
Adaptive Compression in Federated Learning via Side Information

Berivan Isik∗ Francesco Pase∗ Deniz Gunduz
Stanford University University of Padova Imperial College London

Sanmi Koyejo Tsachy Weissman Michele Zorzi
Stanford University Stanford University University of Padova

Abstract

The high communication cost of sending
model updates from the clients to the server
is a significant bottleneck for scalable fed-
erated learning (FL). Among existing ap-
proaches, state-of-the-art bitrate-accuracy
tradeoffs have been achieved using stochastic
compression methods – in which the client n
sends a sample from a client-only probability
distribution qϕ(n) , and the server estimates
the mean of the clients’ distributions using
these samples. However, such methods do not
take full advantage of the FL setup where the
server, throughout the training process, has
side information in the form of a global distri-
bution pθ that is close to the client-only distri-
bution qϕ(n) in Kullback–Leibler (KL) diver-
gence. In this work, we exploit this closeness
between the clients’ distributions qϕ(n) ’s and
the side information pθ at the server, and pro-
pose a framework that requires approximately
DKL(qϕ(n) ||pθ) bits of communication. We
show that our method can be integrated into
many existing stochastic compression frame-
works to attain the same (and often higher)
test accuracy with up to 82 times smaller
bitrate than the prior work – corresponding
to 2,650 times overall compression.

1 Introduction

Federated learning (FL), while enabling model training
without collecting clients’ raw data, suffers from

∗Equal contribution.

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

high communication costs due to the model updates
communicated from the clients to the server every
round (Kairouz et al., 2021). To mitigate this cost,
several communication-efficient FL strategies have
been developed that compress the model updates (Lin
et al., 2018; Konečnỳ et al., 2016; Isik et al., 2022;
Barnes et al., 2020). Many of these strategies adopt a
stochastic approach that requires the client n at round
t to send a sample x(t,n) from a client-only distribution
qϕ(t,n) that is only known by the client n upon local
training. In turn, the goal of the server is to estimate

EX(t,n)∼q
ϕ(t,n) ,∀n∈[N]

[
1
N

∑N
n=1 X

(t,n)
]

by taking the

average of the samples across clients 1
N

∑N
n=1 x

(t,n).
Here, we denote by N the number of clients and by [N]
the set {1, . . . , N}. We show that in many stochastic
FL settings, there exists a global distribution pθ(t) that
is known globally by both the server and the clients.
This distribution pθ(t) is close in KL divergence to the
client-only distributions qϕ(t,n) ’s, which are unknown by
the server.1 The proposed method, KL Minimization
with Side Information (KLMS), exploits this closeness
to reduce the cost of communicating samples x(t,n).
We briefly summarize three of such stochastic FL
frameworks by pointing to the corresponding global
pθ(t) and client-only qϕ(t,n) distributions in Section 3
as examples of different stochastic FL setups.

Before discussing such stochastic FL frameworks KLMS
can be adapted into, we first give a rough outline of
how KLMS actually works in general whenever the global
pθ(t) and client-only qϕ(t,n) distributions are naturally
present in an FL framework. Figure 1 describes the
key idea KLMS relies on (more details in Section 4 and
Appendix B): Instead of communicating the determin-
istic value of a sample x(t,n) ∼ qϕ(t,n) , client n can

communicate a sample y(t,n) from another distribution
y(t,n) ∼ q̃π(t,n) , which is less costly to communicate

1As we will exemplify later, this global distribution pθ(t)
is naturally present in many FL frameworks, i.e., we do not
introduce or require an extra distribution.

Adaptive Compression in Federated Learning via Side Information

Client n ServerShared random seed

𝟙

Figure 1: KLMS Outline. Note that the final sample y∗ is a sample from q̃π(t,n)(y) =
∑K

k=1 π
(t,n)(k) · 1(y(t,n)

[k] = y).

compared to x(t,n), and where the discrepancy due
to sampling from this new distribution q̃π(t,n) is not
significant. As shown in Figure 1, to construct q̃π,
we use the global distribution pθ(t) (which is known
by both the server and the clients) and an impor-
tance sampling method as follows: both client n and
the server generate K samples from the global distri-
bution pθ(t) (use of side information); then, the
client chooses one of these samples based on the im-
portance weights assigned using the client-only dis-
tribution qϕ(t,n) (importance sampling); finally the
client sends its choice to the server in logK bits. We
show that this procedure yields an arbitrarily small
discrepancy in the estimation when the number of sam-
ples in Step 1 in Figure 1 is K ≃ exp

(
DKL(qϕ(n)∥pθ)

)
,

i.e., bitrate is logK ≃ DKL(qϕ(n)∥pθ) bits, with im-
provements (specific to the FL setting) over prior work
(Havasi et al., 2019; Triastcyn et al., 2021).

Clearly, to get the most communication gain out of
KLMS, we need global pθ and client-only qϕ(n) distri-
butions that are close in KL divergence. We show
the existence of such distributions in many stochastic
FL frameworks with concrete examples in Section 3.
Each of these FL frameworks we will cover, namely
FedPM (Isik et al., 2023b), QSGD (Alistarh et al., 2017),
and Federated SGLD (Vono et al., 2022); naturally in-
duces a client-only distribution qθ(t,n) that clients want
to send a sample from, and a global distribution pθ(t)

that is available to both the clients and the server –
playing the role of side information. Note that these
distributions are already present in the original
frameworks without any additional assumption
or modification from us. In each case, these distri-
butions are expected to become closer in KL divergence
as training progresses as we will explain in Section 3.
We show that KLMS reduces the communication cost
down to this fundamental quantity (KL divergence) in
each scenario, resulting in up to 82 times improve-
ment in communication efficiency over FedPM, QLSD,
and QSGD among other non-stochastic competitive base-
lines. To achieve this efficiency, we use an importance
sampling algorithm (Chatterjee and Diaconis, 2018) –

thus extending the previous theoretical guarantees to
the distributed setting. Different from prior work that
used importance sampling in the centralized setting
to compress model parameters (Havasi et al., 2019)
or focused on differential privacy implications (Shah
et al., 2022; Triastcyn et al., 2021), KLMS captures the
side information that is already present in many FL
frameworks by selecting more natural global pθ(t) and
client-only qϕ(t,n) distributions, and optimizes the bit al-
location across both the training rounds and the model
coordinates in an adaptive way to achieve the opti-
mal bitrate, while also eliminating a hyperparameter
required by prior work (Havasi et al., 2019; Triast-
cyn et al., 2021). We note that arbitrary choices of
global and client-only distributions as in these works
lead to suboptimally as the KL divergence between
two arbitrary distributions would not be necessarily
small. However, we discover natural choices for both
distributions in existing FL frameworks (without any
modification on the frameworks) that yield sig-
nificantly smaller KL divergence and hence superior
compression than prior work. Our contributions:

1. We propose a road map to utilize various forms of
side information available to both the server and
the clients to reduce the communication cost in FL.
We give concrete examples of how to send model
updates under different setups. See Section 3 for
details.

