz∗v(δ)(2)

≥ · · · ≥ z∗v(δ)
⊤xπz∗v(δ)(N).

Proof Consider i, j ∈ [N ] where i > j. If xπz∗ (j) = xπz∗ (i), then we have z∗v(δ)
⊤xπz∗ (j) ≥

z∗v(δ)
⊤xπz∗ (i) — as both terms are equal to each other. On the other hand, if xπz∗ (j) ̸= xπz∗ (i), then

we have

z∗v(δ)
⊤xπz∗ (j) − z∗v(δ)

⊤xπz∗ (i) = (z∗ + δv)⊤(xπz∗ (j) − xπz∗ (i))

(a)
≥ z∗⊤(xπz∗ (j) − xπz∗ (i))− δ∥xπz∗ (j) − xπz∗ (i)∥2
(b)
≥ ε− δdiam(X) > ε− ε

2
=
ε

2
> 0,

where (a) is due to Cauchy–Schwarz inequality, and (b) is due to ∥xπz∗ (j) − xπz∗ (i)∥2 ≤ diam(X)

and δ < ε
2diam(X) . Therefore, the permutation πz∗ also sorts the elements of z∗v(δ)

⊤X , that is,
xπz∗v(δ)(n)

= xπz∗ (n), for all n ∈ [N ].

Finally, for all d ∈ [D], we have

∇edsort ◦ root ◦ p
(
t; z,Φ(X)|z=z∗

(a)
= lim

δ→0

1

δ

(
sort((z∗ + δed)

⊤X)− sort(z∗⊤X)
)

(b)
= lim

δ→0

1

δ

(
(z∗ + δed)

⊤xπz∗+δed
(n) − z∗⊤xπz∗ (n)

)
n∈[N ]

(c)
= lim

δ→0

1

δ

(
(z∗ + δed)

⊤xπz∗ (n) − z∗⊤xπz∗ (n)

)
n∈[N ]

= lim
δ→0

1

δ
(δe⊤d xπz∗ (n))n∈[N ] = (e⊤d xπz∗ (n))n∈[N ].
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where (a) is due to the definition of the directional derivation, (b) follows from the definition of
permutation operator in sort function, and (c) follows from Claim 1.
Case 2: |unique(X)| = 1.
This directional derivative is well-defined if |unique(X)| = 1, that is,

∇vsort
(
z⊤X

)
|z=z∗ = lim

δ→0

1

δ

(
sort

(
(z∗ + δv)⊤X

)
− sort

(
z∗⊤X

))
= lim

δ→0

1

δ

((
(z∗ + δv)⊤xπ1(n)

)
n∈[N ]

−
(
z∗⊤xπ2(n)

)
n∈[N ]

)
= v⊤x1,

where π1, π2 : [N ] → [N ] are two permutation operators, and X = {{xn : n ∈ [N ]}} and xn = x
for all n ∈ [N ], and 1 ∈ RN is the vector of all ones. Therefore, for all z∗ ∈ separators ◦
p
(
t; z,Φ(X)

)
= RD. And we have

∀d ∈ [D] : ∇edsort ◦ root ◦ p
(
t; z,Φ(X)|z=z∗ = e⊤d x1.

This readily proves the proposition’s statement.

A.4. Two Illustrative examples

[Repeated Roots] Let N = D = 2, and Φ(X) =
(
2 0 2 0 0

)⊤ ∈ R(
N+D

D )−1 = R5 for a
multiset X . The goal is to recover X . In the proof of Proposition 5, Lemma 2 relates parameterized
moments of the multivariate polynomial p(t; z,Φ(X)) to Φ(X) using the following functions:

∀z = (z1, z2)
⊤ ∈ R2 : ψ(z, 1) =

(
z1 z2 0 0 0

)⊤
, ψ(z, 2) =

(
0 0 z21 2z1z2 z22

)⊤
.

SinceEn(z,X) = ⟨ψ(z, n),Φ(X)⟩, for n ∈ [2], then we haveE1(z,X) = 2z1 andE2(z,X) = 2z21 .
We now can use Girard’s formula (see equation (7)):

a1(z;X) = E1(z,X), a2(z;X) =
1

2
det

(
E1(z,X) 1
E2(z,X) E1(z,X),

)
.

to compute the coefficients of the multivariate polynomial as a1(z;X) = 2z1 and a2(z;X) = z21 .
We arrive at the following multivariate polynomial:

p
(
t; z,Φ(X)) = t2 − a1(z;X)t+ a2(z;X) = t2 − 2z1t+ z21 = (t− z1)

2,

and roots ◦ p
(
t; z,Φ(X) = z⊤X = {{z1, z1}}, for all z ∈ R2. Since unique(z⊤X) = 1 —

∀z ∈ R2 —- then we have separators ◦ p
(
t; z,Φ(X) = R2. Let z∗ = (1, 1)⊤ ∈ R2 be a separator

vector. Therefore, we have sort(z⊤X)|z=z∗ = (1, 1)⊤. We also have

sort(z + δe1)
⊤X|z=z∗ = (1 + δ, 1 + δ)⊤, sort(z + δe2)

⊤X|z=z∗ = (1, 1)⊤.

for all δ > 0. These quantities let us compute the directional derivatives in Proposition 6 as follows:

(e⊤1 xπz∗ (n))n∈[2] = (1, 1)⊤, (e⊤2 xπz∗ (n))n∈[2] = (0, 0)⊤,

see equation (4). Finally, we arrive at X = Φ−1 ◦ Φ(X) = {{(1, 0), (1, 0)}}. [Unique Roots] Let
N = D = 2, and

Φ(X) =
(
−2 1 10 −7 5

)⊤ ∈ R(
N+D

D )−1 = R5
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for a multiset X . The goal is to recover X . Since En(z,X) = ⟨ψ(z, n),Φ(X)⟩, for n ∈ [2], then
we have E1(z,X) = −2z1 + z2 and E2(z,X) = 10z21 − 14z1z2 + 5z22 . We now can use Girard’s
formula; see Lemma 2 and equation (7)):

a1(z;X) = E1(z,X), a2(z;X) =
1

2
det

(
E1(z,X) 1
E2(z,X) E1(z,X),

)
.

to compute the coefficients of the multivariate polynomial as a1(z;X) = −2z1+ z2 and a2(z;X) =
−3z21 − 2z22 + 5z1z2. We then have the following multivariate polynomial:

p
(
t; z,Φ(X) = t2 + (2z1 − z2)t− 3z21 − 2z22 + 5z1z2.

To compute the roots of p
(
t; z,Φ(X), we use the quadratic formula. The discriminant is given as

follows:

∆(z,X) = a1(z;X)2 − 4a2(z;X) = 16z21 + 9z22 − 24z1z2 = (4z1 − 3z2)
2.

The parametric roots are r1(z,X) = 1
2(−a1(z;X) +

√
∆(z,X)) = z1 − z2 and r1(z,X) =

1
2(−a1(z;X)−

√
∆(z,X)) = −3z1+2z2, that is, roots◦p

(
t; z,Φ(X) = z⊤X = {{z1−z2,−3z1+

2z2}}, for all z ∈ R2. Since unique(z⊤X) = 2 — ∀z ∈ R2 \ {z ∈ R2 : z1 − z2 = −3z1 + 2z2}
—- then we have separators ◦ p

(
t; z,Φ(X) = {z ∈ R2 : z1 ̸= 3

4z2}. Let z∗ = (1, 1)⊤ ∈ R2 be a
separator vector. Therefore, we have sort(z⊤X)|z=z∗ = (0,−1)⊤.

sort(z + δe1)
⊤X|z=z∗ = (δ,−1− 3δ)⊤, sort(z + δe2)

⊤X|z=z∗ = (−δ,−1 + 2δ)⊤.

for all 0 < δ < 1
3 . Now we can compute the directional derivatives in Proposition 6 as follows:

(e⊤1 xπz∗ (n))n∈[2] = (1,−3)⊤, (e⊤2 xπz∗ (n))n∈[2] = (−1, 2)⊤,

see equation (4). Finally, we arrive at X = Φ−1 ◦ Φ(X) = {{(1,−1), (−3, 2)}}.
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Appendix B. Proof of Theorem 3

The function f : XD,N → codom(f) is continuous over its domain, that is, ρ ◦ Φ is continuous over
XD,N , and we have ρ = f ◦ Φ−1; see Theorem 8 and its proof for the definition of Φ and its inverse.
Before proceeding with the proof, let us introduce the following set.

Definition 10 For any mutiset function Φ, we let Φ(XD,N )
def
= {Φ(X) : X ∈ XD,N}.

With the notation in Definition 10, ρ = f ◦ Φ−1 is a map from Φ(XD,N ) to codom(f). Using
Lemmas 4 and 5 and Fact 1, we show first that Φ(XD,N ) is a compact set.

Lemma 4 Φ : XD,N → Φ(XD,N ) is a continuous and injective function.

Lemma 5 XD,N is a compact set.

Fact 1 (Pugh and Pugh 2002) The image of a compact set under continuous map is a compact set.

In Proposition 8, we prove that Φ−1 is a continuous function over the compact set Φ(XD,N ).

Proposition 8 The function Φ−1 is continuous on the compact set Φ(XD,N ).

As a direct result of Proposition 8, ρ = f ◦ Φ−1 is a continuous function on the compact subset
Φ(XD,N ) ⊂ R(

N+D
D )−1.

Fact 2 Since Φ(XD,N ) is a compact subset of R(
N+D

D )−1, the continuous function ρ : Φ(XD,N ) →
codom(f) has a continuous extension to R(

N+D
D )−1, that is, there exists a continuous function

ρe : R(
N+D

D )−1 → codom(ρe) where

∀u ∈ Φ(XD,N ) : ρe(u) = ρ(u),

and codom(f) ⊆ codom(ρe). To see the continuous extension theorem, refer to (Deimling, 2010).

From Fact 2, there exists a continuous function ρe : R(
N+D

D )−1 → codom(ρe) where f(X) =
ρe ◦ Φ(X) for all X ∈ XD,N . Finally, if we rename ρe to ρ, we arrive at the theorem’s statement.

B.1. Proof of Lemma 4

As a direct result of Theorem 8, Φ is an injective function as it is invertible over its domain. The
continuity of Φ follows from the continuity of ϕ — see Lemma 6.

Lemma 6 Let ϕ : D → codom(ϕ) ⊂ RK be a continuous function on metric space (D, d) and
Φ : XD,N → codom(Φ) ⊂ RK , Φ(X) =

∑
x∈X ϕ(x) for K,N ∈ N. Then, Φ is a continuous

multiset function on XD,N . The same result is also valid on domain XD,[N ].

