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Abstract

Mode collapse remains the primary unre-
solved challenge within generative adversar-
ial networks (GANs). In this work, we in-
troduce an innovative approach that sup-
plements the discriminator by additionally
enforcing the similarity between the gener-
ated and real distributions. We implement
a one-sample test on the generated samples
and employ the resulting test statistic to pe-
nalize deviations from the real distribution.
Our method encompasses a practical strat-
egy to estimate distributions, compute the
test statistic via a differentiable function, and
seamlessly incorporate test outcomes into the
training objective. Crucially, our approach
preserves the convergence and theoretical in-
tegrity of GANs, as the introduced constraint
represents a requisite condition for optimiz-
ing the generator training objective. Notably,
our method circumvents reliance on regular-
ization or network modules, enhancing com-
patibility and facilitating its practical appli-
cation. Empirical evaluations on diverse pub-
lic datasets validate the efficacy of our pro-
posed approach.

1 Introduction

Over the past years, deep generative models have
achieved remarkable success, particularly excelling in
image generation and translation tasks. In order to
effectively capture the underlying data distribution,
researchers have introduced various approaches, in-
cluding likelihood-based models (Dinh et al. 2014,
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Kingma & Welling 2013), implicit models (Goodfel-
low et al. 2014), and score-based models (Ho et al.
2020). Among these, generative adversarial networks
(GANs) (Goodfellow et al. 2014) stand out as a ver-
satile family of frameworks that find extensive appli-
cation in diverse domains, rendering related research
highly significant.

While GANs possess various limitations, it is the no-
torious mode collapse issue that significantly ham-
pers their application and progress. The captured
distribution, denoted as pg, often encompasses just
a solitary or a few major modes of the real distri-
bution, pdata, inadvertently disregarding the other
modes. Consequently, GAN training becomes unsta-
ble, resulting in a propensity for generating images
lacking diversity. To mitigate this challenge, sev-
eral techniques have been introduced, including multi-
generator approaches (Ghosh et al. 2018), regulariza-
tion techniques (Miyato et al. 2018), and diversity
penalties (Pei et al. 2021). However, as image res-
olutions escalate and data distributions grow more
intricate, devising strategies to counteract mode col-
lapse becomes a demanding endeavor, often struggling
to keep pace with the rapid evolution of GAN-based
methodologies. Hence, persistent efforts are impera-
tive to mitigate this issue when constructing GAN-
based networks for various applications. Given the
competitive performances demonstrated by alterna-
tive generative frameworks, recent exploration of novel
methodologies to address mode collapse could poten-
tially empower GAN-based frameworks to stand out in
competition against other robust models, such as the
emerging diffusion models (Ho et al. 2020).

In the GAN framework design, the optimal discrimina-
tor is tasked with capturing both real and generated
distributions, yielding a virtual training criterion for
the generator that entails a Jensen-Shannon (JS) di-
vergence between them. However, the JS divergence
will be correctly minimized by the generator only if the
discriminator is optimal at each training step. There-
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fore, the training objective could still tend toward its
optimal value even when the generated distribution
possesses low support (Arora et al. 2017). This phe-
nomenon arises due to the discriminator’s typical de-
sign as a classifier, assigning each input image a label
denoting real or fake. Even if every sample in a batch
is identified as real, it is not guaranteed that the entire
batch mirrors the distribution, as it remains unlikely
to repeatedly yield samples from one or a few limited
categories. Despite anticipating the discriminator’s
awareness of this context, we often neglect to provide
corresponding designs or guidelines. From this stand-
point, prevalent strategies seek to enhance the discrim-
inator’s capabilities, enabling it to consider the data
distribution when discriminating samples (Lin et al.
2018, Nguyen et al. 2017), or involve additional mod-
ules to guide the generator in capturing the distribu-
tion (Bang & Shim 2021, Gong et al. 2023, Pei et al.
2021, Tran et al. 2018). However, a pivotal challenge
emerges regarding how to accurately represent the dis-
tribution itself. Distributions characterizing common
data, such as images, tend to be intricate, rendering
precise acquisition of cumulative distribution functions
(CDFs) nearly infeasible. Consequently, we often rely
on network learning to automate distribution com-
prehension. Yet, entrusting this responsibility to the
discriminator may compromise image quality within
limited parameter constraints. Alternatively, training
supplementary network modules to extract distribu-
tions could potentially exacerbate the inherent insta-
bility of an already precarious training process.

Given the limitations of learning-based approaches, we
explore an alternative solution that does not hinge on
model learning. Our approach involves a one-sample
test method applied to generated samples, penalizing
deviations from the real distribution as an adjunct
to the discriminator. Utilizing non-parametric esti-
mation, we gauge the real distribution and design a
differentiable test statistic to optimize the generator.
This method guides the generator to faithfully cap-
ture the real distribution, effectively suppressing mode
collapse. Importantly, it will not disrupt GANs’ con-
vergence or theoretical integrity, as the test’s null hy-
pothesis mandates identical distributions between real
and generated data, essential for the optimal genera-
tor. Not relying on regularization or network modules
enhances compatibility and ease of application. For
a more comprehensive assessment of mode collapse,
we introduce the Stacked Text dataset with multiple
modes, yielding challenging results. Experiments on
this dataset and other benchmarks affirm our method’s
effectiveness and competitive performance.

In summary, our contributions encompass these as-
pects:

• We introduce the application of statistical tests
within GAN training to guide the generator in ac-
curately capturing the real distribution, thereby
effectively mitigating mode collapse. It is impor-
tant to note that our proposed method seamlessly
aligns with the core convergence and theoretical
integrity of GANs, ensuring its ease of implemen-
tation.

• We meticulously devise a robust framework for
calculating the test statistic and seamlessly inte-
grating it into the overarching training objective.
Employing a non-parametric estimation technique
facilitates accurate real distribution estimation.
Furthermore, the incorporation of a differentiable
function streamlines the calculation of the test
statistic, which is subsequently integrated into the
overarching training objective.

• The validation of our method through extensive
experimentation across multiple datasets under-
scores its effectiveness and attests to its competi-
tive performance.

2 Related Work

The cause of mode collapse is currently inconclusive.
Typically, this issue is attributed to the discriminator’s
inadequate ability to evaluate the diversity of data.
Therefore, three common solutions were suggested to
solve the issue. The first is to improve the genera-
tor’s architecture, enabling it to be initially able to
produce diverse images. Based on this concept, multi-
generators are frequently utilized (Ghosh et al. 2018,
Li et al. 2021) since they are expected to focus on
different modes. However, the limitation is that they
are challenging to implement as they require special
network architectures. The second is to improve the
discriminator design (Nguyen et al. 2017, Lin et al.
2018, Liu et al. 2021) or training (Metz et al. 2017,
Bińkowski et al. 2018a, Mao et al. 2019, Wang et al.
2020, Yu et al. 2020), which enhances its attention on
the data diversity and distributions. These techniques
run the risk of compromising image quality since the
discriminator will focus more on the distribution and
less on quality with constrained parameters. The third
is to add extra modules into GANs as a supplement
to the discriminator, including regularization (Kodali
et al. 2017, Miyato et al. 2018, Liu et al. 2019, 2022,
Pan et al. 2022), network modules (Srivastava et al.
2017, Tran et al. 2018, Grover et al. 2019, Sattigeri
et al. 2019, Bang & Shim 2021), and training objec-
tive (Eghbal-zadeh et al. 2019, Choi et al. 2020, Pei
et al. 2021, Yu et al. 2022, Gong et al. 2023). The
modules aim at constraining the generator and forcing
it to generate samples of various modes, which is easy
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to apply and thus widely used.

