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Abstract

Causal graph discovery is a significant prob-
lem with applications across various disci-
plines. However, with observational data
alone, the underlying causal graph can only
be recovered up to its Markov equivalence
class, and further assumptions or interven-
tions are necessary to narrow down the true
graph. This work addresses the causal dis-
covery problem under the setting of stochas-
tic interventions with the natural goal of
minimizing the number of interventions per-
formed. We propose the following stochastic
intervention model which subsumes existing
adaptive noiseless interventions in the liter-
ature while capturing scenarios such as fat-
hand interventions and CRISPR gene knock-
outs: any intervention attempt results in an
actual intervention on a random subset of
vertices, drawn from a distribution depen-
dent on attempted action. Under this model,
we study the two fundamental problems in
causal discovery of verification and search
and provide approximation algorithms with
polylogarithmic competitive ratios and pro-
vide some preliminary experimental results.

1 Introduction

Learning causal relationships is a fundamental task
with applications in many fields, including epidemiol-
ogy, public health, genomics, economics, and social sci-
ences [Rei56, Hoo90, KWJ+04, Woo05, RW06, ES07,
CBP16, Tia16, SC17, RHT+17, POS+18, dCCCM19].

†Equal contribution.
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Since the development of Bayesian networks and struc-
tural equation modelling, using directed acyclic graphs
(DAGs) has been a popular choice to represent causal
relationships [SGSH00]. It is well-known that one
can recover underlying causal graphs only up to their
Markov equivalence class using observational data
[VP90, AMP97] and additional assumptions or inter-
ventions are necessary if one wishes to uncover the
true underlying causal graph. Here, we study causal
discovery from interventions with the natural goal of
minimizing the number of interventions performed.

Causal discovery using interventional data has been
extensively studied with a rich literature of work devel-
oping adaptive [SKDV15, GKS+19, SMG+20, CSB22,
CS23b, CS23a] and non-adaptive [EGS05, EGS06,
Ebe10, HLV14] strategies. Traditionally, as in most
prior works, an experimenter can select a vertex (or a
subset of vertices) for intervention and cause the in-
tended intervention with certainty. While simple and
elegant, this fails to account for scenarios involving
system stochasticity or noise. For example, interven-
tions commonly occur randomly on non-targeted genes
in CRISPR gene knockouts [FFK+13, WWW+15,
AWL18] and interventions in psychology [Ero20] are
likely to affect variables beyond the target variable.
Such interventions are known as off-target or fat-hand
interventions, and are prevalent in practical settings
[Sch05, EM07, Ebe07, DEMS10, GS17, Ero20]. In this
work, we propose and study a stochastic interventional
model that aims to model off-target interventions.

1.1 Our off-target intervention model

Suppose G = (V,E) is a causal graph on |V | = n ver-
tices and we have k ∈ N possible interventional actions
denoted by A1, . . . , Ak. When we perform action Ai, a
subset S ⊆ V is drawn, from the off-target distribution
Di over the power set of vertices 2V , and intervened
upon. See Section 3 for more details and discussion.

Note that our interventional model1 subsumes the tra-

1Our model is very flexible: Di may have support only
on single vertices, or each vertex can be independently sam-
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ditional interventional setting when Ais are on-target:

Di(S) =

{
1 if S = Ai

0 otherwise
, ∀S ⊆ V and ∀i ∈ [k]

Algorithmic assumptions.

The complete problem is notoriously difficult and one
cannot attain guarantees without making assump-
tions. In this work, we make four key assumptions,
each corresponding to a hard problem that is under
active exploration. As such, we view our work as ini-
tiating the study of a flexible off-target model and es-
tablishing the theoretical foundations for the problem
of causal discovery under off-target inteventions.

1. The distributions D1, . . . ,Dk are known2.

Knowing the distributions Di is often a reason-
able assumption in practice. For instance, in the
case of CRISPR technology, the sequence of a tar-
get gene i provides information about which other
genes may also be affected. The possible off-target
effects are generally well-understood, and one can
also build a reasonable estimate of each distribu-
tion Di based on historical data.

Moreover, when the distributions Di are un-
known, it is straightforward to construct scenar-
ios where any optimal algorithm must, at the very
least, partially learn the distributions Di in order
to achieve any non-trivial competitive guarantees;
see Appendix B for a discussion on the difficulties
in designing algorithms with non-trivial theoreti-
cal guarantees when Di’s are unknown.

2. The actual intervened vertices S are observed.

While we acknowledge that this assumption may
be violated in many real-world applications, there
have been recent works which infer S from the
data [KS21, SWU20]. For instance, [SWU20] ar-
gues that, under further assumptions, the actual
intervened targets can be recovered by checking
which distributions changed after the interven-
tion. We view our work as a preliminary step to-
wards addressing the more general setting where
the intervened vertices S is not known to us.

3. We are given access to the essential graph (or
equivalently we know the Markov equivalence
class) of the true causal graph.

Under some standard causal assumptions, there
are a plethora of algorithms that recover the es-
sential graph from observational data (which is

pled into S, or vertex inclusion can be correlated, etc.
2Actually, we use something weaker; see Section 3.

abundant in many applications), such as the PC
[SGSH00], FCI [SGSH00] and RFCI algorithms
[CMKR12]; see [GZS19, VCB22] for a survey.

4. We are able to determine orientations of edges
that are incident to intervened vertices.

While this is always possible using hard or ideal
interventions, this assumption may still hold with
weaker forms of interventions (soft, imperfect,
shift, etc) under additional conditions.

1.2 Our contributions

We study two fundamental problems in causal graph
discovery: verification and search. The former asks the
question of checking whether a proposed DAG G from
the Markov equivalence class is the true underlying
causal DAG G∗, which serves as a natural lower bound
for the latter, which requires us to identify G∗ from the
equivalence class. Our contributions are as follows:

1. We establish a two-way reduction between the off-
target verification problem and the well-studied
stochastic set covering problem. This equivalence
allows us to leverage existing results and tech-
niques in the literature to design our algorithms.

2. We prove that no algorithm can achieve non-
trivial competitive approximation guarantees
against the off-target verification number, even
when all actions have unit weight. This shows
the difficulty of the off-target search problem and
motivates the need for new benchmarks.

3. Building on our negative result and a recent work
[CS23a], we propose algorithms that are compet-
itive against a quantity that captures the perfor-
mance of any algorithm against the worst-case
causal graph within the same Markov equivalence
class. Our algorithm runs in polynomial time and
is guaranteed to use at most a polylogarithmic
number of expected interventions more than the
worst-case optimal solution.

One can convert expectation results to high probabil-
ity ones by paying an extra O(log n) factor via stan-
dard applications of Markov and Chernoff bounds3.

Outline of paper. We begin with preliminary no-
tions and related work in Section 2, then state our
main results in Section 3, with details of our verifi-
cation and search results given in Section 4 and Sec-
tion 5 respectively. Section 6 shows some experimental

3By Markov inequality, each event succeeds with con-
stant probability. Then, Chernoff bounds ensures that at
least one out of O(logn) independent runs succeeds w.h.p.
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results and Section 7 concludes with discussion and fu-
ture work. For convenience, we will restate our main
theorem statements before proving them. Some proofs
are deferred to the appendix.

2 Preliminaries and related work

For any set A, we use |A| to denote its size and 2A to
denote its powerset. Let G = (V,E) be a graph on n
vertices/nodes. We use u ∼ v to denote adjacency, and
u → v or u ← v to specify directions. For any v ∈ V
in a directed graph, we use N(v) and Pa(v) to denote
its neighbors and parents respectively. The skeleton
skel(G) refers to the underlying graph where all edges
are made undirected. A v-structure4 in G refers to
three vertices u, v, w ∈ V such that u → v ← w and
u ̸∼ w. For any subset S ⊆ V , G[S] denotes the node-
induced subgraph of G and u ∈ S is a source vertex if
u has no incoming arcs from any other edges from S.

A directed acyclic graph (DAG) is a fully directed
graph without directed cycles. We can associate a (not
necessarily unique) valid permutation σ : V → [n] to
any (partially directed) DAG such that oriented arcs
u → v satisfy σ(u) < σ(v). For any DAG G, we de-
note its Markov equivalence class (MEC) by [G] and
essential graph by E(G). DAGs in the same MEC [G]
have the same skeleton and essential graph E(G) is a
partially directed graph such that an arc u→ v is di-
rected if u → v in every DAG in MEC [G], and an
edge u ∼ v is undirected if there exists two DAGs
G1, G2 ∈ [G] such that u → v in G1 and v → u in
G2. It is known that two graphs are Markov equiv-
alent if and only if they have the same skeleton and
v-structures [VP90, AMP97]. A DAG is called a moral
DAG if it has no v-structures, in which case its essen-
tial graph is just its skeleton. An edge u → v is a
covered edge [Chi95] if Pa(u) = Pa(v) \ {u}. We use
C(G) to denote the set of covered edges of DAG G.