Proof We use the following the notion of distance between multisets with elements in D:

dM (X,X ′) =

{
minπ∈Π(N◦)

√∑
n∈[N◦]

d(xn, x′π(n))
2 if |X| = |X ′| = N◦

∞ otherwise,
(12)
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where N◦ ∈ [N ], | · | returns the cardinality of its input multiset, Π(N◦) is the set of permutation
operators on [N◦], X = {{xn : n ∈ [|X|]}}, and X ′ = {{x′n : n ∈ [|X ′|]}}.

Following the definition of continuity, for any ε > 0, we want to find a δ(ε) such that if
dM (X,X ′) < δ(ε), then ∥Φ(X)− Φ(X ′)∥2 < ε.

For any δ > 0 and X ∈ XD,[N ], let X ′ ∈ XD,[N ] be such that dM (X,X ′) < δ, that is, both
multisets have the same size of |X| = |X ′| = N◦ ∈ [N ] and there is a permutation operator
π : [N◦] → [N◦] such that dM (X,X ′) =

√∑
n∈[N◦]

d(xn, x′π(n))
2 < δ. It suffices to show the

following:

∥Φ(X)− Φ(X ′)∥2 = ∥
∑
x∈X

ϕ(x)−
∑
x′∈X′

ϕ(x′)∥2
(a)
≤

∑
n∈[N◦]

∥ϕ(xn)− ϕ(x′π(n))∥2

(b)
≤

∑
n∈[N◦]

max
v∈RD:∥v∥2<δ

∥ϕ(xn)− ϕ(xn + v)∥2 < ε,

where (a) is due to the triangle inequality, (b) is due to ∥xn − x′π(n)∥2 ≤ δ, for all n ∈ [N◦].
It suffices to show that for any ε > 0, there exits a δ(ε) such that

∀n ∈ [N ], v ∈ RD, ∥v∥2 < δ(ε) : ∥ϕ(xn)− ϕ(xn + v)∥2 < N−1ε < N−1
◦ ε.

Since ϕ is a continuous function, there exists a δϕ(xn, N−1ε) > 0 such that

∀v ∈ RD, ∥v∥2 < δ◦(xn, N
−1ε) : ∥ϕ(xn)− ϕ(xn + v)∥2 < N−1ε.

If we let δ(ε) = minn∈[N◦] δϕ(xn, N
−1ε) > 0, then we have ∥Φ(X)− Φ(X ′)∥2 ≤ ε. Therefore, Φ

is a continuous function. The same result is also valid on domain XD,N .

B.2. Proof of Lemma 5

Let OC(S) be the set of all open covers of a topological space S.

Fact 3 (Engelking 1989) A topological space S is compact if any open cover of S has a finite
subcover.

Definition 11 We define the following maps between subsets of XD,N and D ⊆ RD.

• Let U ⊆ DN and T = [x1, . . . , xN ] ∈ U. Then, we let set(T ) def
= {{xn : n ∈ [N ]}} ∈ XD,N

and set(U) def
= {set(T ) : T ∈ U} ⊆ XD,N

• Let V ⊆ XD,N and X = {{xn : n ∈ [N ]}} ∈ V. Then, we let

mat(X)
def
= {[xπ(1), . . . , xπ(N)] : π ∈ Π(N)} ⊆ RD

and mat(V) def
=

⋃
X∈Vmat(X) ⊆ RD,

where Π(N) is the set of permutation operators π : [N ] → [N ] for N ∈ N.

30



PERMUTATION-INVARIANCE ON IDENTIFIABLE TENSORS

Given a matrix, the function set maps it to a multiset. In contrast, the function mat creates all
possible matrices by rearranging elements of its input multiset.

Claim 2 If {Vλ : λ ∈ Λ} ∈ OC(XD,N ), then {mat(Vλ) : λ ∈ Λ} ∈ OC(DN ).

Claim 3 If {Uλ : λ ∈ Λ} ∈ OC(DN ), then {set(Uλ) : λ ∈ Λ} ∈ OC(XD,N )

Let {Vλ : λ ∈ Λ} be an open cover for XD,N . From Claim 2, {mat(Vλ) : λ ∈ Λ} is an open
cover for DN — a closed and bounded subset of RD. Therefore, there is a finite subsequence
{mat(Vλk

) : k ∈ [K]} that forms an open cover for DN . From Claim 3, {set ◦mat(Vλk
) : k ∈

[K]} = {Vλk
: k ∈ [K]}, is a finite open cover for XD,N . Therefore, XD,N is a compact set.

Proof of Claim 2 To prove {mat(Vλ) : λ ∈ Λ} is an open cover for DN , we first show that for all
T ∈ DN ⊆ RN×D, we have T ∈ mat(Vλ) for a λ ∈ Λ.
Let T = [x1, . . . , xN ] ∈ DN . Then, we have set(T ) = {{xn : n ∈ [N ]}} ∈ Vλ ⊆ XD,N for a
λ ∈ Λ. Since the following holds true:

∀π ∈ Π(N) : [xπ(1), . . . , xπ(N)] ∈ mat(Vλ),

then, we have T ∈ mat(Vλ). Therefore, {mat(Vλ) : λ ∈ Λ} forms a cover for DN .
Next, we prove that mat(Vλ) is an open set. Let T = [x1, . . . , xN ] ∈ mat(Vλ), ε > 0, and

N (T, ε) = {T ′ ∈ RN×D : ∥T − T ′∥F ≤ ε}. We want to show that for small enough ε > 0,
N (T, ε) ⊆ mat(Vλ).

For all T ′ = [x′1, . . . , x
′
N ] ∈ N (T, ε), we have

dM (X,X ′) = min
π∈Π(N)

√ ∑
n∈[N ]

∥xn − x′π(n)∥
2
2 ≤ ∥T − T ′∥F ≤ ε, where X ′ = {{x′n : n ∈ [N ]}}.

Since Vλ is an open set, for any X ∈ Vλ, there exists ε > 0 such that X ′ ∈ Vλ where dM (X,X ′) <
ε. Therefore, we have T ′ ∈ mat(Vλ). Since this is the case for all T ′ ∈ N (T, ε), we have
N (T, ε) ⊆ mat(Vλ), that is, mat(Vλ) is an open set.

Proof of Claim 3 To prove {set(Uλ) : λ ∈ Λ} is an open cover for XD,N , we first show that for
all X ∈ XD,N , we have X ∈ set(Uλ) for a λ ∈ Λ.

Let X = {{xn : n ∈ [N ]}} ∈ XD,N . Since Tπ = [xπ(1), . . . , xπ(N)] ∈ DN — for all π ∈ Π(N)
— we have Tπ ∈ Uλ for a λ ∈ Λ. Therefore, we have set(Tπ) = {{xπ(n) : n ∈ [N ]}} = X ∈
set(Uλ). This proves that {set(Uλ) : λ ∈ Λ} is a cover for XD,N .

We now prove that set(Uλ) is an open set. Let X = {{xn : n ∈ [N ]}} ∈ set(Uλ), ε > 0,
N (X, ε) = {X ′ ∈ XRD,N : dM (X,X ′) ≤ ε}, and T = [x1, . . . , xN ]. We want to show that for
small enough ε > 0, N (X, ε) ⊆ set(Uλ).

For all X ′ = {{x′n : n ∈ [N ]}} ∈ N (X, ε), we have

∥T − T ′
π∥F = dM (X,X ′) ≤ ε where T ′

π = [x′π(1), . . . , x
′
π(N)],

for a permutation operator π : [N ] → [N ] that best match elements of X and X ′. Since Uλ is an
open subset, there exists ε > 0 such that Tπ ∈ Uλ. Therefore, we have X ′ = set(T ′

π) ∈ set(Uλ).
Since this is the case for all X ′ ∈ N (X, ε), we have N (X, ε) ⊆ set(Uλ), that is, set(Uλ) is an open
set.
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B.3. Proof of Proposition 8

By definition of continuity, we want to show that, for any ε > 0 and X ∈ XD,N , there exists
δf (ε) > 0 such that

∀X ′ ∈ XD,N , ∥Φ(X)− Φ(X ′)∥2 < δf (ε) : dM (Φ−1 ◦ Φ(X)− Φ−1 ◦ Φ(X ′)) < ε

: dM (X,X ′) < ε,

where dM is given in equation (12). We use the result in Lemma 7 to establish the continuity of Φ−1

over Φ(XD,N ).

Lemma 7 Let X ∈ XD,N . The parameterized multiset that consists of the root of the polynomial
p
(
t; z,Φ(X)) in equation (3) (that is, z⊤X) varies continuously with Φ(X). More precisely, for all

ε > 0, there exists δ(ε) > 0 such that

∀X ′ ∈ XD,N , ∥Φ(X)− Φ(X ′)∥2 < δ(ε) : max
z∈RD:∥z∥2=1

dM (z⊤X, z⊤X ′) < ε.

Let ε > 0, X = {{xn : n ∈ [N ]}} and X ′ = {{x]′n : n ∈ [N ]}} ∈ XD,N . From Lemma 7, if
∥Φ(X)− Φ(X ′)∥2 < δ(ε), then we have

∀z ∈ RD, ∥z∥2 = 1 : dM (z⊤X, z⊤X ′) =

√ ∑
n∈[N ]

|z⊤xn − z⊤x′π∗(n)|2 < ε

for a permutation operator π∗ : [N ] → [N ]. Then, we have

∀z ∈ RD, ∥z∥2 = 1, n ∈ [N ] : |z⊤xn − z⊤x′π∗(n)|
2 < ε.

If xn−x′π∗(n) ̸= 0 and z = ∥xn−x′π∗(n)∥
−1
2 (xn−x′π∗(n)), then we have arrive at ∥xn−x′π∗(n)∥2 < ε,

where n ∈ [N ]. If xn − x′π∗(n) = 0, then ∥xn − x′π∗(n)∥2 < ε is trivially the case. Therefore, we
have

dM (X,X ′) = min
π∈Π(N)

√ ∑
n∈[N ]

∥xn − x′π(n)∥
2
2 ≤

√
Nε,

where Π(N) is the set of permutation operators on [N ]. Finally, we establish the continuity of Φ−1

on Φ(XD,N ) by letting δf (ε) = δ( ε√
N
), that is,

∀X ′ ∈ XD,N , ∥Φ(X)− Φ(X ′)∥2 < δf (ε) : max
z∈RD:∥z∥2=1

dM (z⊤X, z⊤X ′) <
ε√
N

: dM (X,X ′) < ε.