In this work, we propose applying statistical tests to
GAN training. Commonly used regularization meth-
ods may undermine the convergence and theoretical
soundness of GANs (Wang et al. 2020). The conver-
gence is unaffected by our approach since it explic-
itly constrains the distributions, which is necessary for
obtaining the optimal GAN generator. Methods uti-
lizing network modules may not function as expected
functionality in other scenarios since they are suscep-
tible to alterations in data and training factors. In
comparison, our method only needs mathematical cal-
culations, which are data-agnostic. As a result, our
method has better compatibility in various scenes. For
other methods that improve the training objective, re-
lated approaches usually consider one aspect of the dis-
tribution, such as the distances and parameters. For
instance, Eghbal-zadeh et al. (2019) proposed maxi-
mizing the distance ratio between generated images to
increase diversity. Choi et al. (2020) proposed to ac-
cess an additional reference dataset to overcome bias
by an importance weight. Pei et al. (2021) presented a
diversity penalty module that enforces the generator to
generate images with different features when the input
latent vectors are different. Yu et al. (2022) proposed
an objective to maintain a certain distance between
the latent code of generated data. Gong et al. (2023)
proposed to additionally constrain the mean and vari-
ance of generated data in training. Compared to these
techniques, our method explicitly requires the overall
distributions to be identical.

Additionally, some evaluation metrics of generative
models also explored the representation of data distri-
bution, which may overlap our method. Sajjadi et al.
(2018) applied a pre-trained classifier trained on natu-
ral images to compare real and generated data at a fea-
ture level. Kynkäänniemi et al. (2019) provided an im-
provement, which uses k-nearest neighbors to form ex-
plicit non-parametric representation of the manifolds
of data. They estimate both the real and generated
data distributions because they aim at evaluation af-
ter training. In contrast to the approaches mentioned
above, we employ statistical test methods in our work
rather than properly estimating the generated distri-
bution because the amount of data available in a single
iteration is limited. It will be discussed in Sec. 3.1.1.

3 Method

3.1 Distribution Consistency Test

3.1.1 Problem Formulation

In GAN frameworks, the generator achieves its opti-
mum when the real and generated distributions are

the same. To achieve this objective, an adversarial
loss was proposed (Goodfellow et al. 2014), which is
expressed as

V (D,G) =Ex∼pdata(x)[log(D(x))]+

Ez∼pz(z)[log(1−D(G(z)))]
(1)

in which D is the discriminator, G is the generator, x
is a real sample, and z is a random noise vector. Then,
the training objective is

min
G

[max
D

V (D,G) + λDks]. (2)

To maintain the convergence, we aim to design a
method whose objective is requisite for the genera-
tor’s optimum. A necessary condition to ensure that
two distributions are the same is that their probabil-
ity density functions (PDFs) are the same. Therefore,
demanding that the PDF of the real and generated
distributions be the same is necessary to constrain the
identity of them. However, estimating a PDF requires
a large number of samples in most statistical meth-
ods. Considering the generated data distribution is
dynamic with the optimization of the generator, it is
inevitable to use a large training batch size in one it-
eration, whatever method we choose to estimate the
generated distribution. Given that the development
tendency of generative models is to generate high-
resolution images, it will be a significant application
limitation that should be avoided.

To check whether the two PDFs are the same, an alter-
native way is to use hypothesis testing, including para-
metric and non-parametric tests. Due to the fact that
we cannot presumptively know the distribution type
for intricate data, using parametric tests is challeng-
ing. Thus, non-parametric tests are almost our only
choice. Owing to the sufficient real training data, it is
possible to estimate the real distribution, and we can
regard the task as a one-sample test problem. Specifi-
cally, give null hypothesis H0 : pg = pdata and alterna-
tive hypothesis H1 : pg 6= pdata. Then obtain a sample
batch

Xg = {X1, X2, ..., Xb} ∼ pg (3)

and check whether it is from pdata, where pg is the gen-
erated distribution, pdata is the real distribution, and
b is the batch size. If Xg is from pdata, accept H0; oth-
erwise reject H0. Here, we mainly considers univariate
data in the analysis. For multivariate data, we apply
the testing to each element and average the results,
without special designs. This is because it could be dif-
ficult to represent the correlations between elements,
which is discussed in the Supplementary Materials.

3.1.2 Test Method

The missed modes could be minor in the distribution
when mode collapse occurs. Minor modes may only
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slightly disturb the distribution of major modes, as
shown in Fig. 1a. Then, the means and variances of
real and generated distributions are still similar, and
Type II errors in tests may occur. To catch this kind of
small difference, we desire to build our solution using a
test method that is sensitive to variations in the shape
of the PDFs in order.

major modes

minor modes

overall

major modes

overall

KS statistic

(a)

major modes

minor modes

overall

major modes

overall

KS statistic

(b)

Figure 1: Illustration of data distribution with two
modes. (a) shows the distributions of major modes,
minor modes, and overall data. (b) shows the KS
statistic between distributions of major modes and
overall data. The overall data distribution is the sum
of the distributions of major and minor modes.

Kolmogorov–Smirnov (KS) test is such a method,
which specifies the supremum of the distances be-
tween two distributions, as shown in Fig. 1b. Thus,
the method is sensitive to the difference in one point.
Give the empirical cumulative distribution function of
a generated sample batch

Fb(x) =
qg(x)

b
(4)

where qg(x) is the number of elements in Xg that sat-
isfies X ≤ x, b is the batch size, and the KS statistic
is

Dks = sup
x
|Fb(x)− Pdata(x)| (5)

where Pdata is the CDF of the real distribution. When
the statistic is below a threshold, the batch of samples
can be regarded as sampled from pdata and H0 will be
accepted.

3.2 Distribution Representation

To calculate the KS statistic, Pdata(x) should be a
known function. However, deriving a precise expres-
sion of Pdata(x) is difficult because the distribution
type of real data is usually a complicated mixed one.
To overcome this difficulty, we review the test method.
In the test method, we only use the value of Pdata(x)
with different x. The distribution type, parameters,
and other properties are unnecessary for this task.
Thus, we only need a method to estimate the values
of a CDF at different points.