An ideal intervention S ⊆ V is an experiment where
all variables v ∈ S are forcefully set to some value,
independent of the underlying causal structure. The
effect of interventions is formally captured by Pearl’s
do-calculus [Pea09]. Graphically, intervening on S in-
duces a mutilated interventional graph GS̄ where all
incoming arcs to vertices v ∈ S are removed [EGS05].
It is known that intervening on S allows us to infer
the edge orientation of any edge cut by S and V \ S
[Ebe07, HEH13, HLV14, SKDV15, KDV17]. An inter-
vention set is a set I ⊆ 2V of interventions where each
intervention corresponds to a subset of variables and
an I-essential graph EI(G) of G is the essential graph
representing the Markov equivalence class of graphs
whose interventional graphs for each intervention is

4Also known as an unshielded collider.

Markov equivalent to GS̄ for any intervention S ∈ I.
There are several known properties about I-essential
graphs [HB12, HB14, CS23b]. For instance, every I-
essential graph (I could be ∅) is a chain graph with
chordal chain components5 and orientations in one
chain component do not affect orientations in other
components. So, to fully orient any essential graph
E(G∗), it is necessary and sufficient to orient every
chain component in E(G∗). We use CC(E(G)) to de-
note the set of chain components obtained by ignoring
the oriented edges in E(G), where each H ∈ CC(E(G))
is a connected undirected subgraph of G and vertices
across H’s partition V (G). See Fig. 1 for an example.

A verifying set I for a DAG G ∈ [G∗] is an interven-
tion set that fully orients G from E(G∗), possibly with
repeated applications of Meek rules (see Appendix C),
i.e. EI(G∗) = G∗. Furthermore, if I is a verifying set
for G∗, then so is I ∪S for any additional intervention
S ⊆ V . While there may be multiple verifying sets
in general, we are often interested in finding one with
a minimum size/cost. We say that an intervention
S ⊆ V cuts an edge u ∼ v ∈ E if |S ∩ {u, v}| = 1.

Definition 1 (Minimum size/cost verifying set and
verification number/cost). Let w be a weight function
on intervention sets. An intervention set I is called a
verifying set for a DAG G∗ if EI(G∗) = G∗. I is a min-
imum size (resp. cost) verifying set if EI′(G∗) ̸= G∗

for any |I ′| < |I| (resp. for any w(I ′) < w(I)). The
minimum verification number ν(G) and the minimum
verification cost ν(G) denote the size/cost of the min-
imum size/cost verifying set respectively.

There is a rich literature in recovering causal
graphs via interventions under various settings
such as bounded size interventions, interventions
with varying vertex costs, allowing for random-
ization, modelling as Bayesian approaches, incor-
porating domain knowledge as constraints, etc.
[Hec95, HGC95, CY99, FK00, TK01, Mur01, HG08,
MM13, CBP16, HMC06, EGS06, Ebe10, EGS12,
HB14, HEH13, HLV14, SKDV15, KDV17, GSKB18,
LKDV18, ASY+19, GKS+19, KSSU19, SMG+20,
CSB22, TAJ+22, TAI+23, CS23b, CS23a]. In this
work, we are interested in studying off-target interven-
tions where attempting to intervene on vertex v ∈ V
(or a subset of vertices S ⊆ V ) may result in inter-
vening on other vertices, and possibly not even v ∈ V
itself [Sch05, EM07, Ebe07, DEMS10, GS17, Ero20].

In the context of causal graph discovery via ideal inter-

5A partially directed graph is a chain graph if it does
not contain any partially directed cycles where all directed
arcs point in the same direction along the cycle. A chordal
graph is a graph where every cycle of length at least 4
has an edge that is not part of the cycle but connects two
vertices of the cycle; see [BP93] for more.
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ventions, [CS23b] tells us it suffices to study the verifi-
cation and search problems on moral DAGs as any ori-
ented arcs in the observational graph can be removed
before performing any interventions as the optimality
of the solution is unaffected. Below, we review other
known results that we later use. For instance, The-
orem 3 implies that any topological ordering of the
vertices σ consistent with the given set of arcs yields
a DAG from the same Markov equivalence class.

Theorem 2 (Theorem 9 of [CSB22]). Any verifying
set of a DAG G must cut all the covered edges.

Theorem 3 (Proposition 16 of [HB12], Theorem 7 of
[CS23b]). Given any (interventional) essential graph,
any acyclic orientation of the unoriented edges that
does not form new v-structures induces a DAG within
the same Markov equivalence class.

As mentioned in the introduction, we will relate the
problem of verification in our model to the problem
of stochastic set cover. Introduced by [GV06], the
stochastic set cover is a subproblem in the wider prob-
lem domain known as stochastic optimization whereby
one wishes to optimize a certain objective under un-
certainty (e.g. see [GK11] and references therein).

Problem 4 (Stochastic set cover, with multiplicity).
Consider a set X of d elements and k stochastic sets
S1, . . . , Sk. Each Si is associated with a weight wi and
a set-specific distribution Di where Di and Dj are inde-
pendent for i ̸= j. When Si is picked, a random subset
of X is drawn according to Di and the elements in the
subset are said to be covered. The goal is to minimize
the weighted set selection cost (sets may be picked
multiple times) until all elements in X are covered.

Denoting µj(i) as the probability of set Si covering
element j ∈ X, [GV06] showed that any policy π
that succeeds in covering X satisfies the inequality∑k

i=1 µj(i) · xπ
i ≥ 1, where xπ

i is the expected number
of times π picks Si. They further showed that mini-
mum expected cost incurred by any adaptive policy π
for solving Problem 4 is at least the optimal value of
(LP):

minimize
∑k

i=1 wi · xi

such that
∑k

i=1 µj(i) · xi ≥ 1 ,∀j ∈ X
xi ≥ 0 ,∀i ∈ [k]

(LP)

3 Results

As discussed in the introduction, one of our primary
contributions is the definition of a new noisy off-target
intervention model. Under this model, we study two
fundamental questions: verification and search.

Off-target verification. Under our intervention
model, the verification number is defined as follows:

Problem 5 (Off-target verification). We are given
a graph G = (V,E) and k actions A1, . . . , Ak. For
i ∈ [k], each set Ai is associated with a distribution
Di, where Di and Dj are independent for i ̸= j. When
action Ai is picked, a random subset of V is drawn
according to Di and the vertices in the subset are in-
tervened upon. The goal is to select as few actions as
possible (actions may be picked multiple times) until
the interventional essential graph is fully oriented.

From Theorem 2, any verifying set of a DAG G has
to cut all covered edges C(G) of G. Given actions
A1, . . . , Ak, let Π be the space of (possibly random-
ized) policies that repeatedly pick actions until all
covered edges are cut and xπ

i be a random variable
that counts the number of times action Ai was cho-
sen by policy π ∈ Π. Then, the off-target verifica-
tion number and weighted off-target verfication num-

ber are given by ν(G) = minπ∈Π E
[∑k

i=1 x
π
i

]
and

ν(G) = minπ∈Π E
[∑k

i=1 wi · xπ
i

]
respectively, where

wi is the cost of choosing action Ai. When all in-
terventions are on-target, the terms ν(G) and ν(G)
recover existing definitions in the literature.

Our first main technical result is a lower bound on
ν(G∗) and an off-target verification algorithm with a
logarithmic competitive ratio. This is made possible
by a reduction between the stochastic set cover prob-
lem and the off-target verification problem, and then
applying known results of [GV06].

Theorem 6. Stochastic set cover and off-target ver-
ification are equivalent. There is a polynomial time
adaptive policy which verifies with a cost of O(ν(G∗) ·
log n) in expectation while obtaining an approximation
ratio within (1− ε) · lnn is NP-hard for every ε > 0.

Theorem 6 essentially tells us that our verification re-
sults attain the optimal asymptotic approximation ra-
tio achievable in polynomial time, unless P = NP.

Off-target search. For off-target search, we begin
with a rather negative result that no algorithm can
provide non-trivial competitive bounds against ν(G∗),
even when all actions have unit cost.

Theorem 7. For any n ∈ N, there exists a DAG G∗

on n nodes and unit-weight actions A1, . . . , An such
that any algorithm pays Ω(n · ν(G∗)) to recover G∗.