Proof of Lemma 7. We construct the the polynomial p
(
t; z,Φ(X)) in equation (3), that is,

∀t ∈ R, z ∈ RD : p
(
t; z,Φ(X)) = tN +

∑
n∈[N ]

(−1)nan(z;X)tN−n

by first computing the following parameterized moments:

∀n ∈ [N ], z ∈ RD : En(z,X) = ⟨ψ(z, n),Φ(X)⟩.
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Fact 4 For a fixed z ∈ RD and n ∈ [N ], En(z,X) is a linear function of Φ(X). Furthermore,
En(z,X) is a continuous functions of (z,Φ(X)).

The coefficients of p
(
t; z,Φ(X)) are polynomial functions of the moments

(
En(z,X)

)
n∈[N ]

; see
the Newton-Girard equation (7).

Fact 5 The coefficients of the polynomial p
(
t; z,Φ(X)) in equation (3) vary continuously with the

moments
(
En(z,X)

)
n∈[N ]

.

Therefore, the coefficients of the polynomial p
(
t; z,Φ(X)) in equation (3) vary continuously with

(z,Φ(X)); see Facts 4 and 5.

Theorem 9 (Ćurgus and Mascioni, 2006) The function f : CN → CN , which associates every
a = (an)n∈[N ] ∈ CN to the multiset of roots, f(a) ∈ CN , of the monic polynomial formed using a
as the coefficient, i.e., tN + a1t

N−1 + · · ·+ (−1)N−1aN−1x+ (−1)NaN , is a homeomorphism.

From Theorem 9, Facts 4, and 5, the parameterized root multiset of p
(
t; z,Φ(X)) (that is, z⊤X)

vary continuously with (z,Φ(X)). Therefore, for all X ∈ XD,N , z ∈ RD and ε > 0, there exists
δ(ε, z) > 0 such

∀X ′ ∈ XD,N , ∥Φ(X)− Φ(X ′)∥2 < δ(ε, z) : dM (z⊤X, z⊤X ′) < ε.

We may fix the norm of the vector z to one, since by definition of dM in equation (12), we have

∀α ∈ R : dM ((αz)⊤X, (αz)⊤X ′) = |α|dM (z⊤X, z⊤X ′.

After this normalization, for all ε > 0, we have

∀X ′ ∈ XD,N , z ∈ RD, ∥z∥2 = 1, ∥Φ(X)− Φ(X ′)∥2 < δ(ε, z) : dM (z⊤X, z⊤X ′) < ε.

Let z∗ ∈ argmaxz∈RD:∥z∥2=1dM (z⊤X, z⊤X ′). Then, we have

∀X ′ ∈ XD,N , ∥Φ(X)− Φ(X ′)∥2 < δ(ε, z∗) : maxz∈RD:∥z∥2=1dM (z⊤X, z⊤X ′) < ε,

which proves the statement if z∗ exists. Therefore, we need to prove the existence of z∗.
The set {z ∈ RD : ∥z∥2 = 1} is compact. If we prove that dM (z⊤X, z⊤X ′) is a continuous function
of z, then by the extreme-value theorem (Stein and Shakarchi, 2010), z∗ does exist. To this end,
we show that d2M (z⊤X, z⊤X ′) (and hence dM (z⊤X, z⊤X ′)) is continuous. We use the following
first-order perturbation analysis:

d2M ((z + dz)⊤X, (z + dz)⊤X ′) =
∑
n∈[N ]

|(z + dz)⊤xn − (z + dz)⊤x′πz+dz(n)
|2

where πz+dz : [N ] → [N ] is a permutation operator that best matches elements of perturbed multisets
(z+dz)⊤X and (z+dz)⊤X ′. LetX ′′ = {{xn−x′πz(n)

: n ∈ [N ]}}. As we discussed in the proof of

Proposition 6, if ∥dz∥2 < gap(z⊤X′′)
diam(D) — gap(z⊤X ′′) ̸= 0 sinceX ̸= X ′ —- then x′πz(n)

= x′πz+dz(n)

for all n ∈ [N ]. Therefore, we have

d2M ((z + dz)⊤X, (z + dz)⊤X ′) = d2M (z⊤X, z⊤X ′) +O(∥dz∥22),

that is, dM (z⊤X, z⊤X ′) is a continuous function of z. This concludes the proof.
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Appendix C. Proof of Theorem 4

C.1. Extension of Theorem 8

Let D be a compact subset of RD, that is, compact D ̸= RD. The encoding function Φ(X) =∑
x∈X ϕ(x) — where ϕ : D → codom(ϕ) — is an injective map over multisets with exactly

N elements, that is, Φ−1 ◦ Φ(X) = X where X ∈ XD,N . To extend the result to multisets of
variable sizes, we follow the proof sketch for the one-dimensional case (Wagstaff et al., 2019). Let
x◦ ∈ RD \ D. Then, we define ϕ′(x) = ϕ(x) − ϕ(x◦). For a multiset X ∈ XD,[N ] with |X| ≤ N
elements, we have

∀X ∈ XD,[N ] : Φ
′(X) =

∑
x∈X

ϕ′(x) =
∑
x∈X

ϕ(x)− |X|ϕ(x◦)

= Φ(X ∪ {{x◦, . . . , x◦︸ ︷︷ ︸
N−|X|

}})−Nϕ(x◦)

= Φ(X ∪ {{x◦, . . . , x◦︸ ︷︷ ︸
N−|X|

}}) + const

where const = −Nϕ(x◦). Since Φ is injective over XD,N , Φ′ is an injective map. That is to say,

∀X ∈ XD,[N ] :
(
Φ−1 ◦ (Φ′(X)− const

))
∩ D =

(
Φ−1 ◦ Φ(X ∪ {{x◦, . . . , x◦︸ ︷︷ ︸

N−|X|

}})
)
∩ D

= (X ∪ {{x◦, . . . , x◦︸ ︷︷ ︸
N−|X|

}}) ∩ D

= X.

Therefore, we have Φ′−1(U) = Φ−1
(
U − const

)
∩ D for all U ∈ Φ′(XD,[N ]) = {Φ′(X) : X ∈

XD,[N ]}. If we define ρ = f ◦ (Φ′)−1 where dom(ρ) = Φ′(XD,[N ]), then we have f(X) = ρ◦Φ′(X)
for all X ∈ XD,[N ]. We arrive at the theorem’s exact statement by renaming Φ′ to Φ.

C.2. Extension of Theorem 3

Let D be a compact subset of RD, that is, compact D ̸= RD. In Lemma 5, we prove that XD,n is a
compact set, for all n ∈ N. Since XD,[N ] is a finite union of compact sets, that is,

XD,[N ] =
N⋃

n=1

XD,n,

itself is a compact set (Sutherland, 2009). Since Φ′ is a continuous map (see Lemma 6), Φ′(XD,[N ])
is also a compact set (Pugh and Pugh, 2002).

Now let us show that Φ′−1 is a continuous map over compact set codom(Φ′) = Φ′(XD,[N ]).
We have to show that for all ε > 0 and all X,X ′ ∈ XD,[N ] such that ∥Φ′(X) − Φ′(X ′)∥2 < δ(ε)

we have dM (Φ′−1 ◦ Φ′(X),Φ′−1 ◦ Φ′(X ′)) < ε where δ(ε) > 0 and dM is the matching distance
between multisets, that is,

dM (X,X ′) =

{
minbijection π:[N◦]→[N◦]

√∑
n∈[N◦]

∥xn − x′π(n)∥
2
2 if |X| = |X ′| = N◦

∞ if |X| ≠ |X ′|,
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where X = {{xn : n ∈ [N◦]}}, X ′ = {{x′n : n ∈ [N◦]}}, N◦ ∈ [N ]. On the other hand, we have
Φ′−1(U) = Φ−1

(
U − const

)
∩ D for all U ∈ Φ′(XD,[N ]) where Φ−1 is a continuous function; see

Proposition 8.
Consider the continuous function Ψ(U) = Φ−1

(
U − const

)
where U ∈ Φ′(XD,[N ]). By

definition of continuity, for all ε > 0 and all X,X ′ ∈ XD,[N ] such that ∥Φ′(X)− Φ′(X ′)∥2 < δ(ε)
we have dM (Ψ ◦ Φ′(X),Ψ ◦ Φ′(X ′)) < ε where δ(ε) > 0. Since we have,

Ψ ◦ Φ′(X) = X ∪ {{x◦, . . . , x◦︸ ︷︷ ︸
N−|X|

}}

Ψ ◦ Φ′(X ′) = X ′ ∪ {{x◦, . . . , x◦︸ ︷︷ ︸
N−|X′|

}},

we can simplify dM (Ψ ◦ Φ′(X),Ψ ◦ Φ′(X ′)) < ε as follows:

dM (X ∪ {{x◦, . . . , x◦︸ ︷︷ ︸
N−|X|

}}, X ′ ∪ {{x◦, . . . , x◦︸ ︷︷ ︸
N−|X′|

}}) < ε.

If X and X ′ have different number of elements in D, then we have ε > infx∈D ∥x − x◦∥2. Let
ε◦ > 0 be such that ε◦ < infx∈D ∥x− x◦∥2. If we pick 0 < ε < ε◦, then X and X ′ have the same
number of elements in D and

dM ((Φ′)−1 ◦ Φ′(X), (Φ′)−1 ◦ Φ′(X ′)) = dM (Ψ ◦ Φ′(X) ∩ D,Ψ ◦ Φ′(X ′) ∩ D)
= dM (Ψ ◦ Φ′(X),Ψ ◦ Φ′(X ′)) < ε

That is, (Φ′)−1 is a continuous function over Φ′(XD,[N ]). Therefore, ρ = f ◦ (Φ′)−1 is a continuous

function on compact set Φ′(XD,[N ]) ⊂ R(
N+D

D )−1, and it has a continuous extension to R(
N+D

D )−1;
refer to Fact 2. We arrive at the theorem’s statement by renaming Φ′ to Φ.
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Appendix D. Proof of Proposition 1

Let Φ′ : XD,[N ] → codom(Φ′) where N = max{N1, N2}, Φ′(X) =
∑

x∈X ϕ′(x), and ϕ′ is given
in the proof of Theorem 4. The function Φ′ is injective on XD,[N ] and (Φ′)−1 is continuous on

compact set Φ′(XD,[N ]). Since XD,[N1] and XD,[N2] are compact subsets of XD,[N ] ⊆ R(
N+D

D )−1, the
function Φ′ is injective on Φ′(XD,[N1]) and Φ′(XD,[N2]) and (Φ′)−1 is continuous on both domains.
We define the following function:

∀U1 ∈ Φ′(XD,[N1]), U2 ∈ Φ′(XD,[N2]) : ρ(U1, U2) = f
(
(Φ′)−1(U1), (Φ

′)−1(U2)
)
.