In non-parametric estimation methods, density esti-
mation is an approach that can finish the task. It
uses the frequency with a large number of samples to
match the probability and to estimate the values of
the CDF in small intervals. Commonly used meth-
ods include histogram estimation, kernel estimation,
and nearest neighbor estimation. In this work, we
choose histogram estimation due to its small amount
of computation. More complex methods are not con-
sidered because the training time is already noticeably
increased with this method, which we will analyze in
the experiments.

To accomplish the task, we first split the data val-
ues into several intervals I = {Ii|Ii = [ai, ai+1), i ∈
[1, k], i ∈ N}, where k is the number of intervals. With
a given real sample batch Xr = {X1, X2, ..., Xn}, use
qri to represent the number of elements that fall into
Ii. Finally, define the PDF pdata(x) with

pdata(x) =
qri

n(ai+1 − ai)
, x ∈ Ii. (6)

The CDF, Pdata(x), is the integral of it.

For images, the value range of the pixels is [0, 255], and
we uniformly split it into 51 intervals (k=51) which is
effective in experiments, and ablations can be found in
the Supplement Material. More intervals will increase
the accuracy of estimation, but the computation will
also be increased.

3.3 Differentiable Design

As Pdata(x) values are known, the KS statistic Dks

can be calculated. Because the estimation of Pdata(x)
is not continuous, for convenience, we first calculate
the number of elements in the generated sample batch
Xg that falls into the interval Ii, marked as qgi . Then,
the cumulative values qg(x) =

∑
i q

g
i can be utilized to

calculate Fb(x).

However, if the result is utilized to constrain the gen-
erator, all computing operations must be differentiable
for effective backpropagation. When calculating qgi , a
function similar to a band-pass filter will be applied,
as shown in Fig. 2a. To make it differentiable, we use
an improved radial basis function to match the filter
threshold in the calculation

qgi =

b∑
j=1

exp[−0.5(
Xj − µ(i, k)

σ(k)
)10] (7)

where Xj is an element in Xg. For data whose value

range is [0,M ], we can define µ(i, k) = M(2i+1)
2k and

σ(k) = M
2k . The improved radial basis function is illus-

trated in Fig. 2b. Here, we modify the exponent from
2 to 10 for a sharp cutting-off filter, making all values
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that are expected to be 1 larger than 0.9. Compared
to a 10-step band-pass filter, this function needs less
computation as only one exponentiation operation is
included.
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Figure 2: Illustration of (a) the non-differentiable func-
tion and (b) our differentiable function to calculate qgi .

3.4 Training Objective

With the differentiable design, a KS statistic Dks that
supports backpropagation is obtained. Instead of set-
ting a threshold, we require the generator to minimize
Dks, so the confidence score will be high when the real
and generated distributions are regarded as the same.
Though this setting may cause more Type I errors,
ablation experiments prove that it is effective.

To summarize, the training objective is

min
G

[max
D

V (D,G) + λDks]. (8)

Our experiments set λ to 0.1 to keep the same order
of magnitude as the adversarial loss, and the ablations
can be found in the Supplementary Material.

4 Experiments

We will report the critical experimental results. The
implementation details, theoretical results, more ab-
lations, and comparisons can be found in the Supple-
mentary Material.

4.1 Stacked MNIST

To explicitly evaluate the effectiveness of suppress-
ing mode collapse, we utilize the Stacked MNIST
dataset. According to the method provided by Che
et al. (2016), the images in the Stacked MNIST dataset
are obtained by stacking three random single-channel
images in MNIST (LeCun et al. 1998). Therefore,
1,000 modes (i.e., from 000 to 999) should be gener-
ated. We use a DCGAN architecture, provided by Lin
et al. (2018), as the baseline to better reproduce mode
collapse problems. We report the number of modes for
which at least one sample is generated. A higher mode
number denotes better results because it denotes that

more modes are captured. We also report the reverse
Kullback-Leibler divergence (KL) between the real and
generated samples over classes. A lower KL denotes
better results because it indicates that the generated
distribution is more like the real one. We employ three
other methods, which can be transplanted into the
baseline for comparisons. The results are shown in
Table 1, denoting the effectiveness of our method.

Table 1: Experiments on Stacked MNIST. Unrolled
GAN is trained with 10 unrolling steps. SN denotes
Spectral Norm.

Method Modes(↑) KL(↓)
Baseline 24 7.48
Unrolled (Metz et al. 2017) 742 0.81
SN (Miyato et al. 2018) 306 1.26
LDF (Gong et al. 2023) 970 0.23

Ours 1000 0.09

We mentioned that the discriminator might be un-
aware that it is a small probability event to obtain sim-
ilar samples repeatedly. Thus, we additionally check
the discriminator to examine its ability to deal with
a sample batch from only one category, which may
better denote whether mode collapse has been alle-
viated. We fetch the discriminator model from the
last epoch where the discriminator has an advantage
in the adversarial training. We get 128 real samples
as a batch from each category (named monotonous
samples) and separately feed them into the model. If
mode collapse occurs, we assert that the discriminator
will classify monotonous samples as real, ignoring that
they are all from one category. If mode collapse has
been alleviated, the discriminator should regard them
as fake. The outputs under all categories will be av-
eraged. Meanwhile, we also get 128 real and 128 gen-
erated samples from 128 different random categories
(named diverse samples) for comparisons. Label 1 de-
notes real, and 0 denotes fake.

Table 2: Outputs of the discriminator from the DC-
GAN network on Stacked MNIST.

Method Monotonous
Diverse

Real Gen

Baseline 0.776 0.943 0.069
Unrolled, 10 steps 0.023 0.925 0.000
Spectral Norm 0.391 0.951 0.007
LDF 0.205 0.984 0.017

Ours 0.233 0.989 0.008

The results in Table 2 are in line with our conjecture.
The discriminators are all close to optimal as they cor-
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rectly classify diverse real and generated samples. For
the baseline, the output with monotonous samples is
only a bit lower but still larger than 0.5. Thus, the
discriminator cannot successfully reject monotonous
samples, and mode collapse could occur. For other
methods, the outputs have noticeably decreased, indi-
cating that mode collapse has been suppressed.

We must note that we have no basis to say that smaller
outputs for monotonous samples represent less mode
collapse when the output is already very low. For in-
stance, Unrolled GAN provides a powerful discrimi-
nator because they propose a training strategy to im-
prove the discriminator directly. The other methods
propose additional constraints so that the discrimi-
nator is not expected to reject monotonous samples
alone. Thus, it is not a direct means to compare per-
formance, and thereby our method may still be prior
according to the other metrics.