2. We extend the importance sampling results
in (Chatterjee and Diaconis, 2018) to the dis-
tributed setting.

3. We propose an adaptive bit allocation strategy
that eliminates a hyperparameter required by prior
work, and allows a better use of the communication
budget across the model coordinates and rounds.

4. We demonstrate the efficacy of KLMS on MNIST,
EMNIST, CIFAR-10, and CIFAR-100 datasets
with up to 82 times gains in bitrate over relevant
baselines. This corresponds to up to an overall

Isik, Pase, Gunduz, Koyejo, Weissman, Zorzi

2,650 times compression without a significant
accuracy drop.

2 Related Work

Communication-Efficient FL: Existing frameworks
reduce the communication cost by sparsification (Aji
and Heafield, 2017; Wang et al., 2018; Lin et al., 2018),
quantization (Suresh et al., 2017; Vono et al., 2022;
Wen et al., 2017; Mayekar et al., 2021), low-rank fac-
torization (Basat et al., 2022; Mohtashami et al., 2022;
Vogels et al., 2019), sketching (Rothchild et al., 2020;
Song et al., 2023); or by training sparse subnetworks
instead of the full model (Isik et al., 2023b; Li et al.,
2020, 2021; Liu et al., 2021). Among them, those based
on stochastic updates have shown success over the de-
terministic ones in similar settings. For instance, as
will become clear in Section 3, for finding sparse subnet-
works within a large random model, FedPM (Isik et al.,
2023b) takes a stochastic approach by training a prob-
ability mask and outperforms other methods that find
sparse subnetworks deterministically (Li et al., 2021;
Mozaffari et al., 2021; Vallapuram et al., 2022) with
significant accuracy and bitrate gains. Similarly, for
the standard FL setting (training model parameters),
QSGD (Alistarh et al., 2017) is an effective stochastic
quantization method – outperforming most other quan-
tization schemes such as SignSGD (Bernstein et al.,
2018) and TernGrad (Wen et al., 2017) by large mar-
gins. Lastly, in the Bayesian FL setting, QLSD (Vono
et al., 2022) proposes a Bayesian counterpart of QSGD,
and performs better than other baselines (Chen and
Chao, 2021; Plassier et al., 2021). While all these
stochastic approaches already perform better than the
relevant baselines, in this work, we show that they still
do not take full advantage of the side information (or
global distribution) available to the server. We provide
a guideline on how to find useful side information under
each setting and introduce KLMS that reduces the com-
munication cost (by 82 times over the baselines) to the
fundamental distance between the client’s distribution
that they want to communicate samples from and the
side information at the server.

Importance Sampling: Our strategy is inspired by
the importance sampling algorithm studied in (Chatter-
jee and Diaconis, 2018; Harsha et al., 2007; Theis and
Ahmed, 2022; Li and El Gamal, 2018; Flamich et al.,
2024), and later applied for model compression (Havasi
et al., 2019), learned image compression (Flamich et al.,
2020, 2022), and compressing differentially private
mechanisms (Shah et al., 2022; Triastcyn et al., 2021;
Isik et al., 2023a). One relevant work to ours is (Havasi
et al., 2019), which applies the importance sampling
strategy to compress Bayesian neural networks. Since
the model size is too large to be compressed at once,

they compress fixed-size blocks of the model parame-
ters separately and independently. As we elaborate in
Section 4, this can be done much more efficiently by
choosing the block size adaptively based on the infor-
mation content of each parameter. Another relevant
work is DP-REC (Triastcyn et al., 2021), which again
applies the importance sampling technique to compress
the model updates in FL, while also showing differen-
tial privacy implications. However, since their training
strategy is fully deterministic, the choice of global and
client-only distributions is somewhat arbitrary. In-
stead, in our work, the goal is to exploit the available
side information to the full extent by choosing natural
global and client-only distributions – which improves
the communication efficiency over DP-REC significantly.
Another factor in this improvement is the adaptive bit
allocation strategy mentioned above. Our experimen-
tal results demonstrate that these two improvements
are indeed critical for boosting the accuracy-bitrate
tradeoff. Finally, we extend the theoretical guarantees
of importance sampling, which quantifies the required
bitrate for a target discrepancy (due to compression),
to the distributed setting, where we can recover the
existing results in (Chatterjee and Diaconis, 2018) as
a special case by setting N = 1.

3 Preliminaries

We now briefly summarize three examples of stochastic
FL frameworks that KLMS can be integrated into by
highlighting the natural choices for global pθ and client-
only qϕ(n) distributions.

FedPM (Isik et al., 2023b) freezes the parameters of
a randomly initialized network and finds a subnetwork
inside it that performs well with the initial random
parameters. To find the subnetwork, the clients receive
a global probability mask θ(t) ∈ [0, 1]d from the server
that determines, for each parameter, the probability
of retaining it in the subnetwork; set this as their lo-
cal probability mask ϕ(t,n) ← θ(t); and train only this
mask (not the frozen random parameters) during local
training. At inference, a sample x(t,n) ∈ {0, 1}d from
the Bernoulli distribution Bern(·;ϕ(t,n)) is taken, and
multiplied element-wise with the frozen parameters of
the network, obtaining a pruned random subnetwork,
which is then used to compute the model outputs. Com-
munication consists of three stages: (i) clients update
their local probability masks ϕ(t,n) through local train-
ing; (ii) at the end of local training, they send a sample
x(t,n) ∼ Bern(·;ϕ(t,n)) to the server; (iii) the server

aggregates the samples 1
N

∑N
n=1 x

(t,n), updates the

global probability mask θ(t+1), and broadcasts the new
mask to the clients for the next round. FedPM achieves
state-of-the-art results in accuracy-bitrate tradeoff with

Adaptive Compression in Federated Learning via Side Information

around 1 bit per parameter (bpp). (full description in
Appendix A.1) As the model converges, the global prob-
ability mask θ(t) and clients’ local probability masks
ϕ(t,n) get closer to each other (see Figures 2 and 3
for the trend of DKL(qϕ(t,n) ||pθ(t)) over time). How-
ever, no matter how close they are, FedPM employs
approximately the same bitrate for communicating a
sample from Bern(·;ϕ(t,n)) to the server that knows
pθ(t) . We show that this strategy is suboptimal and
applying KLMS with the global probability distribu-
tion Bern(·; θ(t)) as the global distribution pθ(t) , and
the local probability distribution Bern(·;ϕ(t,n)) as the
client-only distribution qϕ(t,n) , provides up to 82 times
gain in compression over FedPM.