If f is a continuous multiset function, ρ (defined above) is a continuous function on its compact
domain Φ′(XD,[N1])×Φ′(XD,[N2]) as it is the composition of continuous functions. Therefore, it has

a continuous extension to R(
N+D

D )−1 × R(
N+D

D )−1; refer to Fact 2.
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Appendix E. Proof of Theorem 5

We define ϕ : RD → codom(ϕ) ⊂ CD×N as follows:

∀x ∈ RD : ϕ(x) =
(
r(x) r(x)⊙2 · · · r(x)⊙N

)
∈ CD×N , (13)

where r(x) = x + 1l(x)j, 1 ∈ RD is a vector of all ones, l : RD → R is a continuous function,
j =

√
−1, and ⊙ computes elementwise exponents.

Fact 6 The function ϕ is continuous.

Lemma 8 Let ϕ be the function defined in equation (13). Then, the function Φ(X) =
∑

x∈X ϕ(x)
is injective on Xl

RD,N
.

Let Φ(Xl
RD,N

)
def
= {Φ(X) : X ∈ Xl

RD,N
}. From Lemma 8, there exists an inverse function

Φ−1 : Φ(Xl
RD,N

) → Xl
RD,N

, that is, Φ−1 ◦ Φ(X) = X for all X ∈ Xl
RD,N

. We construct
ρ : Φ(Xl

RD,N
) → codom(f) as ρ = f ◦ Φ−1. This completes the proof as follows:

∀X ∈ Xl
RD,N : ρ ◦ Φ(X) = f ◦ Φ−1 ◦ Φ(X) = f(X).

E.1. Proof of Lemma 8

From equation (13), we have

∀X ∈ Xl
RD,N : Φ(X) =

∑
x∈X

(
r(x) r(x)⊙2 · · · r(x)⊙N

)
∈ CD×N . (14)

Definition 12 Let Φ−1
deep be the continuous function introduced in Deep Sets paper (Zaheer et al.,

2017), viz., Φ−1
deep ◦ Φdeep = X where Φdeep(X) = (

∑
x∈X x, . . . ,

∑
x∈X xN ), where X ∈ XC,N

is a multiset of N scalars in C. With slight abuse of notation, we generalize this definition to the
following row-wise function:

∀X1, . . . , XD ∈ XC,N : Φ−1
deep(

Φdeep(X1)
...

Φdeep(XD)

) =

Φ−1
deep ◦ Φdeep(X1)

...
Φ−1
deep ◦ Φdeep(XD)

 =

X1
...
XD


Definition 13 Let X = {{xn ∈ C : n ∈ [N ]}} ∈ XC,N be a multiset of N complex-valued
elements. We then define the function sort as follows:

sort(X) =
(
Re(xπ(n))

)
n∈[N ]

∈ RN ,

where π : [N ] → [N ] is any permutation operator such that Im(xπ(1)) ≤ · · · ≤ Im(xπ(N)).

Definition 14 Let X1, . . . , XD ∈ XC,N be multisets of N complex-valued elements. We then define
the function sortvec as follows:

sortvec(

X1
...
XD

) = {{

e⊤n sort(X1)
...

e⊤n sort(XD)

 ∈ RD : n ∈ [N ]}} ∈ XRD,N ,

where en ∈ RN is the n-th standard basis vector for RN .
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Remark 10 Permutation operators in Definitions 13 and 14 may not be unique. This happens if the
input multiset has at least two elements with nonunique imaginary parts. If this is the case, functions
sort and sortvec are both ill-defined. In what follows, we show that for certain inputs of interest
both functions are indeed well-defined.

Let Ψ : Φ(Xl
RD,N

) → Xl
RD,N

where Ψ = sortvec ◦ Φ−1
deep. Then, for all X ∈ Xl

RD,N
, we have

Ψ ◦ Φ(X) = sortvec ◦ Φ−1
deep ◦ Φ(X)

(a)
= sortvec ◦ Φ−1

deep

( ∑
x∈X

(
(x+ 1l(x)j) (x+ 1l(x)j)⊙2 · · · (x+ 1l(x)j)⊙N

) )
(b)
= sortvec ◦ Φ−1

deep

(
∑

x∈X e⊤1 x+ l(x)j · · ·
∑

x∈X(e⊤1 x+ l(x)j)N

...∑
x∈X e⊤Dx+ l(x)j · · ·

∑
x∈X(e⊤Dx+ l(x)j)N

)

(c)
= sortvec ◦ Φ−1

deep

(Φdeep({{e⊤1 x+ l(x)j : x ∈ X}})
...

Φdeep({{e⊤Dx+ l(x)j : x ∈ X}})

)

(d)
= sortvec

({{e⊤1 x+ l(x)j : x ∈ X}}
...

{{e⊤Dx+ l(x)j : x ∈ X}}

)
.

where (a) is due to equations (14) and (13), (b) follows from explicitly writing the elements of Φ(X),
(c) follows from the definition of Φdeep (see Definition 12), and finally (d) is due to the fact that we
allow Φ−1

deep to operate elementwise.
Case 1 (Distinct Identifiers). Let X = {{xn : n ∈ [N ]}}. If all elements of l(X) = {{l(x) :

x ∈ X}} are unique, then we have

∀d ∈ [D] : sort({{e⊤d x+ l(x)j : x ∈ X}}) =
(
e⊤d xπ(n)

)
n∈[N ]

∈ RN

where π : [N ] → [N ] is the permutation operator such that l(xπ(1)) < · · · < l(xπ(N)). Then, we
have

Ψ ◦ Φ(X) = {{

e
⊤
1 xπ(n)

...
e⊤Dxπ(n)

 : n ∈ [N ]}} = {{xπ(n) : n ∈ [N ]}} = X.

Case 2 (Repeated Identifiers). If l(X) has repeated elements, then there exists at least two distinct
permutation operators π and π′ (π ̸= π′) that sort the elements of l(X), that is,

l(xπ(1)) ≤ l(xπ(2)) ≤ · · · ≤ l(xπ(N))

l(xπ′(1)) ≤ l(xπ′(2)) ≤ · · · ≤ l(xπ′(N)).

In this case, we have l(xπ(n)) = l(xπ′(n)) for all n ∈ [N ] — even though π(n) ̸= π′(n) for some
n ∈ [N ]. From Definition 2, since l(xπ(n)) = l(xπ′(n)), we have xπ′(n) = xπ(n) where n ∈ [N ].
Consequently, we have

∀d ∈ [D] : sort({{e⊤d x+ l(x)j : x ∈ X}}) =
(
e⊤d xπ(n)

)
n∈[N ]

=
(
e⊤d xπ′(n)

)
n∈[N ]

∈ RN .
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Therefore, even though there are multiple permutation operators that sorts the elements of {{e⊤d x+
l(x)j : x ∈ X}}, the output of the sort function remains unchanged, that is, sort is a well-defined
function for any element of X ∈ Xl

RD,N
. Consequently, sortvec is well-defined on Xl

RD,N
and we

have

∀X ∈ Xl
RD,N : Ψ ◦ Φ(X) = {{

 e⊤1 xπ1(n)
...

e⊤DxπD(n)

 : n ∈ [N ]}}

(a)
= {{

e
⊤
1 xπ1(n)

...
e⊤Dxπ1(n)

 : n ∈ [N ]}} = X,

where πd is a permutation operator that sorts the elements of {{e⊤d x+ l(x)j : x ∈ X}} — for all
d ∈ [D] — and (a) is due to xπi(n) = xπj(n) for all i, j ∈ [D] and n ∈ [N ]. Therefore, we have

∀X ∈ Xl
RD,N = Ψ ◦ Φ(X) = sortvec ◦ Φ−1

deep ◦ Φ(X) = X,

that is, Ψ = sortvec ◦ Φ−1
deep is well-defined on Φ(Xl

RD,N
) and Ψ = Φ−1 : Φ(Xl

RD,N
) → Xl

RD,N
.

This proves that Φ is an injective function on Xl
RD,N

.
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Appendix F. Proof of Proposition 2

The proof is similar to that of Theorem 4. Let D be a compact subset of RD, that is, D ̸= RD.
The encoding function ϕ : D → codom(ϕ) (defined in the proof Theorem 5) such that Φ(X) =∑

x∈X ϕ(x) is an injective map over multisets with exactly N elements, that is, Φ−1 ◦ Φ(X) = X
where X ∈ Xl

D,N and l : D → R is the continuous identifier function. Let x◦ ∈ RD \ D. Then, we
define ϕ′(x) = ϕ(x)− ϕ(x◦). For a multiset X ∈ Xl

D,[N ] with |X| ≤ N elements, we have

∀X ∈ Xl
D,[N ] : Φ

′(X) =
∑
x∈X

ϕ′(x) =
∑
x∈X

ϕ(x)− |X|ϕ(x◦)

= Φ(X ∪ {{x◦, . . . , x◦︸ ︷︷ ︸
N−|X|

}})−Nϕ(x◦)

= Φ(X ∪ {{x◦, . . . , x◦︸ ︷︷ ︸
N−|X|

}}) + const

where const = −Nϕ(x◦). Since Φ is injective over XD,N , Φ′ is an injective map. That is to say,

∀X ∈ Xl
D,[N ] :

(
Φ−1 ◦ (Φ′(X)− const

))
∩ D =

(
Φ−1 ◦ Φ(X ∪ {{x◦, . . . , x◦︸ ︷︷ ︸

N−|X|

}})
)
∩ D

= (X ∪ {{x◦, . . . , x◦︸ ︷︷ ︸
N−|X|

}}) ∩ D

= X.

Therefore, we have Φ′−1(U) = Φ−1
(
U − const

)
∩ D for all U ∈ Φ′(Xl

D,[N ]) = {Φ′(X) : X ∈
Xl
D,[N ]}. If we define ρ = f ◦ (Φ′)−1 where dom(ρ) = Φ′(Xl

D,[N ]), then we have f(X) = ρ◦Φ′(X)

for all X ∈ Xl
D,[N ]. We arrive at the exact form of sum-decomposition by renaming Φ′ to Φ.
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Appendix G. Proof of Proposition 3

Let X ∈ XQD,N . For any rational-valued vectors x, x′ ∈ X such that l(x) = l(x′), we have

const
∑
d∈[D]

(xd − x′d) log ζ(d) = 0, (15)

where xd and x′d are d-th elements of x and x′, and const ∈ N is such that yd
def
= const(xd−x′d) ∈ Z

— for all d ∈ [D]. From equation (15), we have∑
d∈[D]

yd log ζ(d) = 0 →
∏
d∈[D]

ζ(d)yd = 1.