A similar inapproximability result was known in the
on-target intervention literature for weighted causal
graph discovery [CS23a], in which they proved that
no algorithm (even with infinite computational power)
can achieve an asymptotically better approximation
than O(n) with respect to the verification cost ν(G∗)
for all ground truth causal graphs on n nodes. The
authors of [CS23a] then defined a newer and more nu-
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anced benchmark νmax(G∗) = maxG∈[G∗] ν(G) which
shifts the comparison away from an oracle that knows
G∗ to the best algorithm which knows [G∗]. Motivated
by [CS23a] and Theorem 7, we also compare against
νmax(G∗) instead of ν(G∗). To this end, we give an
efficient search algorithm that achieves polylogarith-
mic approximation guarantees against νmax(G∗). Our
algorithm is based on 1/2-clique graph separators on
chordal graphs and heavily relies on the fact that we
only need to compete against some causal DAG in the
equivalence class. Crucially, νmax(G∗) provides us the
freedom to force certain unoriented edges to become
covered edges judiciously (by competing against some
G′ ∈ [G∗] via Theorem 3) in our search algorithm.

Theorem 8. Given an essential graph E(G∗), there
is an algorithm (Algorithm 2) which runs in polyno-
mial time and recovers G∗ while incurring a cost of
O(νmax(G∗) · log4 n) in expectation.

The high-level intuition for the four log factors are as
follows (see Section 5 for details): (1) action stochas-
ticity; (2) guessing identities of covered edges; (3) re-
peated applications of graph separators; (4) additional
work to ensure recursion onto smaller subgraphs.

Remark about action distributions and cutting
probabilities.

In our problem, we are interested in cutting edges (in
particular covered edges; see Theorem 2). For both our
verification and search algorithms, all we need are edge
cut probabilities ci(e) ∈ [0, 1] of how likely an action Ai

will cut an edge e ∈ E. Given Dis, one can compute
these edge cut probabilities (with time complexities
depending on the description of Dis). For example, in
the special case where Dis are product distributions
over the vertices, i.e. probability of a vertex v being
intervened upon is pv and the pvs are independent, we
have ci(e = {u, v}) = Pr[Ai cuts e] = 1 − pu · pv +
(1 − pu) · (1 − pv). Note that the distributions Dis
are independent with respect to the actions, but not
necessarily edges: for action indices i ̸= j and edges
e ̸= e′, Pr[Ai cuts e] is independent of Pr[Aj cuts e]
but not necessarily independent of Pr[Ai cuts e

′].

In the rest of this work, we assume that cutting prob-
abilities, a weaker requirement than Dis, are known.
The assumption is weaker because one can derive cut-
ting probabilities from off-target distributions but not
vice-versa. For example, consider the case of a single
edge e = {v1, v2} and two possible distinct distribu-
tions D1 and D2, where Di always intervenes on {vi}:
both distributions induce the same cut probability c(e)
but we cannot identify Di simply from c(e). Our al-
gorithms only rely on cut probabilities and does not
need the distributions inducing them.

4 Verification

Here we prove our results for the off-target verification
problem. In particular, we prove Theorem 6 which
shows the equivalence between our off-target verifica-
tion problem (Problem 5) and the stochastic set cover
problem (Problem 4). The main technical idea behind
the reduction follows from Theorem 2, which states
that any verifying set must cut all the covered edges
of the DAG. The reduction treats covered edges C(G)
as the set of elements to cover and an action “covers”
a cover edge if the action cuts the covered edge.

Lemma 9. Every off-target verification instance on
causal DAG G with actions A1, . . . , Ak and covered
edges C(G) corresponds to a stochastic set cover in-
stance on |C(G)| items and stochastic sets S1, . . . , Sk.

Proof. To establish a one-to-one correspondence be-
tween the two problems, let X be the covered edges
C(G) and let each stochastic set Si have exactly the
distribution of Ai. Then, we can solve off-target verifi-
cation by invoking any algorithm A for the stochastic
set cover problem by choosing action Ai whenever Si is
being chosen, and informing A that an element is cov-
ered when the corresponding covered edge is cut.

Reduction in the other direction follows by designing
a graph where the elements correspond to disjoint cov-
ered edges such that sets can be mapped to actions.

Lemma 10. Every stochastic cover instance with d
elements and k stochastic sets S1, . . . , Sk corresponds
to an off-target verification instance on a causal DAG
G with 2d vertices, d edges, and k actions A1, . . . , Ak.

Proof. For each element j ∈ [d], we create two vertices
vj,1 and vj,2 and an edge ej = vj,1 → vj,2. By con-
struction, G is a collection of d disjoint edges and the
set of covered edges is C(G) = E. For i ∈ [k], let us
define action Ai to be exactly Si on {vj,1}j∈[d], i.e. Ai

assigns the same probability mass as Si to any sub-
set of {vj,1}j∈[d] as whatever Si places on element j.
Thus, the probability of action Ai cutting covered edge
ej is exactly the probability that Si covers element j.
Therefore, we can solve the stochastic set cover prob-
lem by invoking any algorithm A for off-target verifica-
tion problem by choosing set Si whenever Ai is being
intervened upon, and performing an intervention on G
according to the random realization of Si.

Theorem 6 follows from our above reductions and by
applying Theorems 1 and 2 of [GV06]. To be pre-
cise, we invokeCutViaLP (Algorithm 1) with covered
edges as the input to provide an efficient approxima-
tion algorithm for the off-target verification problem.



Causal Discovery under Off-Target Interventions

Theorem 6. Stochastic set cover and off-target ver-
ification are equivalent. There is a polynomial time
adaptive policy which verifies with a cost of O(ν(G∗) ·
log n) in expectation while obtaining an approximation
ratio within (1− ε) · lnn is NP-hard for every ε > 0.

Proof. The equivalence is via our two-way reductions:
Lemma 9 and Lemma 10.

When Dis deterministically map to a single fixed sub-
set of elements, stochastic set cover recovers set cover,
which is NP-hard [Kar72]. Thus, stochastic set cover is
also NP-hard and so it is NP-hard to exactly solve the
off-target verification problem to obtain ν(G∗). Fur-
thermore, approximating set cover to within a factor
of (1− ε) · lnn is also NP-hard for any ε > 0 [DS14].

To obtain a policy which incurs a cost of at most
O(ν(G∗) · log n) in expectation, we can apply Theo-
rems 1 and 2 of [GV06]. To be precise, given a set
of k actions A1, . . . , Ak and a subset of target edges
T ⊆ E, consider the following LP adapted from (LP):

min
∑k

i=1 wi · xi

s.t.
∑k

i=1 ci(e) · xi ≥ 1 ,∀e ∈ T
xi ≥ 0 ,∀i ∈ [k]

(VLP)

Theorem 1 of [GV06] tells us that ν(G∗) is at least
the optimal value of (VLP). Meanwhile, Theorem 2
of [GV06] describes a policy which incurs a cost of
O(ν(G∗)·log |T |) ⊆ O(ν(G∗)·log n): solve (VLP) with
optimal values x∗

1, . . . , x
∗
k, pick O(x∗

i · log |T |) copies of
Si in expectation, and repeat this process a constant
number of times in expectation to cover all elements
(see Algorithm 1). For us, the set T will be instanti-
ated with the set of covered edges C(G∗) of G∗.

Algorithm 1 CutViaLP.

Input: k actions A1, . . . , Ak, action weights
w1, . . . , wk, d edges to cut T ⊆ E, cutting proba-
bilities {ci(e)}i∈[k],e∈T .
Output: A sequence of attempted interventions
such that all edges are cut.

1: Solve (VLP) and let x∗
1, . . . , x

∗
k be the optimal

value and define yi = 9 · xi · ln d for all i ∈ [k].6

2: while some edge is still not cut do
3: for i ∈ [k] do
4: Do action Ai ⌊yi⌋ times deterministically.
5: With probability yi − ⌊yi⌋, do action Ai.

We will later use Algorithm 1 as a subroutine in our
off-target search algorithm.

6The constant 9 is from [GV06]; any appropriate con-
stant works just fine.

5 Search

We first present a negative result (Theorem 7) which
states that one cannot hope to obtain an approxi-
mation ratio better than Ω(n) with respect to the
off-target verification number ν(G∗). Motivated by
Theorem 7, we consider the benchmark νmax(G∗) =
maxG∈[G∗] ν(G) defined by [CS23a], against which the
authors provided competitive algorithms for causal
graph discovery under weighted on-target interven-
tions. In Theorem 8, we provide an efficient approxi-
mation search algorithm (Algorithm 2) with polyloga-
rithmic approximation guarantees against νmax(G∗).