QSGD (Alistarh et al., 2017), unlike the stochastic
approach in FedPM to train a probabilistic mask, is
proposed to train a deterministic set of parameters.
However, QSGD is itself a stochastic quantization opera-
tion. More concretely, QSGD quantizes each coordinate

v
(t,n)
i using the following QSGD distribution pQSGD(·)):

pQSGD

(
v̂
(t,n)
i

)
=

s|v(t,n)
i |

∥v(t,n)∥ −
⌊

s|v(t,n)
i |

∥v(t,n)∥

⌋
if v̂

(t,n)
i = A(v

(t,n)
i)

1− s|v(t,n)
i |

∥v(t,n)∥ +

⌊
s|v(t,n)

i |
∥v(t,n)∥

⌋
if v̂

(t,n)
i = B(v

(t,n)
i)

,

(1)
where

A(v
(t,n)
i) =

∥v(t,n)∥ · sign(v(t,n)
i)

s

(⌊
s|v(t,n)

i |
∥v(t,n)∥

⌋
+ 1

)
,

B(v
(t,n)
i) =

∥v(t,n)∥ · sign(v(t,n)
i)

s

⌊
s|v(t,n)

i |
∥v(t,n)∥

⌋
,

and s is the number of quantization levels (full descrip-
tion in Appendix A.2). QSGD takes advantage of the
empirical distribution of the quantized values (large
quantized values are less frequent) by using Elias cod-
ing to encode them – which is the preferred code when
the small values to encode are much more frequent
than the larger values (Elias, 1975). However, QSGD
still does not fully capture the distribution of the quan-
tized values since Elias coding is not adaptive to the
data. We fix this mismatch by applying KLMS with the
QSGD distribution pQSGD(·) as the client-only distribution
qϕ(t,n) , and the empirical distribution induced by the
historical updates at the server from the previous round
as the global distribution pθ(t) . These two distributions
are expected to be close to each other due to the tem-
poral correlation across rounds, as previously reported
by Jhunjhunwala et al. (2021); Ozfatura et al. (2021).
We demonstrate that KLMS exploits this closeness and
outperforms vanilla QSGD with 10 times lower bitrate.

Federated SGLD (El Mekkaoui et al., 2021) is a
Bayesian FL framework that learns a global posterior
distribution pθ over the model parameters using clients’
local posteriors qϕ(n) . A state-of-the-art method (Vono
et al., 2022) is the FL counterpart of Stochastic Gra-
dient Langevin Dynamics (SGLD) (Welling and Teh,
2011), which uses a Markov Chain Monte Carlo al-
gorithm. Concretely, the global posterior distribu-
tion is assumed to be proportional to the product

pθ(t) ∼
∏N

n=1 e
−U(ϕ(t,n)) of N local unnormalized pos-

teriors associated with each client, expressed as po-
tential functions {U(ϕ(t,n))}Nn=1. At each round, the
clients’ local posteriors are initialized with the global
posterior ϕ(n,t) ← θ(t). Then, the clients compute
an unbiased estimate of their gradients H(ϕ(t,n)) =
|D(n)|
|S(t,n)|

∑
j∈S(t,n) ∇Uj(ϕ

(t,n)), where |D(n)| is the size

of the local dataset of client n, and S(t,n) is the batch
of data used to estimate the gradient. They then com-
municate these estimates to the server to compute

θ(t+1) = θ(t) − γ

N∑
n=1

H(ϕ(t,n)) +
√
2γξ(t), (2)

where ξ(t) is a sequence of i.i.d. standard Gaussian
random variables. (See Appendix A.3 for the details.)
As reported in (El Mekkaoui et al., 2021; Vono et al.,
2022), the sequence of global updates θ(t) converges
to the posterior sampling. Notice that the clients
communicate their gradient vectors H(ϕ(t,n)) to the
server at every round, which is as large as the model
itself. To reduce this communication cost, Vono et al.
(2022) propose a compression algorithm called QLSD

that stochastically quantizes the updates with essen-
tially the Bayesian counterpart of QSGD (Alistarh et al.,
2017). However, neither QLSD nor the other compres-
sion baselines in the Bayesian FL literature (Chen and
Chao, 2021; El Mekkaoui et al., 2020; Plassier et al.,
2021) take full advantage of the stochastic formulation
of the Bayesian framework, where the server and the
clients share side information (the global posterior
pθ(t)) that could be used to improve the compression
gains. Instead, they quantize the updates ignoring this
side information. This approach is suboptimal since (i)
the precision is already degraded in the quantization
step, and (ii) the compression step does not account for
the side information pθ(t) . We show that we can exploit
this inherent stochastic formulation of Bayesian FL by
applying KLMS with the global posterior distribution
as the global distribution pθ(t) , and the local posterior
distribution as the client-only distribution qϕ(t,n) . In
addition to benefiting from the side information, KLMS
does not restrict the message domain to be discrete
(as opposed to the baselines) and can reduce the

Isik, Pase, Gunduz, Koyejo, Weissman, Zorzi

communication cost by 5 times, while also achieving
higher accuracy than the baselines.

4 KL Divergence Minimization with
Side Information (KLMS)

We first describe our approach, KLMS, in Section 4.1 to-
gether with theoretical guarantees; then, in Section 4.2,
we introduce our adaptive bit allocation strategy to
optimize the bitrate across training rounds and model
coordinates to reduce the compression rate; finally, in
Section 4.3, we give four concrete examples where KLMS
significantly boosts the accuracy-bitrate tradeoff.

4.1 KLMS for Stochastic FL Frameworks

We propose KLMS as a general recipe to be integrated
into many existing (stochastic) FL frameworks to im-
prove their accuracy-bitrate performance significantly.
The main principle in KLMS is grounded in three ideas:

1. In many existing FL frameworks, the updates from
clients to the server are samples drawn from some
optimized client-only distributions, e.g., QSGD and
FedPM.