4.2 Stacked Text

The Stacked MNIST dataset allows a relatively accu-
rate evaluation of mode collapse. However, the char-
acters in MNIST all have a hand-writing font and no
backgrounds. This kind of data is not common in the
real world, and the modes are also easy to be captured.
There is no targeted evaluation metric for mode col-
lapse for natural image datasets, as there is neither a
powerful pre-trained classifier to recognize generated
images nor fine-grained annotations of the real data.
Existing metrics, such as Inception Score (IS) (Sali-
mans et al. 2016) and Fréchet Inception Distance score
(FID) (Heusel et al. 2017), mostly take into considera-
tion the image quality simultaneously instead of solely
considering the distribution. Therefore, it might be
challenging to determine whether a technique prevents
mode collapse or enhances image quality.

Inspired by the construction of Stacked MNIST, we ex-
plore using text character images in natural scenes to
produce the stacked data. There are three advantages.
First, there is enough annotated public data as text
recognition has been developed for many years. Sec-
ond, recognizing regular text characters is relatively
simple, and many state-of-the-art methods can achieve
high recognition accuracy. Third, scene text images
are more similar to general natural scene images, so
they can better denote the performance of a GAN-
based method in application scenes.

Though the research interests are irregular text recog-
nition recently, we still choose to use regular text im-
ages, as our aim is to examine the ability to sup-
press mode collapse rather than represent complicated
images. Thus, we extract the alphanumeric charac-
ters from ICDAR 2013 (Karatzas et al. 2013) dataset,

which has regular text with detailed location and con-
tent annotations. There are 36 categories (numbers
0-9 and alphabets a-z, case-insensitive). Then we ran-
domly choose three character images and stack them
following the rule of Stacked MNIST. There will be
46,656 (363) categories, which is challenging for gen-
eration tasks.

In practice, we randomly stacked 10M images, which
covers 41,823 categories, and the image number of each
category is different. The non-uniform distribution of
modes brings more challenges. We train a ViT clas-
sifier (Dosovitskiy et al. 2020) on the gray character
images, which has achieved an accuracy of 1.0 on the
training data and an accuracy of 0.9 on the testing
data. The code, model weights, and dataset will be
publicly available.1 Then, we still utilize the DCGAN
network used in Stack MNIST experiments. Modes
and KL will be reported, as shown in Table 3.

Table 3: Experiments on Stacked Text. Unrolled GAN
is trained with 10 unrolling steps. The results are av-
eraged over 10 trials with standard error reported.

Method Modes(↑) KL(↓)
Baseline 18068.4±785.23 0.0047±0.0014
Unrolled 17689.4±824.09 0.0242±0.0020
SN 18169.0±701.18 0.0035±0.0009
LDF 18547.5±583.88 0.0146±0.0083

Ours 19663.7±375.45 0.0061±0.0010

We observe that the performance even becomes worse
using Unrolled GAN. It is because the task is too chal-
lenging for the simple network architecture, as this
method only provides a training strategy. The other
methods have improved the performance, but only less
than half of the modes are captured. Thus, Stacked
Text can represent the mode collapse issue and brings
new challenges for related methods.

4.3 Natural Datasets

Baseline We choose a milestone work Style-
GAN2 (Karras, Laine, Aittala, Hellsten, Lehtinen &
Aila 2020) as our baseline, while the ADA enhance-
ment (Karras, Aittala, Hellsten, Laine, Lehtinen &
Aila 2020) is used. Because this framework is still
widely used as the baseline recently (Sauer et al. 2022,
Zhang et al. 2022), our method will benefit many works
if we can achieve a competitive performance on it.
Meanwhile, we also conduct experiments with DC-
GAN (Radford et al. 2015) and WGAN-GP (Gulra-
jani et al. 2017) on small datasets to better evaluate
our method.

1https://github.com/yxgong0/Stacked Text
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Table 4: Comparisons on CIFAR-10 dataset.

Method Baseline IS(↑) FID(↓)
DCGAN (Radford et al. 2015) - 6.471 53.64
WGAN-GP (Gulrajani et al. 2017) - 7.350 29.84

D2GAN (Nguyen et al. 2017) Proposed 7.150 -
SNGAN (Miyato et al. 2018) Proposed - 29.30
MDGAN (Eghbal-zadeh et al. 2019) Proposed - 36.80
UniGAN (Pan et al. 2022) Proposed 3.790 -
PDPM (Pei et al. 2021) WGAN-GP 7.830 29.03
MaF-GAN (Liu et al. 2021) WGAN - 30.85
MaEM-GAN (Liu et al. 2022) MaF-GAN - 29.22
Dist-GAN (Tran et al. 2018) DCGAN - 45.60
DRAGAN (Kodali et al. 2017) DCGAN 6.900 52.86
MGGAN (Bang & Shim 2021) DCGAN 6.473 53.30

Ours
DCGAN 7.032 41.83

WGAN-GP 7.895 28.11

Datasets We choose the widely used datasets, in-
cluding CIFAR-10 (Krizhevsky 2009), CelebA (Liu
et al. 2015), LSUN Bedroom (Yu et al. 2015) and
FFHQ (Karras et al. 2019). We synthesize images for
CIFAR-10 on 32×32 resolutions, CelebA and LSUN
Bedroom on 64×64, and FFHQ on 256×256 to evalu-
ate the performance at different image sizes.

Metrics Following Karras, Aittala, Hellsten, Laine,
Lehtinen & Aila (2020), we report the IS (Salimans
et al. 2016), FID (Heusel et al. 2017) and kernel in-
ception distance (KID) (Bińkowski et al. 2018b) of 50k
generated images. These metrics simultaneously eval-
uate the image quality and distribution coverage. The
improved Recall (Kynkäänniemi et al. 2019) is also in-
volved in examining the coverage of the distribution.
The MS-SSIM in one class (Odena et al. 2017) is also
reported on some datasets to evaluate the data diver-
sity explicitly.

CIFAR-10 Experiments As some methods pro-
posed special architectures that are not large, we use
DCGAN and WGAN-GP as the baseline for compar-
isons as fair as possible. The results are shown in Ta-
ble 4. Some methods are also pluggable and report
the performance on different baselines (Arjovsky et al.
2017, Gulrajani et al. 2017, Radford et al. 2015). Our
method improves the performance of baselines, which
is effective and has reached mainstream performance.

CelebA and LSUN Bedroom Experiments Con-
sidering SOTA methods have achieved competitive
performance on these large datasets, we choose
StyleGAN2-ADA as the baseline and compare the
methods with ViTGAN (Lee et al. 2021) to observe
how big the gap is. The results are shown in Table 5,
and our method has achieved results very close to ViT-

(a) (b)

Figure 3: Generated batches on CelebA of the baseline
(a) and the baseline with our method (b).

GAN, demonstrating its effectiveness. The generated
image batches are also visualized, as shown in Figs. 3
and 4. We use fixed seeds from 0 to 63 to generate the
batches for both models, and more modes (e.g., eth-
nicity and bed color) are captured with our method.