Therefore, we have ∏
d∈[D]
yd>0

ζ(d)yd =
∏
d∈[D]
−yd>0

ζ(d)−yd = n ∈ N (16)

Both sides of equation (16) are prime number decompositions of an integer n ∈ N with completely
exclusive set of prime numbers. Therefore, we have n = 1 which results in yd = const(xd−x′d) = 0
for all d ∈ [D], that is, x = x′. This proves the following result:

∀x, x′ ∈ X
(
∈ XQD,N

)
: l(x) = l(x′) −→ x = x′.

Finally, since l is a continuous linear function on RD, XQD,N is an l-identifiable set.
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Appendix H. Proof of Lemma 1

We need to show for any X ∈ XD,N , there exists a sequence {Xn ∈ XQ(D),N : n ∈ N} such that
limn→∞Φ(Xn) = Φ(X). From Lemma 6, Φ is a continuous map. Therefore, we simply need to
prove the following property:

∀X ∈ XD,N : lim
n→∞

Xn = X,

where Xn ∈ XQ(D),N for all n ∈ N. By definition, we want show ∀ε > 0,∃N(ε) ∈ N such that

∀n ≥ N(ε) : dM (Xm
n , X) < ε.

Let Nn(x) = {y ∈ Q(D) : ∥x − y∥2 ≤ 1
n} be a bounded set centered at x ∈ D and n ∈ N. It is

important to note that Nn(x) is a nonempty set for all n ∈ N, that is, the intersection of Q(D) with
the nonempty interior of D is nonempty because Q(D) is a dense subset of D. We let qn(x) be any
random point in Nn(x). Then, for any X ∈ XD,N , we let Xn = {{qn(x) : x ∈ X}} ∈ XQ(D),N . By
construction, we have

dM (Xn, X) ≤
√
N max

x∈D
∥x− qn(x)∥22 ≤

√
Nn−1.

If we let N(ε) = ⌊
√
N
ε ⌋ + 1, then dM (Xn, X) ≤ ε for all n ≥ N(ε). Therefore, we have

limn→∞ dM (Xn, X) = 0, that is, limn→∞Xm
n = X . Any realization of the random process

{Xn}n∈N forms a sequence in XQ(D),N that converges to X , that is, XQ(D),N is a dense subset of
XD,N .

The function Φ in Theorem 5 is continuous; see Fact 6 and Lemma 6. Furthermore, we showed
that XQ(D),N is a dense subset of XD,N . Therefore, for any U ∈ Φ(XD,N ) there exists (at least) a
X ∈ XD,N such that U = Φ(X). Let {Xn ∈ XQ(D),N : n ∈ N} be such that limn→∞Xn = X .
Since Φ is a continuous map, we have limn→∞Φ(Xn) = Φ(X). That is, there exists a sequence
{Un = Φ(Xn) ∈ Φ(XQ(D),N ) : n ∈ N} such that limn→∞ Un = U . This proves that Φ(XQ(D),N )
is a dense subset of Φ(XD,N ). This completes the proof.
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Appendix I. Proof of Theorem 6

Fact 7 Let D be a compact subset of RD with nonempty interior. The function ϕ in Proposition 3 is
continuous. Its associated multiset function Φ : XD,N → codom(Φ) is a continuous function (see
Lemma 4)

From Fact 7 and Corollary 1, there exist a continuous multiset function and

Φ : XD,N → codom(Φ) ⊂ CD×N ,

and ρ : Φ(XQ(D),N ) → codom(ρ) such that

∀X ∈ XQ(D),N : f(X) = ρ
( ∑
x∈X

ϕ(x)
)
= ρ ◦ Φ(X).

In this proof, we want to define the function ρe : Φ(XD,N ) → codom(ρe) as follows:

∀Z ∈ Φ(XD,N ) : ρe(Z) = lim
Zn→Z

ρ(Zn), (17)

where Zn ∈ Φ(XQ(D),N ) for all n ∈ N. The goal is to show that ρe is (1) well-defined and (2)
continuous over its compact domain Φ(XD,N ). If these two conditions are valid, we let Z = Φ(X) ∈
Φ(XQ(D),N ) where X ∈ XQ(D),N and {Zn ∈ Φ(XQ(D),N ) : Zn = Z, n ∈ N}. Then, we have

∀X ∈ XQ(D),N : f(X) = ρe ◦ Φ(X) = ρ ◦ Φ(X).

Proposition 9 (Well-definedness) Let Z def
= {Zn ∈ Φ(XQ(D),N ) : n ∈ N} be the convergent

sequence, that is, limn→∞ Zn = Z. Given a continuous multiset function f : XD,N → codom(f),
let ρ : Φ(XQ(D),N ) → codom(ρ) ⊂ f(XD,N ) be defined in Corollary 1. Then, the sequence

ρ(Z)
def
= {ρ(Zn) : n ∈ N} is convergent to a unique point in f(XD,N ). The term limn→∞ ρ(Zn)

only depends on Z, and not specific choice of the sequence Z .

As a result of Proposition 9, the function ρe : Φ(XD,N ) → codom(ρe) ⊆ f(XD,N ) is well-defined.
That is, limZn→Z ρ(Zn) does not depend on the specific convergent sequence Z so long as its
limiting point — limn→N Zn = Z — is fixed.

Proposition 10 (Continuity) The function ρe is continuous on the compact domain Φ(XD,N ).

In summary, we have
∀X ∈ XQ(D),N : f(X) = ρe ◦ Φ(X).

where ρe : Φ(XD,N ) → codom(ρe) and Φ : XD,N → codom(Φ) are continuous functions. There-
fore, ρe ◦ Φ is a continuous function on XD,N . Since XQ(D),N is a dense subset of XD,N (see
Lemma 1) and f : XD,N → codom(f) is a continuous multiset function, we have

∀X ∈ XD,N : f(X) = lim
n→∞

f(Xn)

for any sequence {Xn ∈ XQ(D),N : n ∈ N} where limn→∞Xn = X . Therefore, we have

∀X ∈ XD,N : f(X) = lim
n→∞

ρe ◦ Φ(Xn).
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Since ρe ◦ Φ is a continuous function on XD,N , we have

∀X ∈ XD,N : f(X) = lim
n→∞

ρe ◦ Φ(Xn) = ρe ◦ Φ( lim
n→∞

Xn) = ρe ◦ Φ(X).

We argue that ρe has a continuous extension to CD×N . The set XD,N is a compact set. From
Lemma 6, Φ(XD,N ) is also a compact set. Finally, Fact 1 shows this continuous extension is admitted.
After renaming ρe to ρ, we arrive at the exact statement of the theorem.

I.1. Proof of Proposition 9

Lemma 9 Let Z def
= {Zn ∈ Φ(XQ(D),N ) : n ∈ N} be the convergent sequence, that is,

lim
n→∞

Zn = Z ∈ Φ(XD,N ).

Given a continuous multiset function f : XD,N → codom(f), let

ρ : Φ(XQ(D),N ) → codom(ρ) ⊂ f(XD,N )

be defined in Corollary 1. The sequence ρ(Z)
def
= {ρ(Zn) : n ∈ N} is Cauchy in compact metric

space (f(XD,N ), ∥ · ∥2).

Theorem 10 (Attenborough, 2003) A Cauchy sequence in a compact metric space is convergent to
a point in the metric space.

Lemma 10 Let Z def
= {Zn ∈ Φ(XQ(D),N ) : n ∈ N} be the convergent sequence, that is,

limn→∞ Zn = Z ∈ Φ(XD,N ). Given a continuous multiset function f : XD,N → codom(f),

let ρ : Φ(XQ(D),N ) → codom(ρ) ⊂ f(XD,N ) be defined in Corollary 1. The sequence ρ(Z)
def
=

{ρ(Zn) : n ∈ N} is convergent to a unique point in f(XD,N ). The term limn→∞ ρ(Zn) only depends
on Z = limn→ Zn.

I.1.1. PROOF OF LEMMA 9

Fact 8 Every convergent sequence is Cauchy. Hence, the convergent sequence Z def
= {Zn : n ∈ N}

is Cauchy in (Φ(XQ(D),N ), ∥ · ∥F ).

From Fact 8, for any δ > 0, there existsN(δ) ∈ N such that ∥Zn1−Zn2∥F < δ for all n1, n2 > N(δ).
Therefore, we have

∀n1, n2 > N(δ) : ∥Φ(Xn1)− Φ(Xn2)∥F < δ. (18)

where Xn = Φ−1(Zn) for all n ∈ N. The set XQ(D),N is an l-identifiable subset of XD,N .

Proposition 11 Let XRD/l,N be an l-identifiable set, and Φ(XRD/l,N ) = {Φ(X) : X ∈ XRD/l,N}
where Φ is defined in equations (13) and (14). The function Φ−1 : Φ(XRD/l,N ) → XRD/l,N is
defined in the proof of Lemma 8. We claim that Φ−1 is a continuous function on its domain.
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From Proposition 11, Φ−1 is a continuous function on Φ(XQ(D),N ). Since f is a continuous multiset
function on its domain, the function ρ = f ◦ Φ−1 is continuous on Φ(XQ(D),N ). By definition of
continuity, for any ε > 0 and Φ(X) where X ∈ XQ(D),N , there exists δ(ε) > 0 such that

∀X ′ ∈ XQ(D),N : ∥Φ(X)− Φ(X ′)∥F < δ(ε) → ∥f(X)− f(X ′)∥2 < ε, (19)

where X = Φ−1 ◦ Φ(X) and X ′ = Φ−1 ◦ Φ(X ′).
Comparing equation (18) to the left-hand-side of equation (19) — letting Zn1 = Φ(X) and

Zn2 = Φ(X ′) — we have

∀n1, n2 > N(δ(ε)) : ∥f ◦ Φ−1(Zn1)− f ◦ Φ−1(Zn2)∥2 < ε,

that is, f ◦ Φ−1(Z) = ρ(Z) is a Cauchy sequence; see Corollary 1 and proof of Theorem 5. Finally,
Lemma 5 and the following fact show that f(XD,N ) is indeed a compact set, that is, (f(XD,N ), ∥ · ∥2)
is a sequentially compact metric space.

Fact 9 (Pugh and Pugh 2002) The image of a compact set under continuous map is a compact set.

Proof of Proposition 11 Let ε > 0 and Z ∈ Φ(XRD/l,N ) — that is, Z = Φ(X) ∈ CD×N for
a unique X ∈ XRD/l,N . We define DΦ(ε, Z) = {Z ′ ∈ Φ(XRD/l,N ) : ∥Z − Z ′∥F < ε}. For any
Z ′ ∈ DΦ(ε, Z), we have

dM (Φ−1(Z),Φ−1(Z ′))
(a)
≤ sup

dZ∈CD×N :
Z+dZ∈DΦ(ε,Z)

dM (X,Φ−1 ◦ (Z + dZ))

(b)
= sup

dZ∈CD×N :
Z+dZ∈DΦ(ε,Z)

dM

(
X,Φ−1

(Φdeep({{e⊤1 x+ l(x)j : x ∈ X}})
...