2. Sending a random sample from a distribution can
be done much more efficiently than first taking
a sample from the same distribution, and then
sending its deterministic value (Theis and Ahmed,
2022).

3. The knowledge acquired from the historical up-
dates, available both at the server and the clients,
can help reduce the communication cost drastically
by playing the role of temporal side information.

KLMS is designed to reduce the communication cost in
FL by taking advantage of the above observations. It
relies on shared randomness between the clients and
the server in the form of a shared random SEED (i.e.,
they can generate the same pseudo-random samples
from a given distribution) and on the side information
available to the server and the clients. Without re-
stricting ourselves to any specific FL framework (we
will do this in Section 4.3), suppose the server and
the clients share a global distribution pθ(t) and each
client has a client-only distribution qϕ(t,n) after local
training. As stated in Section 1, the server aims to com-

pute EX(t,n)∼q
ϕ(t,n) ,∀n∈[N]

[
1
N

∑N
n=1 X

(t,n)
]
after each

round. While this can be done by simply communicat-
ing samples x(t,n) ∼ qϕ(t,n) , it is actually sufficient for
the server to obtain any other set of samples from the
same distribution qϕ(t,n) (or another distribution that
is close to qϕ(t,n) in KL divergence). Therefore, instead

of a specific realization x(t,n) ∼ qϕ(t,n) , KLMS sends a

sample y(t,n) from some other distribution q̃π(t,n) such
that (i) it is less costly to communicate a sample from
q̃π(t,n) than qϕ(t,n) and (ii) the discrepancy

E =

∣∣∣∣∣EY (t,n)∼q̃
π(t,n) ,∀n∈[N]

[
1

N

N∑
n=1

Y (t,n)

]
−

EX(t,n)∼q
ϕ(t,n) ,∀n∈[N]

[
1

N

N∑
n=1

X(t,n)

] ∣∣∣∣∣
(3)

is sufficiently small. Motivated by this, KLMS runs as
follows (by referring to the steps in Figure 1):

Step 1 at the server & client (side information):
The server and the client generate the same K samples
from the global distribution with a shared random seed.

Steps 2-4 at the client (importance sampling):
The client assigns importance weights to each of the
K samples to construct a new distribution over them.
It then chooses one of the K samples from this new
distribution to send its index in logK bits to the server.

Steps 2-3 at the server (importance sampling):
The server picks the sample with the received index
from the K samples it generated in Step 1.

In Theorem 4.1, we show that the discrepancy in (3)
is small when K ≃ exp (DKL(qϕ||pθ)). We actually
prove it for a general measurable function f(·) over
Y (t,n)’s, for which the discrepancy in (3) is a special
case when f(·) is the identity. We note that previous
results on the single-user scenario (N = 1) (Chatterjee
and Diaconis, 2018; Havasi et al., 2019) are special
cases of our more general framework with N users.

Theorem 4.1. Let pθ and qϕ(n) for n = 1, . . . , N
be probability distributions over set X equipped with
some sigma-algebra. Let X(n) be an X -valued random
variable with law qϕ(n) . Let r ≥ 0 and q̃π(n) for n =
1, . . . , N be discrete distributions each constructed by

K(n) = exp
(
DKL(qϕ(n) ||pθ) + r

)
samples {y(n)

[k] }
K(n)

k=1

from pθ defining π(n)(k) =
q
ϕ(n) (y

(n)

[k]
)/pθ(y

(n)

[k]
)∑K(n)

l=1 q
ϕ(n) (y

(n)

[l]
)/pθ(y

(n)

[l]
)
.

Furthermore, for measurable function f(·), let

∥f∥qϕ
=
√

EX(n)∼q
ϕ(n) ,∀n∈[N][(

1
N

∑N
n=1 f(X

(n)))2] be

its 2-norm under qϕ = qϕ(1) , . . . , qϕ(N) and let

ϵ =

e−Nr/4 + 2

√√√√ N∏
n=1

P(log(qϕ(n)/pθ) > DKL(qϕ(n)∥pθ) + r/2)

1/2

.

(4)

Defining q̃π(n) over {y(n)
[k] }

K(n)

k=1 as q̃π(n)(y) =∑K(n)

k=1 π(n)(k) · 1(y(n)
[k] = y), it holds that

Adaptive Compression in Federated Learning via Side Information

P

(∣∣∣∣∣ E
Y (n)∼q̃

π(n) ,∀n

[
1

N

N∑
n=1

f(Y (n))

]
−

E
X(n)∼q

ϕ(n) ,∀n

[
1

N

N∑
n=1

f(X(n))

] ∣∣∣∣∣ ≥ 2∥f∥qϕ
ϵ

1− ϵ

)
≤ 2ϵ,

where q̃π(n) is defined over {y(n)
[k] }

K(n)

k=1 as q̃π(n)(y) =∑K(n)

k=1 π(n)(k) · 1(y(n)
[k] = y).

See Appendix C for the proof. This result implies
that when K(n) ≃ exp

(
DKL(qϕ(t,n)∥pθ(t))

)
, the dis-

crepancy in (3) is small. In practice, as we explain
in Section 4.2, we work on blocks of parameters such
that DKL(qϕ(t,n)∥pθ(t)) for each block is the same for
all clients n ∈ [N]. Hence, we omit the superscript (n)
from K(n) and denote the number of samples by K for
each client. In Appendix F.1, we experiment on a toy
model and observe that, for a fixed K, the discrepancy
in (3) gets smaller as the number of clients N increases,
gaining from the client participation in each round.

4.2 Adaptive Block Selection for Optimal Bit
Allocation

Prior works that have applied importance sampling for
Bayesian neural network compression (Havasi et al.,
2019), or for differentially private communication in
FL (Triastcyn et al., 2021) split the model into several
fixed-size blocks of parameters, and compress each
block separately and independently to avoid the high
computational cost – which exponentially increases
with the number of parameters d. After splitting the
model into fixed-size blocks with S parameters each,
Havasi et al. (2019); Triastcyn et al. (2021) choose a
single fixed K (number of samples generated from pθ(t))
for each block no matter what the KL divergence is for
different blocks. This yields the same bitrate logK

S for
every model parameter. Furthermore, Triastcyn et al.
(2021) use the same K throughout training without
considering the variation in KL divergence over rounds.
However, as illustrated in Figure 2, KL divergence
varies significantly across different model layers and
across rounds. Hence, spending the same bitrate logK

S
for every parameter at every round is highly suboptimal
since it breaks the condition in Theorem 4.1.