FFHQ We also try our method on 256×256 FFHQ
images. The improvements on the baseline are shown
in Table 5, and the visualized images (generated with
fixed seeds from 0 to 15) are shown in Fig. 5. From
the images, it can be observed that image quality
has not been compromised. Larger images are not
considered for two reasons. First, our work concen-
trates on suppressing mode collapse rather than strug-
gling to achieve the SOTA performance on challenging
datasets. For high-resolution images, mode collapse is
not the only problem to be solved. Improving the cov-
erage of distribution is just a drop in the bucket, so the
improvements may not be obvious. Even if there is a
noticeable improvement, it is hard to say whether it
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Table 5: Experiments on CelebA, LSUN Bedroom, and FFHQ. Our method has a StyleGAN2-ADA baseline.

Dataset Method IS(↑) FID(↓) KIDx103(↓) Recall(↑) MS-SSIM(↓)

CelebA
StyleGAN2-ADA 3.12 2.01 0.49 0.49 0.24
ViTGAN 3.21 3.74 - - -
Ours 3.17 2.00 0.45 0.53 0.23

LSUN Bedroom
StyleGAN2-ADA 2.11 2.84 65.5 0.42 0.09
ViTGAN 2.36 2.65 - - -
Ours 2.29 2.65 65.3 0.54 0.08

FFHQ
StyleGAN2-ADA 5.31 3.62 1.08 0.43 0.20
Ours 5.35 3.60 1.00 0.50 0.17

(a) (b)

Figure 4: Generated batches on LSUN Bedroom of the
baseline (a) and baseline with our method (b).

is because mode collapse has been alleviated or other
reasons. Second, our method is not efficient for large
images, and we will analyze this issue. However, it
is worth noting that the limitation is not insurmount-
able, as analyzed in Sec. 4.5.

4.4 Ablations

Since our method is an improvement to GAN frame-
works rather than an architecture specially designed
for images, we did not extensively investigate the dis-
tribution representation of multivariate data. Instead,
we focused on considering the marginal distributions
of pixels, following Gong et al. (2023). Therefore,
our method may not be the optimal solution for im-
ages, as it overlooks the relationships between pixels
and only addresses the necessary condition of identical
joint distributions. To explore whether we can achieve
a better representation with features, we utilized sev-
eral pre-trained feature extractors to transform images
into manifolds in feature space and then applied our
method. The results are presented in Table 6.

We can observe that only ViT shows a marginal im-
provement, but it comes with an increased computa-
tional burden. Therefore, we believe that this issue

(a) (b)

Figure 5: Generated batches on FFHQ of the baseline
(a) and baseline with our method (b).

Table 6: Feature space ablations on CIFAR-10 dataset
with DCGAN.

Feature Extractor IS(↑) FID(↓)
Baseline (no constraint) 6.471 53.64

None (pixel space, Ours) 7.032 41.83
VGG-16

6.999 43.01
(Simonyan & Zisserman 2014)
ResNet-50 (He et al. 2016) 6.901 41.45
Inception V3 (Szegedy et al. 2016) 6.980 42.42
ViT (Dosovitskiy et al. 2020) 7.011 41.24

cannot be easily resolved and requires more focused
design efforts. Since it is not the primary focus of this
research, we provide some preliminary analysis in the
Supplementary Materials.

4.5 Efficiency and Limitation

We notice that the training time is increased with our
method. Though we have applied many lightweight
schemes, including the radial basis function and the
simple histogram estimation, the floating-point opera-
tions (FLOPs) may still be a large number. We report
results about efficiency in the Supplementary Mate-
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rial. When the image resolution is 256×256, the run-
ning time reaches nearly 0.5s, which takes up more
than 20% of the model training time. It is because
the increment of resolutions will multiply FLOPs with
the increment of data elements. Thus, efficiency is the
main limitation of our method. To overcome this issue,
we provide two ideas for future works.

First, applying tests to features instead of images may
improve efficiency. Owing to the downsampling by
models, the number of data elements will decrease, re-
sulting in less computation. However, focused design
efforts are required as we need a pre-trained model that
can represent the features related to modes well. Sec-
ond, conducting the distribution test in part of the im-
age is also possible. For most scenes, features related
to modes are not uniformly distributed in an image.
The unrelated features, e.g., the background features,
could be unnecessary to be tested. Therefore, consid-
ering segmentation-based or attention-based methods
to make the method focus on critical regions will im-
prove the efficiency.

5 Discussion and Conclusion

In this study, we introduce the use of the KS test to
mitigate mode collapse during GAN training. Our
method effectively applies the KS test to gener-
ated samples, mitigating mode collapse while main-
taining the convergence and theoretical integrity of
GANs. Importantly, our approach is data-agnostic
and free from prerequisites, enhancing compatibility
and ease of application. However, we acknowledge
efficiency limitations, particularly when dealing with
high-resolution images. To address this, we propose
two strategies to overcome this challenge, suggesting
potential avenues for improvement. Moving forward,
future research could explore more accurate estima-
tion methods and direct divergence calculation be-
tween distributions. Learning-based methods to ob-
tain a more accurate distribution CDF can also be at-
tractive. It is also imperative to investigate the repre-
sentation of multivariate data distributions, as GANs
are typically employed for image generation.

Acknowledgements

This work was partly supported by the National Key
Research and Development Program of China under
Grant 2018AAA0103203, and partly supported by the
Team Project of Tianfu Talent Program under Grant
2022500120654160. We would like to thank the re-
viewers who provided valuable comments.

References

Arjovsky, M., Chintala, S. & Bottou, L. (2017),
Wasserstein generative adversarial networks, in
‘International Conference on Machine Learning
(ICML)’, pp. 214–223.

Arora, S., Ge, R., Liang, Y., Ma, T. & Zhang, Y.
(2017), Generalization and equilibrium in genera-
tive adversarial nets (GANs), in ‘International Con-
ference on Machine Learning (ICML)’, pp. 224–232.

Bang, D. & Shim, H. (2021), MGGAN: Solving mode
collapse using manifold-guided training, in ‘Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV)’, pp. 2347–2356.
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1 Implementation Details

1.1 Stacked MNIST and Stacked Text Experiments

The detailed DCGAN architectures provided by Lin et al. (2018) are described in Tables 1 and 2.

Layers Configurations Channels

Fully Connected - 256-1024
Reshape - 1024-64
Batch Normalization - -
ReLU - -
Transposed Convolution {k3,s2,p1} 64-32
Batch Normalization - -
ReLU - -
Transposed Convolution {k3,s2,p1} 32-16
Batch Normalization - -
ReLU - -
Transposed Convolution {k3,s2,p1} 16-8
Batch Normalization - -
ReLU - -
Transposed Convolution {k3,s1,p1} 8-3
Tanh - -

Table 1: Architecture of the generator in Stacked MNIST and Stacked Text experiments. k, s, and p represent
kernel size, stride, and padding size. Channels show the input-output channels.