Φdeep({{e⊤Dx+ l(x)j : x ∈ X}})

+ dZ
))

(c)
= sup

dZ∈CD×N :
Z+dZ∈DΦ(ε,Z)

dM

(
X, sortvec

( {{e⊤1 x+ l(x)j + r1(x,dz1;X) : x ∈ X}}
...

{{e⊤Dx+ l(x)j + rD(x,dzD;X) : x ∈ X}}

))

where (a) is due to the fact that we have ∥Z − Z ′∥F < ε and Φ−1 = sortvec ◦Φ−1
deep is well-defined

for Z,Z ′ ∈ Φ(XRD/l,N ), (b) is due to the definition of Φ — see equations (13) and (14) — and the
fact that Z = Φ(X), (c) is due letting dzd = e⊤DdZ ∈ CN where ed is the d-th standard basis of RD

— for all d ∈ [D] — and the fact that Φ−1
deep is a continuous function (Zaheer et al., 2017), that is,

∀d ∈ [D], X ∈ XRD/l,N , x ∈ X : lim
dz∈CN :dz→0

rd(x,dz;X) = 0.

For any ε > 0, x ∈ X , and d ∈ [D], there exists a finite δd(ε, x;X) = supdz∈D(ε) |rd(x, dz;X)|
where D(ε) = {z ∈ CN : ∥z∥2 < ε} and limε→0 δd(ε, x;X) = 0. For any ε > 0 and X ∈ XRD/l,N ,
we have

δ∗(ε,X)
def
= max

d∈[D],x∈X
δd(ε, x;X) = sup

d∈[D],x∈X,dz∈D(ε)
|rd(x,dz;X)|, (20)

where limε→0 δ
∗(ε,X) = 0. Let X = {{xn : n ∈ [N ]}}. Then, we have

∀d ∈ [D] : sort({{e⊤d x+ l(x)j : x ∈ X}}) =
(
e⊤d xπ(n)

)
n∈[N ]

∈ RN
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where π : [N ] → [N ] is a permutation operator such that l(xπ(1)) ≤ · · · ≤ l(xπ(N)). Even though
the permutation operator π may not be unique, sort is a well-defined function; see the proof of
Theorem 2. We let S(X)

def
= {ε : δ∗(ε,X) < ψ(X)} and ψ(X)

def
= minx,x′∈X

x ̸=x′

1
2 |l(x)− l(x′)| > 0

where l : RD → R is the continuous identifier function. From equation (20), we have

∀d ∈ [D], ε ∈ S(X), x ∈ X,dz ∈ D(ε) : Im(rd(x,dz;X)) < δ∗(ε,X) < ψ(X),

that is,

∀d ∈ [D], ε ∈ S(X), x ∈ X,dz ∈ D(ε) : Im(rd(x,dz;X)) < min
x,x′∈X
x ̸=x′

1

2
|l(x)− l(x′)|.

Therefore, dZ perturbs the imaginary components of {{e⊤d x+ l(x)j+ rd(x,dzd;X) : x ∈ X}} (for
any d ∈ [D]) by at most δ∗(ε,X) < minx,x′∈X

x ̸=x′

1
2 |l(x)− l(x′)| and distinct elements do not switch

place after adding the perturbation dZ. More precisely, for all d ∈ [D], ε ∈ S(X), and dz ∈ D(ε),
we have

sort({{e⊤d x+ l(x)j+rd(x, dz;X) : x ∈ X}}) =
(
e⊤d xπ′(n)+Re(rd(xπ′(n), dz;X))

)
n∈[N ]

∈ RN ,

where π′ : [N ] → [N ] is such that for all ε ∈ S(X), we have

∀dz ∈ D(ε) : l(xπ′(1)) + Im(rd(xπ′(1),dz;X)) ≤ · · · ≤ l(xπ′(N)) + Im(rd(xπ′(N),dz;X)).

Since Im(rd(x,dz;X)) < minx,x′∈X
x ̸=x′

1
2 |l(x)− l(x′)|, we also have the following inequalities:

l(xπ′(1)) ≤ · · · ≤ l(xπ′(N)). (21)

Remark 11 The permutation operator π′ may vary with dz and x, if two (or more) elements of
{{l(x) : x ∈ X}} are identical. A proper notation should be π′(dz, x;X). For simplicity in notation,
we avoid expressing this proper parameterization.

Remark 12 The perturbation dz may switch the rank (or position) of two elements only if they are
equal to each other, that is, if l(xπ′(1)) = l(xπ′(2)), then we may have

l(xπ′(1)) + Im(rd(xπ′(1), dz;X)) < l(xπ′(2)) + Im(rd(xπ′(2), dz;X)).

This does not provide any issue, since l(xπ′(1)) ≤ l(xπ′(2)). In short, independent of dz and x, π′ is
such that l(xπ′(1)) ≤ · · · ≤ l(xπ′(N)).

From equation (21) and the definition of π, we have l(xπ(n)) = l(xπ′(n)) for all n ∈ [N ] — even
though, we may have π ̸= π′. From Definition 2, since l(xπ(n)) = l(xπ′(n)), we have xπ′(n) = xπ(n)
for all n ∈ [N ]. Consequently, for all d ∈ [D], ε ∈ S(X) and dz ∈ D(ε), we have

sort({{e⊤d x+ l(x)j + rd(x, dz;X) : x ∈ X}}) =
(
e⊤d xπ′(n) +Re(rd(xπ′(n), dz;X))

)
n∈[N ]

sort({{e⊤d x+ l(x)j : x ∈ X}}) =
(
e⊤d xπ(n)

)
n∈[N ]

=
(
e⊤d xπ′(n)

)
n∈[N ]

.
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Therefore, even though there are multiple permutation operators that sorts the elements of {{e⊤d x+
l(x)j + rd(x,dz;X) : x ∈ X}}, the output of the sort function gives an ordering that remains
unchanged for distinct elements of X for any x ∈ X ∈ XRD/l,N and dz ∈ D(ε) where ε ∈ S(X).
Consequently, we have

dM (Φ−1(Z),Φ−1(Z ′))

≤ sup
dZ∈CD×N :

Z+dZ∈DΦ(ε,Z)

dM (X, sortvec
( {{e⊤1 x+ l(x)j + r1(x, dz1;X) : x ∈ X}}

...
{{e⊤Dx+ l(x)j + rD(x,dzD;X) : x ∈ X}}

)
)

(a)
≤ sup

dZ∈CD×N :
Z+dZ∈DΦ(ε,Z)

dM (X, {{

 e⊤1 xπ1(n) +Re(r1(xπ1(n),dz1;X))
...

e⊤DxπD(n) +Re(rD(xπD(n),dzD;X))

 : n ∈ [N ]}})

(b)
≤ sup

dZ∈CD×N :
Z+dZ∈DΦ(ε,Z)

dM

(
{{

 e⊤1 xπ1(n))
...

e⊤DxπD(n))

 : n ∈ [N ]}},

{{

 e⊤1 xπ1(n) +Re(r1(xπ1(n),dz1;X))
...

e⊤DxπD(n) +Re(rD(xπD(n), dzD;X))

 : n ∈ [N ]}}
)

(c)
≤ sup

dZ∈CD×N :
Z+dZ∈DΦ(ε,Z)

√√√√√√ ∑
n∈[N ]

∥

 Re(r1(xπ1(n),dz1;X))
...

Re(rD(xπD(n),dzD;X))

 ∥22

(d)
≤

√
DN sup

d∈[D],x∈X,dz∈D(ε)
|rd(x,dz;X)| =

√
DNδ∗(ε,X)

where (a) uses permutation operators πd : [N ] → [N ] and it depends on elements of {{rd(x, dz1;X) :
x ∈ X}, but xπd(n) = xπ(n) for all n ∈ [N ] and d ∈ [D], (b) follows from the fact that xπd(n) =
xπ(n) for all n ∈ [N ] and d ∈ [D], (c) follows from the definition of the matching distance dM ,
and (d) follows from the fact that if dZ ∈ CD×N is such that Z + dZ ∈ DΦ(ε, Z), then its
individual rows dz1, . . . ,dzD ∈ RN have norms upper bounded by ε, that is, dzd ∈ D(ε) and
|Re(rd(x,dzd;X))| ≤ |rd(x,dzd;X)| for all d ∈ [D].

Continuity Statement. For any Z = Φ(X) ∈ Φ(XRD,N ) and δ > 0, there exists a positive
ϵ(δ) ∈ {ε′ ∈ S(X) :

√
DNδ∗(ε′, X) < δ} where

∀Z ′ ∈ Φ(XRD,N ) : ∥Z − Z ′∥F < ϵ(δ) → dM (Φ−1(Z),Φ−1(Z ′)) < δ.

I.1.2. PROOF OF LEMMA 10

Let Z1 = {Z1,n ∈ Φ(XQ(D),N ) : n ∈ N} and Z2 = {Z2,n ∈ Φ(XQ(D),N ) : n ∈ N} be two
sequences such that limn→∞ Z1,n = limn→∞ Z2,n = Z.
From Lemma 9, the following limits are well-defined:

lim
n→∞

ρ(Z1,n) = f1, lim
n→∞

ρ(Z2,n) = f2 ∈ f(XD,N ).
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We construct Z = {Zn : n ∈ N} in Φ(XQ(D),N ) where Z2n = Z1,n and Z2n+1 = Z2,n for all
n ∈ N. By construction, we have limn→∞ Zn = Z. Since all convergent sequences are Cauchy, Z is
a Cauchy sequence. Therefore, from our discussion the proof of Lemma 9, the sequence ρ(Z) must
converge to f∗ ∈ f(XD,N ).

Fact 10 Every subsequence of a convergent sequence converges to the same limit as the original
sequence.

Both ρ(Z1) and ρ(Z2) are subsequences of the convergent sequence ρ(Z). Therefore, we have

lim
n→∞

ρ(Z1,n) = lim
n→∞

ρ(Z2,n) = lim
n→∞

ρ(Zn) = f∗,

that is, f1 = f2. Therefore, the limit of ρ(Z) only depends on the limit of the sequence Z .

I.2. Proof of Proposition 10

We want to show that, for any Φ(X) ∈ Φ(XD,N ) and ε > 0, there is δ(ε) > 0 such that

∀X ′ ∈ XD,N : ∥Φ(X)− Φ(X ′)∥F < δ(ε) → ∥ρe ◦ Φ(X)− ρe ◦ Φ(X ′)∥ < ε. (22)

We first use the definition of ρe to reforulate the left-hand-side of equation (22) in terms of convergent
sequences in Φ(XQ(D),N ). This is formalized in Lemma 11.