To fix this, we propose an adaptive block selection mech-
anism, where the block size is adjusted such that the
KL divergence for each block is the same and equal to a
target value, Dtarget

KL . This way, the optimal K for each

block is the same and approximately equal to Dtarget
KL ,

and we do not need to set the block size S ourselves,
which was a hyperparameter to tune in (Havasi et al.,
2019; Triastcyn et al., 2021). Different from the fixed-
size block selection approach in (Havasi et al., 2019;

Triastcyn et al., 2021), the adaptive approach requires
describing the locations of the adaptive-size blocks,
which adds overhead to the communication cost. How-
ever, exploiting the temporal correlation across rounds
can make this overhead negligible. More specifically,
we first let each client find their adaptive-size blocks,
each having KL divergence equal to Dtarget

KL , in the first
round. Then the clients communicate the locations of
these blocks to the server, which are then aggregated
to find the new global indices to be broadcast to the
clients. At later rounds, the server checks if, on average,
the new KL divergence of the previous blocks is still
sufficiently close to the target value Dtarget

KL . If so, the
same adaptive-size blocks are used in that round. Oth-
erwise, the client constructs new blocks, each having
KL divergence equal to Dtarget

KL , and updates the server
about the new locations. Our experiments indicate
that this update occurs only a few times during the
whole training. Therefore, it adds only a negligible
overhead on the average communication cost across
rounds. We provide the pseudocodes for KLMS with
both fixed- and adaptive-size blocks in Appendix B.

4.3 Examples of KLMS Adaptated to
Well-Known Stochastic FL Frameworks

In this section, we provide four concrete examples il-
lustrating how KLMS can be naturally integrated into
different FL frameworks with natural choices of global
and client-only distributions. Later, in Section 5, we
present experimental results showing the empirical im-
provements KLMS brings in all these cases. The corre-
sponding pseudocodes are given in Appendix D.

FedPM-KLMS: As described in Section 3, in FedPM,
the server holds a global probability mask, which pa-
rameterizes a probability distribution over the mask
parameters – indicating for each model parameter its
probability of remaining in the subnetwork. Similarly,
each client obtains a local probability mask after local
training – parameterizing their locally updated proba-
bility assignment for each model parameter to remain
in the subnetwork. Parameterizing the global distribu-
tion pθ(t) by the global probability mask θ(t) and the
client-only distribution qϕ(t,n) by the local probability

mask ϕ(t,n) is only natural since the goal in FedPM is to
send a sample from the local probability distribution
Bern(·;ϕ(t,n)) with as few bits as possible. This new
framework, FedPM-KLMS, provides 82 times reduc-
tion in bitrate over vanilla FedPM – corresponding
to an overall 2,650 times compression rate.

QSGD-KLMS: As explained in Section 3, QSGD is
a stochastic quantization method for FL frameworks
that train deterministic model parameters, which out-
performs many other baselines. Focusing on the most

Isik, Pase, Gunduz, Koyejo, Weissman, Zorzi

Table 1: FedPM-KLMS, QSGD-KLMS, and SignSGD-KLMS against FedPM, QSGD, SignSGD, TernGrad, DRIVE, EDEN,
MARINA, FedMask, and DP-REC with i.i.d. split and full client participation. Note that the bitrate is 32 bpp
without any compression. Overall, FedPM-KLMS achieves the highest accuracy with the lowest bitrate around 0.014
for each dataset – corresponding to an overall 2, 300 times compression. Other KLMS integrations (QSGD-KLMS,
SignSGD-KLMS) similarly reduce the bitrate up to 66 times over the vanilla frameworks (QSGD, SignSGD).

CIFAR-10 (CONV6) CIFAR-100 (ResNet-18) MNIST (CONV4) EMNIST (CONV4)

Acc. Bitrate (bpp) Acc. Bitrate (bpp) Acc. Bitrate (bpp) Acc. Bitrate (bpp)

TernGrad 0.680 1.10 0.220 1.07 0.980 1.05 0.870 1.1
DRIVE 0.760 0.89 0.320 0.54 0.994 0.91 0.883 0.90
EDEN 0.760 0.89 0.320 0.54 0.994 0.91 0.883 0.90
MARINA 0.690 2.12 0.260 2.18 0.991 2.01 0.867 2.04
FedMask 0.620 1.00 0.180 1.00 0.991 1.00 0.862 1.00
DP-REC 0.720 1.12 0.280 1.06 0.991 1.00 0.885 1.10

SignSGD 0.705 0.993 0.230 0.999 0.990 0.999 0.873 1.000
SignSGD-KLMS(ours) 0.745 0.040 (×25 lower) 0.259 0.042 (×25 lower) 0.9930 0.041 (×24 lower) 0.880 0.044 (×23 lower)
SignSGD-KLMS(ours) 0.739 0.015 (×66 lower) 0.250 0.018 (×56 lower) 0.9918 0.023 (×43 lower) 0.875 0.025 (×40 lower)

QSGD 0.753 0.072 0.335 0.150 0.994 0.130 0.884 0.150
QSGD-KLMS(ours) 0.761 0.035 (×2 lower) 0.327 0.074 (×2.2 lower) 0.9940 0.041 (×3.2 lower) 0.884 0.042 (×3.6 lower)
QSGD-KLMS(ours) 0.755 0.014 (×5 lower) 0.320 0.020 (×7.5 lower) 0.9935 0.019 (×6.8 lower) 0.883 0.022 (×6.8 lower)

FedPM 0.787 0.845 0.470 0.88 0.995 0.99 0.890 0.890
FedPM-KLMS(ours) 0.787 0.070 (×12 lower) 0.469 0.072 (×13 lower) 0.9945 0.041 (×24 lower) 0.888 0.034 (×26 lower)
FedPM-KLMS(ours) 0.786 0.014 (×60 lower) 0.455 0.018 (×49 lower) 0.9943 0.014 (×71 lower) 0.885 0.017 (×52 lower)

Figure 2: Average KL divergence between the client-
only and global distributions, for different layers and
rounds (FedPM used to train CONV6 on CIFAR-10).