5.1 Why compare against νmax(G∗)?

We begin with the negative result that one cannot
hope to attain non-trivial approximation to ν(G∗) even
when all actions have unit weights.

Theorem 7. For any n ∈ N, there exists a DAG G∗

on n nodes and unit-weight actions A1, . . . , An such
that any algorithm pays Ω(n · ν(G∗)) to recover G∗.

The proof sketch for Theorem 7 is as follows. Consider
the star graph on n vertices v1, v2, . . . , vn with vn as
the center and v1, . . . , vn−1 as leaves. Such an essential
graph correspond to n possible DAGs, with each vertex
as a possible “hidden root”. Suppose there are n unit-
weight actions A1, . . . , An where Di each deterministi-
cally picks the leaf vi (for 1 ≤ i ≤ n− 1) and Dn picks
a random leaf uniformly at random. That is, no action
will ever intervene on the center vertex vn. When any
leaf vi is the root node, ν(G∗) = 1 as choosing action
Ai suffices. However, without knowing the identity of
vi, one would incur a cost of Ω(n) ⊆ Ω(n · ν(G∗)).

Meanwhile, observe that νmax(G∗) = n when the cen-
ter vertex vn is the root node: all edges will be covered
edges and we need to cut all of them by intervening on
all leaves. Thus, instead of competing against ν(G∗),
competing against νmax(G∗) would allow for one to
design algorithms with more meaningful theoretical
guarantees. That is, instead of comparing against an
oracle that knows G∗, we should compare against any
algorithm which only knows E(G∗). Similar sentiments
were also highlighted in recent works [CS23b, CS23a].

Remark (What if a covered edge is never cut?)
From [CSB22], we know that the true causal graph G∗

will be fully oriented if and only if every covered edge
of G∗ is cut. Therefore, if a cut probability of a certain
covered edge is 0, then no algorithm can successfully
orient the graph, i.e. ν(G∗) =∞. Note that this is not
the case for the star graph described above since we
are able to cut every edge by intervening on the leaves
(via multiple off-target intervention attempts).
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5.2 A search algorithm with polylogarithmic
approximation to νmax(G∗)

On a high level, Algorithm 2 repeatedly finds 1/2-
clique graph separators (see Theorem 12 below) to
break up the chain components so that we can re-
curse on smaller sized chain components, à la [CSB22,
CS23b, CS23a]. See Fig. 1 for an illustration of graph-
ical concepts. However, due to action stochasticities,
we encounter new challenges in designing and analyz-
ing a search algorithm for off-target interventions.

Definition 11 (α-separator and α-clique separator,
Definition 19 of [CSB22]). Let A,B,C be a partition
of the vertices V of a graph G = (V,E). We say that
C is an α-separator if no edge joins a vertex in A with
a vertex in B and |A|, |B| ≤ α · |V |. We call C is an
α-clique separator if it is an α-separator and a clique.

Theorem 12 ([GRE84], instantiated for unweighted
graphs). Let G = (V,E) be a chordal graph with |V | ≥
2 and p vertices in its largest clique. There exists a
1/2-clique-separator C involving at most p−1 vertices.
The clique C can be computed in O(|E|) time.

Algorithm 2 OffTargetSearch.

Input: Essential graph E(G∗) of a moral DAG G∗,
k actions A1, . . . , Ak, action weights w1, . . . , wk,
cutting probabilities {ci(e)}i∈[k],e∈E .
Output: A complete orientation of G∗.

1: while there are still unoriented edges do
2: K ← ∅ ▷ Collection of 1/2-clique separators.
3: for each chain comp. H of size |V (H)| ≥ 2 do
4: Find 1/2-clique separator KH of H.
5: Add KH to K and store the size of |V (H)|.
6: Run PerformPartitioning on K.

To appreciate of some of the new challenges, con-
sider the simple case where the input essential graph
E(G∗) is a clique on n vertices. If G∗ orients v1 →
. . . → vn, then the covered edges are C(G∗) = {v1 →
v2, . . . , vn−1 → vn}. By Theorem 2, interventions need
to cut all edges in C(G∗) to fully orient E(G∗). How-
ever, we do not actually know the true edge orien-
tations of G∗ (and hence C(G∗)). To orient E(G∗),
[CSB22, CS23b] simply intervene on all vertices while
[CS23a] intervenes on all vertices except the costliest
vertex. In either case, these prior works are guaran-
teed to fully orient E(G∗) regardless of the underlying
orientation of G∗ while paying O(νmax(G∗)). Unfor-
tunately, with off-target interventions, such strategies
do not work as it may be too costly to attempt to
intervene on each vertex one at at time.

While an 1/2-clique separator approach typically en-
sures that search completes in O(log n) iterations if
we can repeatedly identify separators and recurse on

smaller subgraphs, action stochasticities may prevent
us from orienting all incident edges to the separators.
We overcome this via the subroutine PerformPar-
titioning (Algorithm 4) described later.

Lemma 13. If resulting components in H always have
size at most |V (H)|/2 after invoking PerformPar-
titioning, then OffTargetSearch terminates in
O(log n) iterations and outputs G∗.

To understand PerformPartitioning, we first
need to describe the subroutine OrientInternal-
CliqueEdges (Algorithm 3) used to orient internal
edges within any collection of disjoint cliques.

Algorithm 3 OrientInternalCliqueEdges.

Input: Target edges T ⊆ E of disjoint cliques.
Output: A complete orientation of all edges in T .

1: while there are still unoriented edges in T do
2: Pick an arbitrary topological ordering σ that is

consistent with all revealed arc orientations.
3: Run CutViaLP on the covered edges w.r.t. σ.

Lemma 14. OrientInternalCliqueEdges incurs
a cost of O(νmax(G∗) · log2 n) in expectation.

We can obtain competitive ratios against νmax(G∗) as
we can freely orient unoriented edges in an acyclic fash-
ion to obtain a DAG within the equivalence class (The-
orem 3). One logarithmic factor is due to stochasticity
while invoking CutViaLP (Algorithm 1); in a similar
spirit as the coupon collector problem. Meanwhile, the
other logarithmic factor is because we do not know the
identities of the covered edges within the cliques. In
more detail: after a call to CutViaLP on an arbitrary
ordering σ, we are guaranteed that no two adjacent
vertices (with respect to σ) will be in the same chain
component (Theorem 18), so the size of each clique is
at least halved and logarithmic rounds suffice.

Given 1/2-clique separators for chain components of
an essential graph EI(G∗), PerformPartitioning
first invokes OrientInternalCliqueEdges to ori-
ent the edges internal to the separators, yielding a
new interventional essential graph EI′(G∗). For an
arbitrary chain component H, there may still be un-
oriented edges incident to separator vertices as some
vertices may not be intervened by OrientInternal-
CliqueEdges. A resulting chain component LH ∈
CC(EI′(G∗))[H] is considered “large” if its size is
strictly larger than |V (H)|/2; if it exists, there can
be at most one of them for each H.

Lemma 15. Consider the interventional essential
graph EI′(G∗) at Line 1 of Algorithm 4 and an
arbitrary chain component H ∈ CC(EI(G∗)). If
EI′(G∗)[H] has a large chain component LH of size
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(a) Covered edges
C(G∗) are dashed and
E(G∗) = skel(G∗).
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(b) E(G∗) has a single comp.
H withKH = {d, g} as a pos-
sible 1/2-clique separator.
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(c) Connected components
after removing KH have size
≤ n/2 = 4.5, i.e. “small”.
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(d) If {g} was intervened
upon, the resulting chain
component LH is “large”.

Figure 1: A moral DAG G∗ on n = 9 nodes illustrating graphical concepts such as E(G∗), skel(G∗), C(G∗),
1/2-clique separators, and large chain components. The essential graph E(G∗) has a single chain component H
with KH as one possible 1/2-clique separator of H. Suppose we oriented d ∼ g through an intervention on {g}
due to action stochasticity in Fig. 1d. The resulting chain component LH after intervening on {g} is large since
|V (LH)| = |{a, b, c, d, e, f, h, i}| = 8 > n/2. PerformPartitioning (Algorithm 4) breaks LH up by trying to
intervene within LH [V (LH) ∩ N(uH)], where d ≡ uH is the unique vertex from KH within V (KH) ∩ V (LH).
There are two chain components H ′

1 and H ′
2 in the induced subgraph LH [V (LH) ∩ N(uH)]. Since f is not a

neighbor of d, the vertex f is not part of H ′
2. If we pick 1/2-clique separators Z ′

1 = {b, c} and Z ′
2 = {e, h} for

H ′
1 and H ′

2, then c ≡ z′1 and e ≡ z′2 are the sources of Z ′
1 and Z ′

2 respectively.

|V (LH)| > |V (H)|/2, then |V (LH) ∩ V (KH)| = 1 for
any 1/2-clique separator KH of H.