Layers Configurations Channels

Convolution {k3, s2, p1} 3-8
Batch Normalization - -
Leaky ReLU 0.3 -
Convolution {k3, s2, p1} 8-16
Batch Normalization - -
Leaky ReLU 0.3 -
Convolution {k3, s2, p1} 16-32
Batch Normalization - -
Leaky ReLU 0.3 -
Reshape - 32-512
Fully Connected - 512-1
Sigmoid - -

Table 2: Architecture of the discriminator in Stacked MNIST and Stacked Text experiments. k, s, and p represent
kernel size, stride, and padding size. Channels show the input-output channels.
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In the training process, the optimizer is Adam Kingma & Ba (2014) with a learning rate 0.0002 for both
the generator and the discriminator. The batch size is 128, and the network is trained for 200 epochs. The
experiments are carried out on a Linux platform with a single NVIDIA TITAN Xp GPU. Note that the settings
are used for all models, including models with other enhancement methods (unrolled, spectral norm, and LDF),
and both datasets.

In the testing process, for Stacked MNIST, each model will generate 25,600 samples and we compute the predicted
class label of each image channel by a pre-trained MNIST classifier1. For Stacked Text, each model will generate
204,800 images and we compute the predicted class label by a ViT classifier trained by ourselves, as mentioned
in the paper.

Following Gong et al. (2023), we regard each image pixel as a data element and apply tests to each pixel. The
results will be averaged. We will also analyze and evaluate the effectiveness of operating manifolds at feature
space in Sec. 4.3.

In the experiments of discriminator analysis, the adjunct is not included in the discriminator. In other words,
the adjunct, such as LDF and our KS statistic, will not impact the outputs of rejecting monotonous samples.
Therefore, the performance of rejecting monotonous samples represents the single ability of the discriminator.

1.2 Natural Dataset Experiments

When using DCGAN Radford et al. (2015) as the baseline, the optimizer is Adam Kingma & Ba (2014) with a
learning rate 0.001. The batch size is 128, and the networks are trained for 200 epochs. The experiments are
conducted on a Linux platform with a single NVIDIA TITAN Xp GPU.

When using WGAN-GP Gulrajani et al. (2017) as the baseline, the optimizer is Adam Kingma & Ba (2014) with
a learning rate 0.00005. The batch size is 128, and the networks are trained for 200 epochs. The experiments
are conducted on a Linux platform with a single NVIDIA TITAN Xp GPU.

When using StyleGAN2-ADA Karras et al. (2020) as the baseline, the optimizer is Adam Kingma & Ba (2014)
with a learning rate 0.001. The batch size is automatically set with the official code2 (64 for CIFAR-10, 32 for
CelebA and LSUN bedroom, and 16 for FFHQ). The networks are trained for 100,000 iterations for CIFAR-
10 and 25,000 iterations for the other datasets. The experiments are conducted on a Linux platform with
two NVIDIA TITAN RTX GPUs. According to the methods provided by Karras et al. (2020), the balanced
consistency regularization (bCR) is used; class-conditional settings are not used; the CIFAR-specific architecture
tuning is utilized for CIFAR-10.

Similarly, all models regard image pixels as data elements. The methods for comparisons in the paper include
D2GAN Nguyen et al. (2017), SNGAN Miyato et al. (2018), MDGAN Eghbal-zadeh et al. (2019), UniGAN Pan
et al. (2022), PDPM Pei et al. (2021), MaF-GAN Liu et al. (2021), MaEM-GAN Liu, Li, Wu, Liang, Huang, Li,
Ghanem & Zheng (2022), Dist-GAN Tran et al. (2018), DRAGAN Kodali et al. (2017), MGGAN Bang & Shim
(2021), and ViTGAN Lee et al. (2021).

1.3 Metric Details

The evaluation metrics are calculated with the same approach as the one utilized by Karras et al. (2020).
The IS is calculated with 50k generated images. The FID, KID, and Recall are calculated with 50k generated
images against the full real dataset. The MS-SSIM is calculated with 100 randomly chosen pairs of images,
following Odena et al. (2017). The metrics are implemented with public code for MS-SSIM3 and public code
for the others4. Higher IS, lower FID and KID represent better image quality and better distribution coverage.
Higher Recall represents better distribution coverage. Lower MS-SSIM represents better diversity because it
denotes that the images are less similar.

1https://github.com/fjxmlzn/PacGAN
2https://github.com/NVlabs/stylegan2-ada-pytorch
3https://github.com/VainF/pytorch-msssim
4https://github.com/NVlabs/stylegan2-ada-pytorch



(a) Real samples (b) Baseline samples

(c) Unrolled samples (10 steps) (d) Spectral Norm samples

(e) LDF samples (f) Our samples

Figure 1: Real and generated images for Stacked Text.

2 Visualized Samples

The visualization of Stacked Text samples is shown in Fig. 1. Each model randomly generates 128 samples. The
visualization of CIFAR-10 samples is shown in Fig. 2. Because there are only 10 categories in CIFAR-10, the
diversity cannot be intuitively observed. However, it can be observed that the image quality is not sacrificed.

The loss curves of the DCGAN training on CIFAR-10 are shown in Fig. 3. Although our method is not designed
for enhancing stability, the training is still stable. The reason could be that our method imposes a necessary
condition on the optimal generator for effective GAN training. Deep learning models, with sufficient capacity, can
typically optimize both our penalty and the GAN objective simultaneously, indicating most models can be guided
correctly. If instability arises, suggesting potential mode collapse, additional stability-enhancing techniques may
be needed.

3 Theoretical Results

We will give some theoretical results for univariate data to further support the claim that our method keeps
the convergence and theoretical soundness of GANs. In the tests, the null hypothesis is H0 : pg = pdata. The
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(a) Baseline (DCGAN) samples (b) Our samples

Figure 2: Generated images for CIFAR-10.

(a) Losses of the discriminator. (b) Losses of the generator. (c) The KS statistics in training.

Figure 3: Loss curves of DCGAN training on CIFAR-10.

training objective of our method is
min
G

[max
D

V (D,G) + λDks]. (1)

For simplicity, use C(G) = maxD V (D,G) to represent the original virtual training criterion for the generator G,
and use C∗(G) = C(G) + λDks to represent our virtual training criterion for G. Goodfellow et al. (2014) have
proved that if and only if pg = pdata, C(G) can reach the minimum. Then we will prove that C∗(G) can reach
the minimum with the same condition.

Lemma 1. For a function f(x) = f1(x)+f2(x), f(x) must be bounded below if f1(x) and f2(x) are both bounded
below.

Proof. Assume f1(x) ≥M and f2(x) ≥ N , then there must be f(x) ≥M +N . Therefore, f(x) must be bounded
below.

Lemma 2. For a function f(x) = f1(x) + f2(x) where f1(x) and f2(x) are both bounded below, if f1(x) and
f2(x) can reach the minimum simultaneously, f(x) will reach the minimum if and only if f1(x) and f2(x) reach
the minimum simultaneously.