extreme case when the number of quantization levels
is s = 1, QSGD distribution in (1) can be expressed as:

pQSGD(v̂
(t,n)
i) =



max

{
−v

(t,n)
i

∥v(t,n)∥ , 0

}
if v̂

(t,n)
i = −∥v(t,n)∥

max

{
v
(t,n)
i

∥v(t,n)∥ , 0

}
if v̂

(t,n)
i = ∥v(t,n)∥

1−max

{
−v

(t,n)
i

∥v(t,n)∥ ,
v
(t,n)
i

∥v(t,n)∥ , 0

}
if v̂

(t,n)
i = 0

, (5)

which is again a very natural choice for client-only dis-
tribution qϕ(t,n) since vanilla QSGD requires the clients
to take a sample from pQSGD(·) in (5) and communicate
the deterministic value of that sample to the server.
As for the global distribution, exploiting the temporal
correlation in FL, we use the empirical frequencies of

the historical updates the server received in the pre-
vious round. In other words, in every round t, the
server records how many clients communicated a neg-
ative value (−∥v(t,n)∥), a positive value (∥v(t,n)∥), or
0 per coordinate, and constructs the global distribu-
tion pθ(t) from these empirical frequencies for the next
rounds. This new framework, QSGD-KLMS, yields 10
times reduction in bitrate over vanilla QSGD.

SignSGD-KLMS: Since SignSGD (Bernstein et al.,
2018) is not a stochastic quantizer, we first introduce
some stochasticity to the vanilla SignSGD algorithm
and then integrate KLMS into it. Instead of mapping
the updates to their signs ±1 deterministically as in
vanilla SignSGD, the stochastic version we propose does
this mapping by taking a sample from

pSignSGD(v̂
(t,n)
i) =

σ(
v
(t,n)
i

M) if v̂
(t,n)
i = 1

1− σ(
v
(t,n)
i

M) if v̂
(t,n)
i = −1

,

(6)

for some M > 0, where σ(z) = 1
1+e−z is the Sigmoid

function. Instead of taking a sample from pSignSGD(·)
and sending the deterministic value of the sample by
spending 1 bit per parameter, we can take advantage of
the sign symmetry in the model update (about half of
the coordinates have positive/negative signs in the up-
date) and reduce the communication cost. For this, we
choose pSignSGD(·) in (6) as the client-only distribution
qϕ(t,n) , and the uniform distribution U(0.5) from the
support {−1, 1} as the global distribution pθ(t) . This
new method, SignSGD-KLMS, achieves higher accuracy
than vanilla SignSGD with 66 times smaller bitrate.

SGLD-KLMS: From the Bayesian FL family, we
focus on the recent SGLD framework (Vono et al.,

Adaptive Compression in Federated Learning via Side Information

2022) as an example since it provides state-of-the-art
results. As discussed in Section 3, due to the stochastic
formulation of the Bayesian framework, it is natural
to choose the local posterior distributions as the
client-only distributions qϕ(t,n) , and the global posterior
distribution at the server as the global distribution
pθ(t) . While extending the existing SGLD algorithm
(see Section 3) with KLMS, we inject Gaussian noise
locally at each client and scale it such that when all the
samples are averaged at the server, the aggregate noise
sample ξ(t) (see (2)) is distributed according to N (0, Id)
(more details in Appendix D). This new framework,
SGLD-KLMS, provides both accuracy and bitrate gains
over QLSD (Vono et al., 2022) – the state-of-the-art
compression method for Federated SGLD.

5 Experiments

We focus on four KLMS adaptations we covered in
Section 4.3 to empirically demonstrate KLMS’s im-
provements. We consider four datasets: CIFAR-10
(Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al.,
2009), MNIST (Deng, 2012), and EMNIST (Cohen
et al., 2017) (with 47 classes). For CIFAR-100, we
use ResNet-18 (He et al., 2016); for CIFAR-10, a 6-
layer CNN CONV6; for MNIST a 4-layer CNN CONV4

and LeNet; and for EMNIST, again CONV4. Addi-
tional details on the experimental setup and more de-
tailed results with confidence intervals can be found
in Appendices E and F. We first compare FedPM-KLMS,
QSGD-KLMS, and SignSGD-KLMS with FedPM (Isik et al.,
2023b), QSGD (Alistarh et al., 2017), SignSGD (Bern-
stein et al., 2018), TernGrad (Wen et al., 2017),
DRIVE (Vargaftik et al., 2021), EDEN (Vargaftik et al.,
2022), MARINA (Gorbunov et al., 2021), FedMask (Li
et al., 2021), and DP-REC (Triastcyn et al., 2021) on
non-Bayesian FL setting in Section 5.1. We then pro-
vide a comparison of SGLD-KLMS with QLSD (Vono et al.,
2022) on the Bayesian FL setting in Section 5.2. Fi-
nally, in Section 5.3, we present a key ablation study to
show how the adaptive block selection strategy in Sec-
tion 4.2 optimizes the bit allocation and helps achieve
a smaller bitrate. Clients perform 3 and 1 local epochs
in the non-Bayesian and Bayesian settings, respectively.
We provide multiple (accuracy, bitrate) pairs for KLMS
results by varying Dtarget

KL . Results are averaged over 3
runs.

The codebase is open-sourced at https://github.

com/FrancescoPase/Federated-KLMS.

5.1 Non-Bayesian Federated Learning

i.i.d. Data Split: For the i.i.d. dataset experiments
in Table 1, we set the number of clients to N = 10 and
consider full client participation. Table 1 shows that

FedPM-KLMS and SignSGD-KLMS provide up to 71 times
reduction in communication cost compared to FedPM

and SignSGD, respectively (with accuracy boost over
vanilla SignSGD). QSGD-KLMS, on the other hand, re-
duces the communication cost by 10 times over vanilla
QSGD. Overall, FedPM-KLMS requires the smallest bitrate
with the highest accuracy among all the frameworks
considered. It achieves an overall 2,300 times com-
pression (compared to 32-bit no-compression
case) by improving the bitrate of vanilla FedPM by 71
times. This sets a new standard in the communication-
efficient FL literature and marks the significance of side
information in FL. The significant improvements over
DP-REC (in both bitrate and accuracy) justify the im-
portance of (i) carefully chosen global and client-only
distributions and (ii) the adaptive block selection that
optimizes the bit allocation.