Fix a large component LH . By Lemma 15, LH con-
tains exactly one vertex from KH , say uH . By the
property of 1/2-clique separators, LH [V (LH) \ {uH}]
consists of components of size at most |V (H)|/2. That
is, orienting all edges incident to uH suffices to break
up LH into small components. However, this may
be costly.7 Instead, we use separators while invoking
OrientInternalCliqueEdges and CutViaLP.

Lemma 16. Fix any chain component H and consider
any chain component H ′ ∈ CC(LH [V (LH)∩N(uH)]).
PerformPartitioning cuts uH ∼ zH′ either in Line
6 or 8. If uH is still connected to some chain compo-
nent C ⊆ H ′ after Line 8, then |V (C)| ≤ |V (H ′)|/2.

Note that, within the while-loop, it may be the case
that H ′ is a singleton {zH′} (e.g. when LH is a large
star with uH at the center). In this case, the edge
uH ∼ zH′ will be cut on Line 8.

Throughout, to compete against νmax(G∗), we only
need to compete against some causal DAG in the
equivalence class and apply Theorem 3 in our analysis
suitably. As PerformPartitioning uses O(log n) it-
erations to remove large chain components, and each
iteration of the while loop invokes OrientInternal-
CliqueEdges and CutViaLP once, we have:

7Lemma 16 does not guarantee that all incident edges
of uH are oriented but it suffices for breaking up LH .

Lemma 17. PerformPartitioning incurs a cost of
at most O(νmax(G∗) · log3 n) per invocation, and chain
components in H always have size at most |V (H)|/2
after invoking PerformPartitioning.

Our search result (Theorem 8) immediately follows by
combining Lemma 13 and Lemma 17.

6 Experiments

While our main contributions are theoretical, we also
implemented our algorithms and performed some ex-
periments; see Appendix E for more details and plots.

Each experimental instance is defined on some hidden
ground truth DAG G∗ along with the off-target distri-
butions Dis. A search algorithm aims to recover G∗

with as few interventions as possible while only given
the partially oriented essential graph of G∗ and the
cutting probabilities derived from Dis as input.

Algorithms. As our off-target intervention setting
has not been studied before from an algorithmic per-
spective, there is no suitable prior work to compare
against. We adapted existing state-of-the-art adaptive
on-target intervention algorithms in a generic way: we
solve (VLP), interpret the optimal vector X as a prob-
ability distribution p over the actions, then repeatedly
sample from p until the desired on-target intervention
is completed before picking the next one. We also show
the optimal value of (VLP), along with performance
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Algorithm 4 PerformPartitioning.

Input: A collection of 1/2-clique separators K =
{KH}H∈CC(EI(G∗)), for some EI(G∗).
Output: An interventional essential graph where
sizes of chain components in H are ≤ |H|/2.

1: Run OrientInternalCliqueEdges on E(K) to
get interventional essential graph EI′(G∗).

2: Let L = {LH ∈ H : |V (LH)| > |V (H)|/2} be the
large chain components with unique vertex uH ∈
V (KH) ∩ V (LH) for each LH ∈ L. ▷ Lemma 15

3: while ∃LH ∈ L such that |V (LH)| ≥ 2 do
4: Find 1/2-clique separator ZH′ of H ′ for each

LH ∈ H and H ′ ∈ CC(LH [V (LH) ∩N(uH)]).
5: Define a consistent ordering σ s.t. for all

LH ∈ L and H ′ ∈ CC(LH [V (LH) ∩N(uH)]),
we have σ(uH) < σ(z) < σ(y) for all
z ∈ V (ZH′), and for all y ∈ V (H ′) \ V (ZH′).

6: Run OrientInternalCliqueEdges on the
covered edges w.r.t. σ. For each H ′, let zH′

be the source vertex of ZH′ which we can
identify after orienting internal edges.

7: Define a consistent ordering σ′ s.t. for all
LH ∈ L and H ′ ∈ CC(LH [V (LH) ∩N(uH)]),
we have σ′(uH) < σ′(zH′) < σ′(y) for all
y ∈ V (LH) \ {uH , zH′}.

8: Run CutViaLP on the covered edges w.r.t. σ′.
9: Restrict LHs to the component with uHs.

of the naive Random and a One-shot8 baselines.

Graph instances. We tested on synthetic GNP TREE

graphs [CS23b] of various sizes, and on some real-world
graphs from bnlearn [Scu10]. We associate a unit-cost
action Av to each vertex v ∈ V of the input graph.

Interventional distributions. We designed 3 types
of off-target interventions when taking action Av.
(1) r-hop: Sample a uniform random vertex from r-
hop neighborhood of v, including v itself.
(2) Decaying: Sample a random vertex from V , with
probability decreasing as we move from v.
(3) Fat finger: Intervene on v, and also possibly on
some neighbors of v at the same time.

Qualitative conclusions. There is no prior baseline
as we are the first to study off-target interventions
from an algorithmic standpoint. Although empiri-
cal gains are not significant over some algorithms we
adapted from other settings, we have theoretical guar-
antees for off-target interventions while they don’t.
Random and One-shot fare poorly while our method is
visibly better or at least competitive with the adapted
on-target methods. Regardless, note that our algo-

8One-shot aims to simulate non-adaptive algorithms in
the context of off-target interventions; see Appendix E.

rithm has provable guarantees even for non-uniform
action costs and it is designed to handle worst-case
off-target instances.

7 Conclusion and discussion

We studied causal graph discovery under off-target in-
terventions. Under our model, verification is equiv-
alent to the well-studied problem of stochastic set
cover and so we inherit existing approximation results
from that literature. For search, we argued that no
algorithm can provide meaningful approximations to
ν(G∗), and we provided an algorithm with polyalgo-
rithmic approximation guarantees against νmax(G∗).

Open directions. We assumed known cutting prob-
abilities ci(e) and intervened sets S. More generally,
our theoretical guarantees relied on some standard
causal inference assumptions in the literature9 and we
view our work as laying the theoretical foundations for
studying off-target interventions. For a wider applica-
bility, it is of great interest to validate/weaken/remove
these assumptions. In particular, extending our results
into the finite sample regime would be very exciting.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes, see Section 1

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes, see Section 3 and Appendix D

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Yes, see Appendix E

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes, see Section 3
and Appendix D

(b) Complete proofs of all theoretical results.
Yes, see Section 3 and Appendix D

(c) Clear explanations of any assumptions. Yes,
see Section 1, Section 2, and Section 7

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). Yes, see Appendix E

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Not
Applicable

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes, see Appendix E

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). Yes, see Appendix E

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator if your work uses ex-
isting assets. Yes, we cite the relevant
sources; see Appendix E

(b) The license information of the assets, if ap-
plicable. Not Applicable

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. Yes, we pro-
vide our code and experimental scripts;
see Appendix E

(d) Information about consent from data
providers/curators. Not Applicable

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. Not Appli-
cable

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. Not Applicable
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Causal Discovery under Off-Target Interventions:
Supplementary Materials

A Augmenting the preliminaries

“Cutting an edge” behaves differently from “intervening on one of the endpoints of that edge”. Consider a
triangle u ∼ v ∼ w ∼ u. The non-atomic intervention {v, w} cuts the edge u ∼ v but not the edge v ∼ w because
|{u, v} ∩ {v, w}| = 1 while |{v, w} ∩ {v, w}| = 2 ̸= 1. So, one would expect the edge {v, w} to remain unoriented
unless Meek rules apply. For example, see Fig. 2:

Example 1 If the ground truth DAG was u → v ← w ← u, then intervening on {v, w} will only orient u → v
and u→ w while w → v remains unoriented.

Example 2 If the ground truth DAG was u ← v → w ← u, then intervening on {v, w} orients u ← v and
w ← u, and then Meek rule R2 orients v → w via v → u→ w ∼ v.

v w

u

v w

u

v w

u

Example 1: u→ v ← w ← u

v w

u

v w

u

Meek R2

Example 2: u← v → w ← u

Figure 2: Illustrating the difference between cutting an edge and intervening on one of the endpoints of that
edge on the moral graph u ∼ v ∼ w ∼ u. In both examples, the non-atomic intervention {v, w} cuts the edges
u ∼ v and u ∼ w but not v ∼ w. In the first case, v ∼ w remains unoriented. In the second case, v ∼ w is
oriented due to Meek rules.