Proof. Assume f1(x) ≥ M and f2(x) ≥ N , then there must be f(x) ≥ M + N . If there exists x which make
f1(x) = M and f2(x) = N , we will have f(x) = M +N , which is the minimum. Therefore, f(x) will reach the
minimum if f1(x) and f2(x) reach the minimum simultaneously.

Assume there exists x which makes f(x) = M +N when f1(x) and f2(x) do not reach the minimum simultane-
ously. Then there must be f1(x) > M or f2(x) > N . If f1(x) > M , we have

f2(x) = M +N − f1(x)

= N + [M − f1(x)]

< N

(2)



which is contrary with f2(x) ≥ N . If f2(x) > N , similarly we have f1(x) < M which is contrary with f1(x) ≥M .
Therefore, f(x) will reach the minimum only if f1(x) and f2(x) reach the minimum simultaneously.

Theorem 1. If and only if pg = pdata, C
∗(G) can reach the minimum.

Proof. C(G) is bounded below according to the results provided by Goodfellow et al. (2014). The KS statistic
Dks is non-negative according to its definition. Then C(G) and Dks are both bounded below. According to
Lemma 1, C∗(G) is also bounded below.

When pg = pdata, C(G) reaches the minimum according to the results provided by Goodfellow et al. (2014), and
it is possible that H0 is accepted. Therefore, C(G) and Dks can reach the minimum simultaneously, and C∗(G)
can reach the minimum according to Lemma 2.

According to Lemma 2, C∗(G) will reach the minimum only if C(G) and Dks reach the minimum simultaneously.
According to the results provided by Goodfellow et al. (2014), C(G) will reach the minimum only if pg = pdata.
Therefore, C∗(G) will reach the minimum only if pg = pdata.

Definition 1. In hypothesis testing, Type I error is to reject H0 while it is true, and Type II error is to accept
H0 while it is false.

Theorem 2. When Type I error occurs, C∗(G) cannot reach the minimum even if pg = pdata.

Proof. When Type I error occurs, H0 must be rejected. Therefore, Dks must have a non-zero value in our
design. Therefore, even if pg = pdata, which causes C(G) reaches the minimum, C∗(G) still cannot reach the
minimum.

Theorem 3. Even if Type II error occurs, C∗(G) cannot reach the minimum.

Proof. When Type II error occurs, H0 must be accepted. Therefore, Dks must reach zero. However, C(G) cannot
reach the minimum if pg 6= pdata according to the results provided by Goodfellow et al. (2014). Therefore, C∗(G)
cannot reach the minimum.

The results represent that only Type I errors will impact the convergence of GANs, and Type II errors will
only cause the method to not work. When Type I error occurs, the generator should learn to not only make
pg = pdata but also overcome Type I error. However, the generator should still keep pg = pdata when overcoming
Type I errors. Therefore, the optimum is not changed, so the convergence and technical soundness of GANs is
not broken.

To overcome Type I error, the generator will tend to generate samples that totally obey the real distribution.
Thus, over-fitting risks will increase. However, the probability of Type I error (the level of significance α) is
very small. Meanwhile, repeatedly testing in the training iterations will further reduce the probability of the
error. We also do not observe negative effects in experiments at Sec. 4.1. Considering that over-fitting is not
a noticeable problem in GANs, our method is still effective. However, aggravating over-fitting is a possible
potential limitation of our method, which should be noted.

4 Ablations

4.1 Threshold Analysis

We have reported ablation results of the threshold for Dks, as shown in Table 3.

The performance becomes worse with the increase of T . In theory, a larger T will decrease the probability of
Type I errors, while Dks is easier to reach 0. Thus, a smaller T will require the generator to learn to overcome
Type I errors, which increase over-fitting risks according to our analysis. Meanwhile, a larger T denotes the
relaxation of the constraint. A larger T will cause the method to not work more frequently. According to the
results, the mode collapse problem could be more severe than the over-fitting problem in GAN training. As a
result, we set T to 0 for the best performance.
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Threshold (T ) IS(↑) FID(↓)
Baseline (no constraint) 6.471 53.64

0 (Ours) 7.032 41.83
0.05 6.894 41.90
0.23 6.865 45.11
0.5 6.490 51.98

Table 3: Threshold ablations on CIFAR-10 dataset with DCGAN.

4.2 Number of Intervals

For images, the value range of one pixel is [0, 255], and we uniformly split it into 51 intervals (k=51). We try
some typical numbers to evaluate the effectiveness, as shown in Table 4.

#Intervals (k) Interval Len IS(↑) FID(↓)
Baseline

- 6.471 53.64
(no constraint)

5 51 6.554 52.32
17 15 6.799 43.20
51 (Ours) 5 7.032 41.83
85 3 7.100 41.89
255 1 7.098 41.30

Table 4: Interval ablations on CIFAR-10 dataset with DCGAN.

It can be seen that when using more than 51 intervals, the improvements will not be obvious. Meanwhile, the
computation will be increased, so we consider 51 to be a proper number for images in the experiments.

4.3 Feature Space for Images

As our method is an improvement for GAN frameworks instead of an architecture specially designed for images,
we do not thoroughly research the distribution representation of multivariate data and simply follows Gong et al.
(2023). However, we will give some preliminary discussion and results for future works.

In experiments, we regard original image pixels as data elements to apply tests. For multivariate data, it is
almost impossible to estimate the joint distribution due to the complexity of relations between dimensions.
Admittedly, solely considering each pixel can enable us to obtain a necessary condition of pg = pdata since having
the same marginal distribution is a necessary condition of having the same joint distribution. However, inspired
by perceptual loss Johnson et al. (2016), it seems that there is a simple method to take into consideration
relations between pixels, which is to use pre-trained models to transform images into feature maps at first.

However, we have some concerns about using feature maps for tests. First, commonly used pre-trained models
are not designed for distribution estimation. Use I to denote the values in pixel space and M to denote the
values in feature space, and the process of feature extraction can be expressed as M = F (I) where F is a feature
extraction model, where M is still multivariate. Even if we map the overall image into one value M , we can only
estimate PM = PF (I) instead of the joint distribution PI , where Pξ denotes the CDF of ξ. Thus, a special design
must be applied, requiring special training and reducing compatibility. Second, the definition of mode in mode
collapse is not explicit. For instance, if we train a generative model on text character images, mode collapse
could not only denote that not all character classes are captured but also denote that some attributes, such as
fonts, colors, and shadows, are not totally captured. The widely used feature extractor, like VGG-16 Simonyan &
Zisserman (2014), are designed for general classification. Thus, these fine-grained features might be not extracted
well.