Lemma 11 Let X,X ′ ∈ XD,N . There exist convergent sequences Zx
def
= {Zx,n ∈ Φ(XQ(D),N ) :

n ∈ N} and Zy
def
= {Zy,n ∈ Φ(XQ(D),N ) : n ∈ N} and Nx(δ), Ny(δ) ∈ N such that

∀n > Nx(δ) : ∥Zx,n − Φ(X)∥2 < δ

∀n > Ny(δ) : ∥Zy,n − Φ(X ′)∥2 < δ.

for any δ > 0. If ∥Φ(X)− Φ(X ′)∥2 < δ, then we have

∀n > N(δ)
def
= max{Nx(δ), Ny(δ)} : ∥Zx,n − Zy,n∥2 < 3δ.

As the result of Lemma 11, the left-hand-side of equation (22) gives us the following inequality:

∀X ′ ∈ XD,N : ∥Φ(X)− Φ(X ′)∥F < δ, n > N(δ) → ∥Zx,n − Zy,n∥2 < 3δ,

where N(δ) ∈ N, Zx = {Zx,n : n ∈ N} and Zy = {Zy,n : n ∈ N} are convergent sequences in
Φ(XQ(D),N ) (in Lemma 11), that is,

lim
n→∞

Zx,n = Φ(X), lim
n→∞

Zy,n = Φ(X ′) ∈ Φ(XD,N ).

In Lemma 11 we prove that convergent sequences Zx and Zy become arbitrary close to each other as
δ → 0. In Lemma 12, we use the fact that ρ (not ρe) is a continuous function on noncompact domain
Φ(XQ(D),N ), and argue that ∥ρ(Zx,n)− ρ(Zy,n)∥2 converges to zero as δ → 0.
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Lemma 12 For all Z ∈ Φ(XQ(D),N ) and u > 0, there exists a γ(u) > 0 such that

∀Z ′ ∈ Φ(XQ(D),N ) : ∥Z − Z ′∥F < γ(u) → ∥ρ(Z)− ρ(Z ′)∥2 < u.

Note that γ shows the functional dependence of the upper bound for ∥Z − Z ′∥F for any value of
∥ρ(Z)− ρ(Z ′)∥2. For any δ > 0, we have

∀n > N
′
(δ) : ∥ρ(Zx,n)− ρ(Zy,n)∥2 < δ.

where N
′
(δ) = N(min{ δ

3 ,
γ(δ)
3 }), and N(δ) ∈ N, convergent sequences Zx = {Zx,n : n ∈ N} and

Zy = {Zy,n : n ∈ N} are defined in Lemma 11.

We now use Lemma 12 to show that for all δ > 0, we have

∀X ′ ∈ XD,N : ∥Φ(X)− Φ(X ′)∥F < δ, n > N
′
(δ) → ∥ρ(Zx,n)− ρ(Zy,n)∥2 < δ,

where Zx = {Zx,n : n ∈ N} and Zy = {Zy,n : n ∈ N} are the convergent sequences in Φ(XQ(D),N )

and N
′
(δ) is defined in Lemma 12.

Lemma 13 Let Zx = {Zx,n ∈ Φ(XQ(D),N ) : n ∈ N} and Zy = {Zy,n ∈ Φ(XQ(D),N ) : n ∈ N}
be the convergent sequences in Lemma 11. For any δ > 0, there exists N ′

x(δ), N
′
y(δ) ∈ N such that

∀n > N ′
x(δ) : ∥ρ ◦ Zx,n − ρe ◦ Φ(X)∥2 < δ

∀n > N ′
y(δ) : ∥ρ ◦ Zy,n − ρe ◦ Φ(X ′)∥2 < δ.

Let ∥ρ(Zx,n)− ρ(Zy,n)∥2 < δ for all n > N
′′
(δ)

def
= max{N ′

x(δ), N
′
y(δ), N

′
(δ)}. Then, we have

∀n > N
′′
(δ) : ∥ρe ◦ Φ(X)− ρe ◦ Φ(X ′)∥2 < 3δ.

Combining the results of Lemmas 11 to 13 we arrive at the following result:

∀X ′ ∈ XD,N : ∥Φ(X)− Φ(X ′)∥F < δ → ∥ρe ◦ Φ(X)− ρe ◦ Φ(X ′)∥2 < 3δ,

that is, δ(ε) = ε
3 in equation (22), and ρe is a continuous function on the compact domain Φ(XD,N ).

I.2.1. PROOF OF LEMMA 11

Let X,X ′ ∈ XD,N . Since Φ(XQ(D),N ) is a dense subset of Φ(XD,N ) (see Lemma 1), there exists

sequences Zx
def
= {Zx,n ∈ Φ(XQ(D),N ) : n ∈ N} and Zy

def
= {Zy,n ∈ Φ(XQ(D),N ) : n ∈ N} such

that
lim
n→∞

Zx,n = Φ(X), lim
n→∞

Zy,n = Φ(X ′) ∈ Φ(XD,N ),

and

ρe ◦ Φ(X) = lim
n→∞

ρ(Zx,n), ρe ◦ Φ(X ′) = lim
n→∞

ρ(Zy,n) ∈ codom(ρe) ⊆ f(XD,N ).

That is, there exists Nx(δ), Ny(δ) ∈ N such that

∀n > Nx(δ) : ∥Zx,n − Φ(X)∥2 < δ

∀n > Ny(δ) : ∥Zy,n − Φ(X ′)∥2 < δ.
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for any δ > 0. If ∥Φ(X)− Φ(X ′)∥2 < δ, then for all n > N(δ), we have

∥Zx,n − Zy,n∥2
(a)
≤ ∥Zx,n − Φ(X)∥2 + ∥Zy,n − Φ(X ′)∥2 + ∥Φ(X)− Φ(X ′)∥2
< δ + δ + δ = 3δ,

where N(δ)
def
= max{Nx(δ), Ny(δ)} and (a) follows from the triangle inequality.

I.2.2. PROOF OF LEMMA 12

The function Φ−1 is continuous on its noncopact domain Φ(XQ(D),N ); see Proposition 11. Therefore,
ρ = f ◦ Φ−1 is a continuous function on Φ(XQ(D),N ). By definition of continuity, for all Z ∈
Φ(XQ(D),N ) and u > 0, there exists a γ(u) > 0 such that

∀Z ′ ∈ Φ(XQ(D),N ) : ∥Z − Z ′∥F < γ(u) → ∥ρ(Z)− ρ(Z ′)∥2 < u. (23)

Let Zx = {Zx,n : n ∈ N} and Zy = {Zy,n : n ∈ N} be the convergent sequences in Lemma 11. For
all δ > 0, we have

∀X ′ ∈ XD,N : ∥Φ(X)− Φ(X ′)∥F < δ, n > N(δ) → ∥Zx,n − Zy,n∥2 < 3δ.

For any δ > 0, we let N ′(δ) = N(min{ δ
3 ,

γ(δ)
3 }) where N(δ) ∈ N is defined in Lemma 11. By

definition, we have

∀n > N ′(δ) : ∥Zx,n − Zy,n∥2 < min{δ, γ(δ)} ≤ γ(δ).

Since ρ is a continuous map, from equation (23), we arrive at the following inequality:

∀n > N ′(δ) : ∥ρ(Zx,n)− ρ(Zy,n)∥2 < δ.

I.2.3. PROOF OF LEMMA 13

The sequences Zx = {Zx,n : n ∈ N} and Zy = {Zy,n : n ∈ N} are convergent, that is,

lim
n→∞

Zx,n = Φ(X), lim
n→∞

Zy,n = Φ(X ′) ∈ Φ(XD,N ).

Since we have ρe ◦ Φ(X) = limn→∞ ρ(Zx,b), ρe ◦ Φ(X ′) = limn→∞ ρ(Zy,b), there exists
N ′

x(δ), N
′
y(δ) ∈ N such that

∀n > N ′
x(δ) : ∥ρ ◦ Zx,n − ρe ◦ Φ(X)∥2 < δ

∀n > N ′
y(δ) : ∥ρ ◦ Zy,n − ρe ◦ Φ(X ′)∥2 < δ.

If ∥ρ(Zx,n) − ρ(Zy,n)∥2 < δ for all n > N
′′
(δ)

def
= max{N ′

x(δ), N
′
y(δ), N

′
(δ)}, then, from the

triangle inequality and Lemma 12, we have

∥ρe ◦ Φ(X)− ρe ◦ Φ(X ′)∥2
≤ ∥ρ(Zx,n)− ρ(Zy,n)∥2 + ∥ρ(Zx,n)− ρe ◦ Φ(X)∥2 + ∥ρ(Zy,n)− ρe ◦ Φ(X ′)∥2
< δ + δ + δ = 3δ.
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Appendix J. Proof of Proposition 4

For K,N ∈ N, let T, T ′ ∈ Tl
N,K be such that S(T ) = S(T ′), that is,

{(e⊤n1
l(T ), α1

n1
(T )) : n1 ∈ [N ]} = {(e⊤n1

l(T ′), α1
n1
(T ′)) : n1 ∈ [N ]},

where en is the n-th standard basis vector of RN , for n ∈ [N ]. By definition of ℓ-identifiable tensors,
all elements of {{e⊤n l(T ) : n ∈ [N ]}} are unique. Therefore, we we have

∀n1 ∈ [N ] : e⊤n1
l(T ) = e⊤π(n1)

l(T ′), and α1
n1
(T ) = α1

π(n1)
(T ′),

for a unique permutation operator π : [N ] → [N ].

Lemma 14 For all k ∈ [K], we have

∀n1, n2, . . . , nk ∈ [N ] : αk
n1,n2,...,nk

(T ) = αk
π(n1),π(n2),...,π(nk)

(T ′),

where π : [N ] → [N ] is a unique permutation operator.

Proof The claim holds for k = 1. We prove this statement by induction. Let us assume the claim is
true for k ∈ [K − 1]. We want to show that it also holds for k + 1, that is,

∀n1, n2, . . . , nk+1 ∈ [N ] : αk+1
n1,n2,...,nk+1

(T ) = αk+1
π(n1),π(n2),...,π(nk+1)

(T ′).

From the definition of αk, we have

∀n1, . . . , nk+1 ∈ [N ] : e⊤nk+1
l(T ) = e⊤π(nk+1)

l(T ′), and αk+1
n1,...,nk+1

(T ) = αk+1
π(n1),...,π(nk+1)

(T ′)

— which follows from the fact that elements of {{e⊤n l(T ) : n ∈ [N ]}} are unique. This concludes
the proof.