The following known results will be useful for our proofs later.

Theorem 18 (Theorem 7 of [CS23b]). If G is a moral DAG and an arc u→ v is oriented in an (interventional)
essential graph of G, then u and v belong to different chain components.

Recall the problem of stochastic set cover with multiplicity, defined in Section 2:

Problem 4 (Stochastic set cover, with multiplicity). Consider a set X of d elements and k stochastic sets
S1, . . . , Sk. Each Si is associated with a weight wi and a set-specific distribution Di where Di and Dj are
independent for i ̸= j. When Si is picked, a random subset of X is drawn according to Di and the elements in
the subset are said to be covered. The goal is to minimize the weighted set selection cost (sets may be picked
multiple times) until all elements in X are covered.

Theorem 19 states the known results of [GV06] pertaining to Problem 4.

Theorem 19 (Theorems 1 and 2 of [GV06]). Any adaptive policy π for solving Problem 4 is at least the optimal
value of (LP). Meanwhile, there is a polynomial time non-adaptive policy for solving Problem 4 such that it
incurs a cost of at most 12 ln d times the cost incurred by an optimal adaptive policy: solve (VLP) with optimal
values x∗

1, . . . , x
∗
k, pick O(x∗

i · log |T |) copies of Si in expectation, and repeat this process a constant number of
times in expectation to cover all elements (see Algorithm 1).



Causal Discovery under Off-Target Interventions

Note that obtaining an approximation ratio within (1 − ε) · lnn is NP-hard10 for any ε > 0, so multiplicative
overhead of 12 ln d is asymptotically optimal.

B Unknown off-target distributions Dis

Here, we discuss difficulties in designing algorithms with non-trivial theoretical guarantees whenDis are unknown.
These difficulties persist even if we know the covered edges.

Consider the following toy example where the essential graph is a tree. That is, the underlying causal DAG is
some rooted tree with an unknown root node v∗ and the covered edges are the edges incident to v∗. So, to fully
orient the graph, we need to cut all the edges incident to v∗. Regardless of the number of actions k, there could
be only one action Ai∗ with corresponding distribution Di∗ with non-zero probability of cutting the covered
edges; all other Ais (for i ̸= i∗) will never cut any covered edge. Clearly, the optimal algorithm should only
repeatedly take action Ai∗ until all the covered edges are cut. Meanwhile, if we do not know the Dis, then there
is no hope for designing algorithms with non-trivial theoretical guarantees, even against νmax(G∗): an algorithm
that knows the Dis only picks a single action Ai∗ while any other algorithm would need to try all actions.

Note that in our lower bound result and construction (Theorem 7), the Dis are known. Yet, despite this, no
algorithm can have a competitive ratio better than Ω(n) against ν(G∗); but competitiveness against νmax(G∗)
is possible.

C Meek rules

Meek rules are a set of 4 edge orientation rules that are sound and complete with respect to any given set of
arcs that has a consistent DAG extension [Mee95].11 Given any edge orientation information, one can always
repeatedly apply Meek rules till a fixed point to maximize the number of oriented arcs.

Definition 20 (Consistent extension). A set of arcs is said to have a consistent DAG extension π for a graph
G if there exists a permutation on the vertices such that (i) every edge {u, v} in G is oriented u → v whenever
π(u) < π(v), (ii) there is no directed cycle, (iii) all the given arcs are present.

Definition 21 (The four Meek rules [Mee95], see Fig. 3 for an illustration).

R1 Edge {a, b} ∈ E \A is oriented as a→ b if ∃ c ∈ V such that c→ a and c ̸∼ b.

R2 Edge {a, b} ∈ E \A is oriented as a→ b if ∃ c ∈ V such that a→ c→ b.

R3 Edge {a, b} ∈ E \A is oriented as a→ b if ∃ c, d ∈ V such that d ∼ a ∼ c, d→ b← c, and c ̸∼ d.

R4 Edge {a, b} ∈ E \A is oriented as a→ b if ∃ c, d ∈ V such that d ∼ a ∼ c, d→ c→ b, and b ̸∼ d.

a b

c

a b

c
R1

a b

c

a b

c
R2

d

a c

b d

a c

b

R3

a

d c

b a

d c

b

R4

Figure 3: An illustration of the four Meek rules

There exists an algorithm (Algorithm 2 of [WBL21]) that runs in O(d · |E|) time and computes the closure under
Meek rules, where d is the degeneracy of the graph skeleton12.

10See the proof of Theorem 6.
11This section of well-known facts is adapted from the appendices of [CSB22, CS23b].
12A d-degenerate graph is an undirected graph in which every subgraph has a vertex of degree at most d. Note that

the degeneracy of a graph is typically smaller than the maximum degree of the graph.
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D Deferred proofs

It would be helpful to keep the definition of

νmax(G∗) = max
G∈[G∗]

ν(G)

and Theorem 6 (which we restate below for convenience) in mind for our proofs below.

Theorem 6. Stochastic set cover and off-target verification are equivalent. There is a polynomial time adaptive
policy which verifies with a cost of O(ν(G∗) · log n) in expectation while obtaining an approximation ratio within
(1− ε) · lnn is NP-hard for every ε > 0.

The following lemma bounds the cost incurred by CutViaLP to νmax(G∗) using Theorem 19 when we invoke
CutViaLP on a subset of covered edges of some DAG G′ ∈ [G∗].

Lemma 22. If we invoke CutViaLP on a subset of covered edges T of some DAG G′ ∈ [G∗], then CutViaLP
incurs a cost of O(ν(G′) · log |T |) ⊆ O(νmax(G∗) · log n) in expectation.

Proof. As T is a subset of covered edges C(G′) of some DAG G′ ∈ [G∗], Theorem 19 tells us that CutViaLP
incurs a cost of O(ν(G′) · log |T |) in expectation. The claim follows as |T | ≤ n and νmax(G∗) = maxG∈[G∗] ν(G).

Theorem 7. For any n ∈ N, there exists a DAG G∗ on n nodes and unit-weight actions A1, . . . , An such that
any algorithm pays Ω(n · ν(G∗)) to recover G∗.

Proof. Consider the star graph on n vertices v1, v2, . . . , vn with vn as the center and v1, . . . , vn−1 as leaves (Fig. 4).
Such an essential graph is a tree and corresponds to n possible DAGs, with one of the vertices as a “hidden root”
node. Suppose there are n unit-weight actions A1, . . . , An where Di each deterministically picks the leaf vi (for
1 ≤ i ≤ n − 1) and Dn picks a random leaf uniformly at random. That is, no action will ever intervene on the
center vertex vn.

vn

Figure 4: A star graph with vn as the center.

Orienting G∗ from the essential graph is exactly finding the hidden root leaf node, which corresponds to the
problem of searching for a specific number in an unsorted array with n− 1 numbers. It is well-known that any
algorithm (even randomized ones) incurs Ω(n) array probes for the problem of searching in an unsorted array
(e.g. see Theorem 15.1 of [Sha13]). Since our setting restricts the set of actions (pick each index deterministically
or choosing a random index uniformly at random) on the same problem, it also has a lower bound of Ω(n). Note
that the lower bound of Ω(n) holds both in the worst-case and in expectation.

Meanwhile, recall that the actions Ai are deterministically picks the leaf vi, for 1 ≤ i ≤ n− 1. So, ν(G∗) = 1 by
taking action Ai∗ to intervene on vi∗ , where i∗ ∈ [n− 1] is the index of the hidden root leaf node.

Therefore, any algorithm pays Ω(n · ν(G∗)) to fully recover G∗ (both in the worst case and in expectation).

Lemma 13. If resulting components in H always have size at most |V (H)|/2 after invoking PerformParti-
tioning, then OffTargetSearch terminates in O(log n) iterations and outputs G∗.
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Proof. When a chain component has size 1, it means that incident edges to that singleton vertex are oriented.
Since the size of the chain components decreases by a factor of two in each phase, O(log n) iterations suffices.

Lemma 14. OrientInternalCliqueEdges incurs a cost of O(νmax(G∗) · log2 n) in expectation.

Proof. We first argue that OrientInternalCliqueEdges runs for O(log |T |) ⊆ O(log n) while-loop iterations
then argue that it incurs a cost of O(νmax(G∗) · log n) in expectation per iteration.