We involve some commonly used pre-trained models to conduct ablations about pixel space and feature space,
and the results are shown in Table 6. The models are pre-trained on ImageNet Deng et al. (2009). Our



Method Baseline Resolution IS(↑) FID(↓)
DCGAN - 64x64 2.11 24.23
WGAN-GP - 64x64 2.78 33.48

MaF-GAN (Liu et al. 2021) WGAN (Arjovsky et al. 2017) 256x256 - 12.43
MGO-GAN (Li et al. 2021) Proposed 128x128 - 189.19
Dist-GAN (Tran et al. 2018) DCGAN (Radford et al. 2015) 32x32 - 23.70
DRAGAN (Kodali et al. 2017) INFO GAN (Chen et al. 2016) 32x32 - 42.30
PDPM (Pei et al. 2021) WGAN-GP (Gulrajani et al. 2017) 64x64 2.94 24.86
HSGAN (Yu et al. 2022) Proposed 64x64 2.73 17.49

Ours
DCGAN (Radford et al. 2015) 64x64 2.92 21.19
WGAN-GP (Gulrajani et al. 2017) 64x64 3.15 22.98

Table 5: Comparisons for CelebA dataset.

method will be applied to the output feature maps from these models. We can observe that all models achieve
improvements compared to the baseline. It denotes that more modes are captured, so the performance becomes
better. For different models, even the best ViT only achieves a similar result as ours, while the computation
burden becomes very heavy. Thus, using feature maps may require further design to achieve a competitive
performance. Considering it is not the main research interest in this work, we uphold to operate images at pixel
space.

Feature Extractor IS(↑) FID(↓)
Baseline (no constraint) 6.471 53.64

None (pixel space, Ours) 7.032 41.83
VGG-16 (Simonyan & Zisserman 2014) 6.999 43.01
ResNet-18 (He et al. 2016) 6.754 42.98
ResNet-50 (He et al. 2016) 6.901 41.45
Inception V3 (Szegedy et al. 2016) 6.980 42.42
ViT (Dosovitskiy et al. 2020) 7.011 41.24

Table 6: Space ablations on CIFAR-10 dataset with DCGAN.

4.4 Radial Basis Function

We mentioned that in the radial basis function (RBF), we modify the exponent from 2 to 10 for a sharp cutting-
off filter, making all values that are expected to be 1 larger than 0.9. If we use a smaller exponent, the fitting
will be more inaccurate, which might impact the performance. To evaluate the impacts, we try some typical
values, as shown in Table 7. It can be observed that 10 is a proper number since larger numbers only achieves
marginal improvements.

Exponent in RBF IS(↑) FID(↓)
Baseline (no constraint) 6.471 53.64

2 (Initial) 6.302 55.55
4 6.477 52.15
6 6.699 45.13
8 6.808 43.00
10 (Ours) 7.032 41.83
12 7.032 41.80
14 7.044 41.85

Table 7: Exponent ablations in the RBF on CIFAR-10 dataset with DCGAN.

Abc23v!
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4.5 Training Objective

The weight of the KS statistic λ is set to 0.1 to keep the same order of magnitude as the adversarial loss. To
evaluate the impacts, we try different values that make the statistics to achieve different orders of magnitude,
as shown in Table 8. When λ is 0.01, the performance decreases because the gradients becomes small, which
could not sufficiently help the discriminator. For the other values, there are only fluctuations, indicating the
effectiveness of our method.

λ IS(↑) FID(↓)
Baseline (no constraint) 6.471 53.64

0.01 6.987 43.11
0.1 (Ours) 7.032 41.83
1 7.004 41.81
10 7.017 41.98

Table 8: Ablations of λ on CIFAR-10 dataset with DCGAN.

4.6 Efficiency

The running time and floating-point operations (FLOPs) of our method are reported in Table 9. The baseline
is StyleGAN2-ADA Karras et al. (2020). For a low image resolution, the efficiency is tolerable as the initial
training time is also not a large number. For a high resolution, the running time reaches nearly 0.5s, while
training StyleGAN2-ADA with high resolution is also very slow. Thus, the efficiency is a limitation of our
method, especially for high-resolution image generation.

Resolution FLOPs (M) Running time (ms) %

32×32 2.78 38.82 14.7
64×64 11.13 54.60 15.4

256×256 178.13 448.83 20.2

Table 9: Efficiency of our method on different resolutions. % denotes the running time of our method as a
percentage of model training time.

Additionally, we did not consider the ablations of removing the discriminator for two reasons. Firstly, our
method, designed for GANs, relies on the discriminator. Removing the discriminator would alter the framework,
affecting our method’s functionality. Secondly, the imprecise nature of histogram estimation means Dks can
only assist the discriminator and may not accurately represent distributions, potentially leading to unfavorable
outcomes.

5 Comparisons

5.1 CelebA Results with DCGAN

Although there are many works for suppressing mode collapse using CelebA Liu et al. (2015) for experiments,
fair comparisons on this dataset are hard to be reported as the setups are different. Here we list the methods
and their setups for more comparison results. Note that the comparisons may be unfair. We use DCGAN
and WGAN-GP as the baselines, whose training setups are the same as the ones used for CIFAR-10, to evaluate
our method on the CelebA dataset. The results are shown in Table 5.

5.2 CelebA and FFHQ Comparisons to SOTA methods

Because we claim that exploring methods for combating mode collapse could potentially empower GAN-based
frameworks to stand out in competition against other robust models, we compare our results (including the
baseline StyleGAN2-ADA Karras et al. (2020)) with more SOTA generative models who reported their results



Method Venue Type FID(↓)
StyleGAN2-ADA Karras et al. (2020) NeurIPS’20 GAN 2.01
NCP-VAE Aneja et al. (2021) ICLR’21 VAE 5.25
ViTGAN Lee et al. (2021) ICLR’22 GAN 3.74
F-PNDM Liu, Ren, Lin & Zhao (2022) ICLR’22 Diff 2.71
DDIM Song et al. (2021) w/ Benny & Wolf (2022) CVPR’22 Diff 4.07
ES-DDPM Lyu et al. (2022) Arxiv’22 Diff 2.55

Ours - GAN 2.00

Table 10: Comparisons for CelebA dataset. Our method has a StyleGAN2-ADA baseline. Diff represents
diffusion models.

Method Venue Type FID(↓)
StyleGAN2-ADA Karras et al. (2020) NeurIPS’20 GAN 3.62
VDVAE Child (2021) ICLR’21 VAE 33.5
VQGAN Esser et al. (2021) CVPR’21 GAN 9.60
LDM-4 Rombach et al. (2022) CVPR’22 Diff 4.98
P2 Choi et al. (2022) CVPR’22 Diff 6.92

Ours - GAN 3.60

Table 11: Comparisons for FFHQ dataset. Our method has a StyleGAN2-ADA baseline. Diff represents diffusion
models.

on CelebA with resolution 64×64, including some diffusion models Liu, Ren, Lin & Zhao (2022), Lyu et al.
(2022), Benny & Wolf (2022) and a VAE model Aneja et al. (2021), as shown in Table 10, and who reported
their results on FFHQ Karras et al. (2019) with resolution 256×256, including some diffusion models Rombach
et al. (2022), Choi et al. (2022), a GAN model Esser et al. (2021) and a VAE model Child (2021), as shown in
Table 11.
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