From Lemma 14, we have

∀n1, . . . , nK ∈ [N ] : αk+1
n1,...,nK

(T ) = αK
π(n1),...,π(nK)(T

′),

that is, T = π(T ′).
Now let T, T ′ ∈ Tl

N,K be such that T = π(T ′) where π : [N ] → [N ] is a permutation operator.
By definition, we have

∀n1, . . . , nK ∈ [N ] : αK
n1,...,nK

(T ) = αK
π(n1),...,π(nK)(T

′),

and
∀n ∈ [N ] : e⊤n l(T ) = e⊤n l(π(T

′)) = e⊤π(n)l(T
′).

For all n1, . . . , nK−1 ∈ [N ], we have

αK−1
n1,...,nK−1

(T ) = {(e⊤nK
l(T ), αK

n1,...,nK
(T )) : nK ∈ [N ]}

= {(e⊤π(nK)l(T
′), αK

π(n1),...,π(nK)(T
′)) : nK ∈ [N ]}

= {(lnK (T
′), αK

π(n1),...,π(nK−1),nK
(T ′)) : nK ∈ [N ]}

= αK−1
π(n1),...,π(nK−1)

(T ′)

Using a simple argument by induction, we arrive at the statement in Lemma 14. Therefore, we have

S(T ) = {(e⊤n1
l(T ), α1

n1
) : n1 ∈ [N ]} = {(e⊤π(n1)

l(T ′), α1
π(n1)

(T ′)) : n1 ∈ [N ]}

= {(e⊤n1
l(T ′), α1

n1
(T ′)) : n1 ∈ [N ]}

= S(T ′)
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Appendix K. Proof of Theorem 7

Definition 15 Let K,N ∈ N. For all k ∈ [K], let Dk be a domain and ϕk : Dk → codom(ϕk), we
define the following multiset function

Φk

(
{{xn ∈ Dk : n ∈ [N ]}}) =

∑
n∈[N ]

ϕk(xn),

and codom(Φk) = {
∑

n∈[N ] ϕk(xn) : xn ∈ Dk, ∀n ∈ [N ]}.

Let us first show that the proposed sum-decomposable model is injective on Tl
N,K . Let K,N ∈ N

and T, T ′ ∈ Tl
N,K where∑

n1∈[N ]

ϕ1(e
⊤
n1
l(T ), β1n1

(T )) =
∑

n1∈[N ]

ϕ1(e
⊤
n1
l(T ′), β1n1

(T ′)),

that is,

Φ1({{(e⊤n1
l(T ), β1n1

(T )) : n1 ∈ [N ]}}) = Φ1({{(e⊤n1
l(T ′), β1n1

(T ′)) : n1 ∈ [N ]}})

Let us assume that ϕ1 is such that the corresponding Φ1 is an injective multiset function (see
Definition 15) — we shall discuss its sufficient condition later in the proof. Since {{e⊤n l(T ) : n ∈
[N ]}} has all distinct elements for all T ∈ Tl

N,K , we have e⊤n1
(T ) = e⊤π(n1)

l(T ′) for a unique
permutation operator π : [N ] → [N ] and for all n1 ∈ [N ]. Therefore, we have

∀n1 ∈ [N ] : β1n1
(T ) = β1π(n1)

(T ′)

Lemma 15 Let k ∈ [K] and assume {Φk : k ∈ [K]} are injective multiset functions over their
domains, that is,

∀k ∈ [K] : ϕk : Dk → codom(ϕk)

where Dk = codom(l)×codom(Φk+1) and DK = codom(l)×RD. Then, for all n1, . . . , nk ∈ [N ],
we have βkn1,...,nk

(T ) = βkπ(n1),...,π(nk)
(T ′) where π : [N ] → [N ] is a unique permutation operator

and k ∈ [K].

Proof The claim holds for k = 1. We prove this statement by induction. Let us assume this claim is
true for k ∈ [K − 1]. We want to show that it also holds for k + 1, that is,

∀n1, n2, . . . , nk+1 ∈ [N ] : βk+1
n1,n2,...,nk+1

(T ) = βk+1
π(n1),π(n2),...,π(nk+1)

(T ′).

From the definition of βk, for all n1, n2, . . . , nk ∈ [N ], we have∑
nk+1∈[N ]

ϕk+1(e
⊤
nk+1

l(T ), βk+1
n1...nk+1

(T )) =
∑

nk+1∈[N ]

ϕk+1(e
⊤
nk+1

l(T ′), βk+1
n1...nk+1

(T ′)),

that is,

Φk+1({{(e⊤nk+1
l(T ), βk+1

n1...nk+1
(T )) : nk+1 ∈ [N ]}})

= Φk+1({{(e⊤nk+1
l(T ′), βk+1

n1...nk+1
(T ′)) : nk+1 ∈ [N ]}}).
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for all n1, n2, . . . , nk ∈ [N ]. Since Φk is an injective multiset function, we have

∀n1, . . . , nk+1 ∈ [N ] : e⊤nk+1
l(T ) = e⊤π(nk+1)

l(T ′), and βk+1
n1,...,nk+1

(T ) = βk+1
π(n1),...,π(nk+1)

(T ′)

— which follows from the fact that elements of {{e⊤n l(T ) : n ∈ [N ]}} are unique. This concludes
the proof.

From Lemma 15, we arrive at

∀n1, . . . , nK ∈ [N ] : βKn1,n2,...,nK
(T ) = βKπ(n1),π(n2),...,π(nK)(T

′),

for a unique permutation operator π : [N ] → [N ], that is, T = π(T ′) and S(T ) = S(T ′); see
Proposition 4.

Using induction, one can easily verify that given S(T ), we can compute∑
n1∈[N ]

ϕ1(e
⊤
n1
l(T ), β1n1

(T )).

Therefore, the following function is well-defined and injective:

∀T ∈ Tl
N,K : m ◦ S(T ) =

∑
n1∈[N ]

ϕ1(ln1(T ), β
1
n1
(T )),

that is, if m ◦ S(T ) = m ◦ S(T ′) then we have S(T ) = S(T ′) where T, T ′ ∈ Tl
N,K .

Now we define the function fs : S(Tl
N,K) → codom(f) as follows:

∀T ∈ Tl
N,K : fs ◦ S(T )

def
= f(T ).

Since f is a permutation-invariant, the function fs is well-defined, that is, fs ◦ S(T ) = f(T ) =
f(π(T )) = fs ◦ S(π(T )) = fs ◦ S(T ) for any permutation operator π : [N ] → [N ]. Since m is an
injective function over its domain, it is invertible on it. Now we define the following function:

∀u ∈ m ◦ S(Tl
N,K) : ρ(u)

def
= fs ◦m−1(u).

For any u ∈ m ◦ S(Tl
N,K), we have u =

∑
n1∈[N ] ϕ1(e

⊤
n1
l(T ), β1n1

(T )) where T ∈ Tl
N,K , that is,

∀T ∈ Tl
N,K : ρ(u) = ρ

( ∑
n1∈[N ]

ϕ1(e
⊤
n1
l(T ), β1n1

(T ))
)
= fs ◦m−1 ◦m ◦ S(T ) = f(T ).

Sufficient conditions for injective multiset functions {Φk : k ∈ [K]}.
(1) If l(T ) ∈ RN×M , then we use the result in Theorem 8 to ensure the injectivity of Φk,

for all k ∈ [K]. The function ϕk is defined on domain Dk = codom(l) × codom(Φk+1) where
DK = codom(l) × RD, codom(l) ⊂ RM , and codom(Φk+1) ⊂ RDk+1 . From Theorem 8,
Dk =

(N+Dk+1

N

)
− 1 ensures the injectivity of Φk, for all k ∈ [K].

(2) If l(T ) ∈ QN×M , then we use the result in Theorem 5 to ensure the injectivity of Φk, for all
k ∈ [K]. This is due the fact that rational-valued vectors are identifiable (see Proposition 3). From
Theorem 5, Dk = 2N(M +Dk+1) ensures the injectivity of Φk, for all k ∈ [K].
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Appendix L. Supplementary Discussion

As discussed in the main text, the imporant step in showing the existence of sum-decomposable
representation is proving that the multiset encoding function Φ : dom(Φ) → codom(Φ) is an
injective map, that is, ρ = f ◦ Φ−1 is well-defined over its admissible inputs, that is, codom(Φ).

Proposition 12 (Fereydounian et al. 2022) Consider the following continuous map 1:

∀x ∈ RD, d1, d2 ∈ [D], n ∈ [N ] :
(
ϕ(x)

)
d1,d2,n

=


Re{(xd1 + xd2

√
−1)n} if d2 > d1

Im{(xd1 + xd2
√
−1)n} if d1 > d2

0 otherwise.

The map ϕ : RD → codom(ϕ) ⊂ RD×D×N defines the following injective multiset function:

∀X ∈ XRD,N : Φ(X) =
∑
x∈X

ϕ(x).

We argue that the result in Proposition 12 is not valid for all multisets, as the following example
suggests. Consider the following distinct sets:

X = {{

11
1

 ,
32
1

 ,
12
2

 ,
31
2

}}, X ′ = {{

12
1

 ,
31
1

 ,
32
2

 ,
11
2

}}.
One can be readily verify that Φ(X) = Φ(X ′), where Φ is defined in Proposition 12. The main insight
behind this example is the fact that {{(e⊤d xn, e⊤d′xn) : n ∈ [N ]}} = {{(e⊤d xn, e⊤d′x′n) : n ∈ [N ]}}
for all distinct d, d′ ∈ [D], where X = {{xn : n ∈ [N ]}}, X ′ = {{x′n : n ∈ [N ]}}, D = 3, and
N = 4. This later equality does indeed show X = X ′ if both multisets contains distinct vectors with
distinct elements, namely, sets with distinct vectors. The key elements in proving Theorem 8 is
to construct an injective Φ which guarantees the existence of ρ = f ◦ Φ−1. Even assuming input
multisets contain vectors with distinct elements, the above result doe not guarantee the continuity of
ρ. Furthermore, one can easily show that codom(Φ) is not a compact set. To show this, note that
the domain of Φ does not include a single point X in the example above. Now, one can construct
a sequence of (multi)ests Xn where limn→∞Xn = X such that, for all n ∈ N, all elements of
Xn are distinct and have distinct values, that is, Xn ∈ dom(Φ). Since Φ is a continuous map,
{Φ(Xn) : n ∈ N} is a Cauchy sequence in codom(Φ) whose limit does not belong to codom(Φ),
that is, the co domain of Φ is not compact.

1. This is a trivially altered version of the function in (Fereydounian et al., 2022).
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