Upper bounding the number of iterations Consider an arbitrary while-loop iteration. Suppose the largest
connected component (induced by edges of T ) is of size k, where 1 ≤ k ≤

√
|T |. When k = 1, all internal clique

edges are oriented. Suppose the vertices in this component are v1, . . . , vk.

Fix an arbitrary ordering σ. Without loss of generality, by relabelling, suppose that σ(v1) < . . . < σ(vk). Under
this ordering, we see that v1 ∼ v2, . . . , vk−1 ∼ vk are covered edges which will be cut when we invoke CutViaLP.
By Theorem 18, we are guaranteed that no two adjacent vertices (with respect to σ) will be in the same chain
components after invoking CutViaLP. To be precise, for 1 ≤ i ≤ k − 1, there exists an intervention where
exactly one of vi and vi+1 will be intervened upon, so the edge vi ∼ vi+1 becomes oriented, thus vi and vi+1 be
in different chain components.

Note that any chain component of size strictly larger than ⌈k/2⌉+1 within this size k chain component includes
two adjacent vertices (with respect to σ index ordering). This cannot happen by the above argument, so we can
conclude that the size of the largest connected component drops by a constant factor in each while-loop iteration,
and thus OrientInternalCliqueEdges runs for O(log |T |) while-loop iterations.

Crucially, the resulting chain components are again a collection of disjoint cliques, so the above argument can be
repeated recursively. It is again a collection of disjoint cliques because edges exist between any pair of vertices
(since T was originally a set of edges that induce a collection of disjoint cliques) and oriented edges cannot have
endpoints in the same chain component due to Theorem 18.

Upper bounding the cost per iteration Fix an arbitrary while-loop iteration. By Theorem 3, the set
of covered edges T ′ induced by the arbitrarily chosen σ is a subset of covered edges of some G′ ∈ [G∗]. By
Lemma 22, CutViaLP incurs a cost of O(νmax(G∗) · log n) in expectation.

Lemma 15. Consider the interventional essential graph EI′(G∗) at Line 1 of Algorithm 4 and an arbitrary chain
component H ∈ CC(EI(G∗)). If EI′(G∗)[H] has a large chain component LH of size |V (LH)| > |V (H)|/2, then
|V (LH) ∩ V (KH)| = 1 for any 1/2-clique separator KH of H.

Proof. We will first argue that LH contains at least one vertex from KH and then argue that LH contains at
most one vertex from KH .

Contains at least one Since KH was a 1/2-clique separator of H, if LH did not contain any vertices from
KH , then we must have |LH | ≤ |V (H)|/2. So, LH includes at least one vertex from KH .

Contains at most one Suppose, for a contradiction, that LH includes more than one vertex from the clique
KH , say u and v. After invoking OrientInternalCliqueEdges, the edge u ∼ v should be oriented. So,
according Theorem 18, u and v should not be in the same chain component. This is a contradiction to the
assumption that the chain component LH includes both u and v.

Lemma 16. Fix any chain component H and consider any chain component H ′ ∈ CC(LH [V (LH) ∩N(uH)]).
PerformPartitioning cuts uH ∼ zH′ either in Line 6 or 8. If uH is still connected to some chain component
C ⊆ H ′ after Line 8, then |V (C)| ≤ |V (H ′)|/2.

Proof. We first argue that PerformPartitioning will cut uH ∼ zH′ either in Line 6 or 8. Suppose Line 6 did
not cut uH ∼ zH′ . Then, under σ′, the edge uH ∼ zH′ will be an unoriented covered edge and will be cut in
Line 8.

Now suppose uH is still connected to some chain component C ⊆ H ′ after Line 8. Upon cutting uH ∼ zH′ ,
the edge becomes oriented and so the vertices uH and zH′ will belong in different chain components thereafter
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(Theorem 18), so zH′ ̸∈ V (C). After Line 6, OrientInternalCliqueEdges ensures that internal edges of
ZH′ are oriented. Now, since V (C) \ {uH} ⊆ V (H ′) and ZH′ was a 1/2-clique separator for H ′, we see that
|V (C)| ≤ |V (H ′)|/2.

Note that the number of chain components within LH may increase during the while-loop but we will only
concern ourselves with the chain component that is still connected to uH . In other words, LH may break into
multiple chain components, but at most one will contain uH . See Fig. 5 for an example illustration.

d e f

a b c

g h i

(a) Covered edges
C(G∗) are dashed and
E(G∗) = skel(G∗).

d e f

a b c

g h i

LH

H ′
1

H ′
2

(b) If {g} was intervened
upon, the resulting chain
component LH is “large”.

d e f

a b c

g h i

LH

H ′
1

(c) Intervening on {a, c} ori-
ents the red edges, then Meek
rules orient the blue edges.

d e f

a b c

g h i

LH

H ′
1

(d) The resulting chain com-
ponent after removing ori-
ented edges.

Figure 5: Recall the moral DAG G∗ on n = 9 nodes given in Fig. 1. Suppose we oriented d ∼ g through an
intervention on {g} due to action stochasticity in Fig. 5b. The resulting chain component LH after intervening
on {g} is large since |V (LH)| = |{a, b, c, d, e, f, h, i}| = 8 > n/2. PerformPartitioning (Algorithm 4) breaks
LH up by trying to intervene within LH [V (LH) ∩N(uH)], where d ≡ uH is the unique vertex from KH within
V (KH) ∩ V (LH). There are two chain components H ′

1 and H ′
2 in the induced subgraph LH [V (LH) ∩ N(uH)].

Let us focus our remaining discussion on H ′
1. If we pick 1/2-clique separator Z ′

1 = {b, c} for H ′
1, then

c ≡ z′1 is the source of Z ′
1. Now, suppose in Fig. 5c while trying to orient b ∼ c, we intervened on {a, c}. Then,

red edges {a → b, a → d, c → b, c → d} will be cut and oriented which then triggers Meek R2 to orient the
blue edges {d → e, d → h, d → i, e → f}. Fig. 5d illustrates the resulting chain component without the newly
oriented edges. Observe that uH ̸∼ zH′

1
≡ d ̸∼ c as expected while uH is still connected to a chain compoment

C = {b} ⊆ V (H ′
1). As proven in Lemma 16, we have |V (C)| = |{b}| = 1 ≤ 1.5 = |V (H ′)|/2. Although H ′

1 now
has two components {b} and {a, c}, Line 9 of PerformPartitioning will restrict H ′

1 to just {b} going forward.

Lemma 17. PerformPartitioning incurs a cost of at most O(νmax(G∗) · log3 n) per invocation, and chain
components in H always have size at most |V (H)|/2 after invoking PerformPartitioning.

Proof. We first argue that size indeed drops by a factor of two before upper bounding cost incurred.

Correctness Since KH is a 1/2-clique separator for H, the resulting chain components have size at most
|V (H)|/2 if we manage to orient all edges incident to KH .

At the end of OrientInternalCliqueEdges, all edges within the KH ’s will be oriented and there is at most
one “large” chain component LH of size strictly larger than |V (H)|/2 containing a vertex uH ∈ V (KH); see
Lemma 15.

Consider any chain component H ′ ∈ CC(LH [V (LH) ∩N(uH)]).

• If uH ∈ V (LH) ∩ V (KH) is no longer connected to any chain component of H ′ after Line 8, then we know
that |V (H ′)| is now “small”.

• Meanwhile, if uH was still connected to some chain component C ⊆ H ′ after Line 8, then Lemma 16 tells us
that |V (C)| ≤ |V (H ′)|/2 and Line 9 restricts H ′ to C. So, after O(log n) while-loop iterations, |V (H ′)| ≤ 1.

• In the case that H ′ is a singleton {zH′}, e.g. when LH is a large star with uH at the center, the edge
uH ∼ zH′ will be cut on Line 8.
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Upper bounding the cost incurred

In each while-loop iteration, we invoke OrientInternalCliqueEdges once and CutViaLP once. By
Lemma 14, OrientInternalCliqueEdges incurs a cost of O(νmax(G∗) · log2 n). By Lemma 22, CutViaLP
incurs a cost of O(νmax(G∗) · log n) in expectation since we always invoke CutViaLP with a subset of covered
edges of some G′ ∈ [G∗].

Theorem 8. Given an essential graph E(G∗), there is an algorithm (Algorithm 2) which runs in polynomial
time and recovers G∗ while incurring a cost of O(νmax(G∗) · log4 n) in expectation.

Proof. Combine Lemma 13 and Lemma 17.