Non-i.i.d. Data Split: For the non-i.i.d. exper-
iments in Table 2, we compare against FedPM, QSGD,
SignSGD, DRIVE, EDEN, and DP-REC. We set the number
of clients to N = 100 and let randomly sampled 20
of them participate in each round. See Appendix E
for the non-i.i.d. split strategy. Let cmax be the maxi-
mum number of classes each client can see due to the
non-i.i.d. split. In the experiments in Table 2, we set
cmax = 40 for CIFAR-100 and cmax = 4 for CIFAR-10.
See Appendix F for other cmax values. Table 2 shows
similar gains over the baselines as the i.i.d. experiments
in Table 1; in that, KLMS adaptations provide up to
82 times reduction in the communication cost
compared to the baselines (and 2,650 times com-
pression compared to 32-bit non-compression
case) with final accuracy as high as (if not higher)
the best baseline. This indicates that the statistical
heterogeneity level in the data split, while reducing
the performance of the underlying training schemes,
does not affect the improvement brought by KLMS. We
further corroborate this observation with additional
experiments in Appendix F.1.2.

5.2 Bayesian Federated Learning

Figure 3-(top) compares SGLD-KLMS with QLSD. We
consider i.i.d. data split and full client participation
with the number of clients N = 10. It is seen that
SGLD-KLMS can reduce the communication cost by 5
times more than QLSD with higher accuracy on MNIST,
where in this case the accuracy is a Monte Carlo average
obtained by posterior sampling after convergence.

5.3 Ablation Study: The Effect of the
Adaptive Bit Allocation Strategy

We conduct an ablation study to answer the following
question: Does adaptive bit allocation strategy really

https://github.com/FrancescoPase/Federated-KLMS
https://github.com/FrancescoPase/Federated-KLMS

Isik, Pase, Gunduz, Koyejo, Weissman, Zorzi

Table 2: FedPM-KLMS, QSGD-KLMS, and SignSGD-KLMS against FedPM, QSGD, SignSGD, DRIVE, EDEN, and DP-REC

with non i.i.d. split and 20 out of 100 clients participating every round. The bitrate is 32 bpp without any
compression. FedPM-KLMS again achieves the highest accuracy with the lowest bitrate – corresponding to an
overall 2, 650 times compression. QSGD-KLMS and SignSGD-KLMS similarly reduce the bitrate up to 56 times over
QSGD and SignSGD.

CIFAR-10 (CONV6) CIFAR-100 (ResNet-18)

Acc. Bitrate (bpp) Acc. Bitrate (bpp)

DRIVE 0.526 0.89 0.424 0.81
EDEN 0.528 0.89 0.425 0.81
DP-REC 0.530 1.08 0.424 1.00

QSGD 0.552 0.140 0.429 0.150
QSGD-KLMS(ours) 0.552 0.071 (×2 lower) 0.429 0.072 (×2 lower)
QSGD-KLMS(ours) 0.545 0.014 (×10 lower) 0.419 0.017 (×8.8 lower)

SignSGD 0.470 1.000 0.371 0.999
SignSGD-KLMS(ours) 0.530 0.074 (×14 lower) 0.421 0.044 (×23 lower)
SignSGD-KLMS(ours) 0.520 0.018 (×56 lower) 0.415 0.020 (×50 lower)

FedPM 0.612 0.993 0.488 0.98
FedPM-KLMS(ours) 0.612 0.073 (×12 lower) 0.488 0.074 (×13 lower)
FedPM-KLMS(ours) 0.599 0.016 (×62 lower) 0.480 0.012 (×82 lower)

Figure 3: (top) SGLD-KLMS against QLSD using LeNet
on i.i.d. MNIST dataset. (bottom) FedPM-KLMS

(fixed) against FedPM-KLMS (adaptive) on how well
the number of bits approaches the fundamental quan-
tity, KL divergence – using CONV6 on i.i.d. CIFAR-10.
Both KL divergence and the number of bits are nor-
malized by the number of parameters.

help optimize the bit allocation and reduce # bits
down to KL divergence? To answer this question,
in Figure 3-(bottom), we show how the average
per-parameter KL divergence and # bits spent per
parameter change over the rounds for FedPM-KLMS

with fixed- and adaptive-size blocks. We adjust the

hyperparameters such that the final accuracies differ
by only 0.01% on CIFAR-10. For the fixed-size exper-
iments, since we fix K (number of samples per block)
and the block size for the whole model and across all
rounds, # bits per parameter stays the same while the
KL divergence shows a decreasing trend. On the other
hand, in the adaptive-size experiments, the block size
changes across the model parameters and the rounds to
guarantee that each block has the same KL divergence.
Since all blocks have the same KL divergence, we
spend the same # bits for each block (with adaptive
size) as suggested by Theorem 4.1, which adaptively
optimizes the bitrate towards the KL divergence. This
is indeed justified in Figure 3-(bottom) since the #
bits curve quickly approaches the KL divergence curve.

6 Discussion & Conclusion

We leveraged side information that is naturally present
in many existing FL frameworks to reduce the bitrate
by up to 82 times over the baselines without an
accuracy drop. This corresponds to an overall 2,650
times compression compared to the no-compression
case. We discovered highly natural choices for side
information (global distribution at the server) in pop-
ular stochastic FL frameworks without requiring any
change, i.e., the side information naturally arises in
the original frameworks. We believe the proposed way
of using side information will set a new standard in
communication-efficient FL as it can provide similar
bitrate reduction in many FL frameworks.

Adaptive Compression in Federated Learning via Side Information

7 Acknowledgements

The authors would like to thank Saurav Chatterjee
for his help in the theoretical extension of Chatter-
jee and Diaconis (2018) to the N -user case; also Yibo
Zhang, Xiaoyang Wang, Enyi Jiang, and Brando Mi-
randa for their feedback on an earlier draft. This
work is partially supported by a Google Ph.D. Fellow-
ship, a Stanford Graduate Fellowship, NSF III 2046795,
IIS 1909577, CCF 1934986, NIH 1R01MH116226-01A,
NIFA award 2020-67021-32799, the Alfred P. Sloan
Foundation, Meta, Google, and the European Union
under the Italian National Recovery and Resilience
Plan (NRRP) of NextGenerationEU, partnership on
“Telecommunications of the Future” (PE0000001 - pro-
gram ”RESTAR“).

References

Aji, A. and Heafield, K. (2017). Sparse communica-
tion for distributed gradient descent. In EMNLP
2017: Conference on Empirical Methods in Natural
Language Processing. Association for Computational
Linguistics (ACL).