E Experiments

While our main contributions are theoretical, we also implemented our algorithms and performed
some experiments. All experiments were run on a laptop with Apple M1 Pro chip and 16GB of
memory. Our source code and experimental scripts are available at https://github.com/cxjdavin/

causal-discovery-under-off-target-interventions.

E.1 Executive summary

An instance is defined by an underlying ground truth DAG G∗ and k actions A1, . . . , Ak with corresponding
interventional distributions D1, . . . ,Dk. We tested on both synthetic and real-world graphs and 3 different classes
of interventional distributions; see Appendix E.2 and Appendix E.3 for details.

We compared against 4 baselines: Random, One-shot, Coloring, Separator; see Appendix E.4 for details.
One-shot tries to emulate non-adaptive interventions while the last two are state-of-the-art on-target search
algorithms adapted to the off-target setting. As Coloring and Separator were designed specifically for un-
weighted settings, we test using uniform cost actions despite our off-target search algorithm being able to work
with non-uniform action costs. We also plotted the optimal value of (VLP) for comparison.

Qualitatively, Random and One-shot perform visibly worse than the others. While the adapted on-target algo-
rithms may empirically outperform Off-Target sometimes, we remark that our algorithm has provable guar-
antees even for non-uniform action costs and it is designed to handle worst-case off-target instances. Since we
do not expect real-world causal graphs to be adversarial, it is unsurprising to see that our algorithm performs
similarly to Coloring and Separator.

Remark 23. To properly evaluate adaptive algorithms, one would need data corresponding to all the interventions
that these algorithms intend to perform. Therefore, in addition to observational data, any experimental dataset
to evaluate these algorithms should contain interventional data for all possible interventions. Unfortunately,
such real world datasets do not currently exist and thus the state-of-the-art adaptive search algorithms still use
synthetic experiments to evaluate their performances. To slightly mitigate a possible concern of synthetic graphs,
we use real-world DAGs from bnlearn [Scu10] as our ground truth DAGs G∗s.

E.2 Graph instances

We tested on synthetic GNP TREE graphs [CS23b] of various sizes, and on some real-world graphs from bnlearn

[Scu10]. We associate a unit-cost action Av to each vertex v ∈ V of the input graph.

E.2.1 Synthetic graphs

For given n and p parameters, the moral GNP TREE graphs are generated in the following way13:

• Generate a random Erdos-Renyi graph G(n, p).

• Generate a random tree on n nodes.

13Description from Appendix F.1.1 of [CS23b].

https://github.com/cxjdavin/causal-discovery-under-off-target-interventions
https://github.com/cxjdavin/causal-discovery-under-off-target-interventions
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• Combine their edgesets and orient the edges in an acyclic fashion: orient u → v whenever vertex u has a
smaller vertex numbering than v.

• Add arcs to remove v-structures: for every v-structure u → v ← w in the graph, we add the arc u → w
whenever vertex u has a smaller vertex numbering from w.

We generated GNP TREE graphs with n ∈ {10, 20, 30, 40, 50} and p = 0.1. For each (n, p) setting, we generated 10
such graphs.

E.2.2 Real-world graphs

The bnlearn [Scu10] graphs are available at https://www.bnlearn.com/bnrepository/. In particular, we
used the graphical structure of the Discrete Bayesian Networks for all sizes: “Small Networks (< 20 nodes)”,
“Medium Networks (20 − 50 nodes)”, “Large Networks (50 − 100 nodes)”, and “Very Large Networks (100 −
1000 nodes)”, and “Massive Networks (> 1000 nodes)”. Some graphs such as “pigs”, “cancer”, “survey”,
“earthquake”, and “mildew” already have fully oriented essential graphs and are thus excluded from the plots
as they do not require any interventions.

E.3 Interventional distributions

In our experiments, we associated each vertex v with unit cost and an action Av with four different possible
types of interventional distributions (see below). The first two are atomic in nature (all actions return a single
intervened vertex) while the third is slightly more complicated interventional distribution where multiple vertices
may be intervened upon. Atomic interventional distributions enables a simple way to compute the probability
that edge {u, v} is cut by action Ai: it is simply piu + piv, where piv is the probability that v is intervened upon
when we perform action Ai.

The 3 classes of off-target interventions we explored are as follows:

r-hop When taking action Av, Dv samples a uniform random vertex from the closed r-hop neighborhood of v,
including v.

Decaying with parameter α When taking action Av, Dv samples a random vertex from a weighted proba-
bility distribution w obtained by normalizing the following weight vector: assign weight αr for all vertices
exactly r-hops from v, where v itself has weight 1. So, vertices closer to v have higher chance of being
intervened upon when we attempt to intervene on v.

Fat hand with parameter p When taking action Av, Dv will always intervene on v, but will additionally
intervene on v’s neighbors, each with independent probability p. Note that the probability of cutting an
edge {u, v} now is no longer a simple sum of two independent probabilities, but it is still relatively easy to
compute in closed-form.

In our experiments, we tested the following 6 settings:

1. r-hop with r = 1

2. r-hop with r = 2

3. Decaying with α = 0.5

4. Decaying with α = 0.9

5. Fat hand with p = 0.5

6. Fat hand with p = 0.9

https://www.bnlearn.com/bnrepository/
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E.4 Algorithms

Since our off-target intervention setting has not been studied before from an algorithmic perspective, there is no
suitable prior algorithms to compare against. As such, we propose the following baselines:

Random Repeatedly sample actions uniformly at random until the entire DAG is oriented. This is a natural
naive baseline to compare against.

One-shot Solve our linear program (VLP) in the paper on all unoriented edges. Intepret the optimal vector
X of VLP as a probability distribution p over the actions and sample actions according to p until all the
unoriented edges are oriented. One-shot aims to simulate non-adaptive algorithms in the context of off-
target interventions: while it can optimally solve (VLP) (c.f. compute graph separating system), One-shot
cannot update its knowledge based on arc orientations that are subsequently revealed.

Coloring and Separator Two state-of-the-art adaptive on-target intervention algorithms in the literature:
Separator [CSB22] and Coloring [SKDV15]. As these algorithms are not designed for off-target intervention,
we need to orient all the edges incident to v to simulate an on-target intervention at v. To do so, we run
(VLP) on the unoriented edges incident to v and interpret the optimal vector X of (VLP) as a probability
distribution p over the actions, then sample actions according to p until all the unoriented edges incident
to v are oriented. Note that this modification provides a generic way to convert any usual intervention
algorithm to the off-target setting.

E.5 Experimental plots

For each combination of graph instance and interventional distribution, we ran 10 times and plotted the average
with standard deviation error bars. This is because there is inherent randomness involved when we attempt to
perform an intervention. For synthetic graphs, we also aggregated the performance over all graphs with the same
number of nodes n in hopes of elucidating trends with respect to the size of the graph. As the naive baseline
Random incurs significantly more cost than the others, we also plotted all experiments without it.
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E.5.1 Plots (without “random”)

(a) 1-hop (b) 2-hop

(c) Decaying, α = 0.5 (d) Decaying, α = 0.9

(e) Fat hand, p = 0.5 (f) Fat hand, p = 0.9

Figure 6: GNP TREE graphs without “random”. The optimal value of VLP in blue is an O(log n) approximation
of ν(G∗). Our off-target search Off-Target is in orange. Coloring is in green. Separator is in red. One-shot
is in purple.
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(a) 1-hop (b) 2-hop

(c) Decaying, α = 0.5 (d) Decaying, α = 0.9

(e) Fat hand, p = 0.5 (f) Fat hand, p = 0.9

Figure 7: bnlearn graphs without “random”. The optimal value of VLP in blue is an O(log n) approximation
of ν(G∗). Our off-target search Off-Target is in orange. Coloring is in green. Separator is in red. One-shot
is in purple.
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E.5.2 Plots (with “random”)

(a) 1-hop (b) 2-hop

(c) Decaying, α = 0.5 (d) Decaying, α = 0.9

(e) Fat hand, p = 0.5 (f) Fat hand, p = 0.9

Figure 8: GNP TREE graphs. The optimal value of VLP in blue is an O(log n) approximation of ν(G∗). Our
off-target search Off-Target is in orange. Coloring is in green. Separator is in red. One-shot is in purple.
Random is in brown.
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(a) 1-hop (b) 2-hop

(c) Decaying, α = 0.5 (d) Decaying, α = 0.9

(e) Fat hand, p = 0.5 (f) Fat hand, p = 0.9

Figure 9: bnlearn graphs. The optimal value of VLP in blue is an O(log n) approximation of ν(G∗). Our
off-target search Off-Target is in orange. Coloring is in green. Separator is in red. One-shot is in purple.
Random is in brown.
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