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vo-
jnovic, M. (2017). QSGD: Communication-efficient
SGD via gradient quantization and encoding. Ad-
vances in Neural Information Processing Systems.

Barnes, L. P., Inan, H. A., Isik, B., and Özgür, A.
(2020). rtop-k: A statistical estimation approach to
distributed SGD. IEEE Journal on Selected Areas
in Information Theory, 1(3):897–907.

Basat, R. B., Vargaftik, S., Portnoy, A., Einziger,
G., Ben-Itzhak, Y., and Mitzenmacher, M. (2022).
QUICK-FL: Quick unbiased compression for feder-
ated learning. arXiv preprint arXiv:2205.13341.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and
Anandkumar, A. (2018). signsgd: Compressed opti-
misation for non-convex problems. In International
Conference on Machine Learning, pages 560–569.
PMLR.

Caldas, S., Duddu, S. M. K., Wu, P., Li, T., Konečnỳ,
J., McMahan, H. B., Smith, V., and Talwalkar, A.
(2018). Leaf: A benchmark for federated settings.
arXiv preprint arXiv:1812.01097.

Chatterjee, S. and Diaconis, P. (2018). The sample
size required in importance sampling. The Annals
of Applied Probability, 28(2):1099–1135.

Chen, H.-Y. and Chao, W.-L. (2021). Fed{be}: Mak-
ing bayesian model ensemble applicable to federated
learning. In International Conference on Learning
Representations.

Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A.
(2017). EMNIST: Extending MNIST to handwritten

letters. In International Joint Conference on Neural
Networks (IJCNN), pages 2921–2926.

Deng, L. (2012). The MNIST database of handwritten
digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142.

El Mekkaoui, K., Mesquita, D., Blomstedt, P., and
Kaski, S. (2020). Distributed stochastic gradi-
ent MCMC for federated learning. arXiv preprint
arXiv:2004.11231.

El Mekkaoui, K., Parente Paiva Mesquita, D., Blomst-
edt, P., and Kask, S. (2021). Federated stochastic
gradient langevin dynamics. In Proceedings of the
Thirty-Seventh Conference on Uncertainty in Artifi-
cial Intelligence, pages 1703–1712. PMLR.

Elias, P. (1975). Universal codeword sets and repre-
sentations of the integers. IEEE Transactions on
Information Theory, 21(2):194–203.

Flamich, G., Havasi, M., and Hernández-Lobato, J. M.
(2020). Compressing images by encoding their latent
representations with relative entropy coding. Ad-
vances in Neural Information Processing Systems,
33:16131–16141.

Flamich, G., Markou, S., and Hernández-Lobato, J. M.
(2022). Fast relative entropy coding with a* coding.
In International Conference on Machine Learning,
pages 6548–6577. PMLR.

Flamich, G., Markou, S., and Hernández-Lobato, J. M.
(2024). Faster relative entropy coding with greedy
rejection coding. Advances in Neural Information
Processing Systems, 36.

Gorbunov, E., Burlachenko, K. P., Li, Z., and Richtárik,
P. (2021). Marina: Faster non-convex distributed
learning with compression. In International Confer-
ence on Machine Learning, pages 3788–3798. PMLR.

Harsha, P., Jain, R., McAllester, D., and Radhakrish-
nan, J. (2007). The communication complexity of
correlation. In Twenty-Second Annual IEEE Confer-
ence on Computational Complexity (CCC’07), pages
10–23. IEEE.

Havasi, M., Peharz, R., and Hernández-Lobato, J. M.
(2019). Minimal random code learning: Getting bits
back from compressed model parameters. In Inter-
national Conference on Learning Representations.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 770–778.

Isik, B., Chen, W.-N., Ozgur, A., Weissman, T., and
No, A. (2023a). Exact optimality of communication-
privacy-utility tradeoffs in distributed mean estima-
tion. In Thirty-seventh Conference on Neural Infor-
mation Processing Systems.

Isik, Pase, Gunduz, Koyejo, Weissman, Zorzi

Isik, B., Pase, F., Gunduz, D., Weissman, T., and
Zorzi, M. (2023b). Sparse random networks for
communication-efficient federated learning. In The
Eleventh International Conference on Learning Rep-
resentations.

Isik, B., Weissman, T., and No, A. (2022). An
information-theoretic justification for model pruning.
In International Conference on Artificial Intelligence
and Statistics, pages 3821–3846. PMLR.

Jhunjhunwala, D., Mallick, A., Gadhikar, A., Kadhe,
S., and Joshi, G. (2021). Leveraging spatial and
temporal correlations in sparsified mean estimation.
Advances in Neural Information Processing Systems,
34:14280–14292.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A.,
Bennis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z.,
Cormode, G., Cummings, R., et al. (2021). Advances
and open problems in federated learning. Founda-
tions and Trends® in Machine Learning, 14(1–2):1–
210.

Konečnỳ, J., McMahan, H. B., Yu, F. X., Richtárik,
P., Suresh, A. T., and Bacon, D. (2016). Federated
learning: Strategies for improving communication
efficiency. arXiv preprint arXiv:1610.05492.

Krizhevsky, A., Hinton, G., et al. (2009). Learning
multiple layers of features from tiny images.

Li, A., Sun, J., Wang, B., Duan, L., Li, S., Chen,
Y., and Li, H. (2020). Lotteryfl: Personalized and
communication-efficient federated learning with lot-
tery ticket hypothesis on non-iid datasets. arXiv
preprint arXiv:2008.03371.

Li, A., Sun, J., Zeng, X., Zhang, M., Li, H., and
Chen, Y. (2021). Fedmask: Joint computation and
communication-efficient personalized federated learn-
ing via heterogeneous masking. In Proceedings of
the 19th ACM Conference on Embedded Networked
Sensor Systems, pages 42–55.

Li, C. T. and El Gamal, A. (2018). Strong functional
representation lemma and applications to coding the-
orems. IEEE Transactions on Information Theory,
64(11):6967–6978.

Lin, Y., Han, S., Mao, H., Wang, Y., and Dally, B.
(2018). Deep gradient compression: Reducing the
communication bandwidth for distributed training.
In International Conference on Learning Represen-
tations.

Liu, Y., Zhao, Y., Zhou, G., and Xu, K. (2021). Fed-
prune: Personalized and communication-efficient fed-
erated learning on non-iid data. In International
Conference on Neural Information Processing, pages
430–437. Springer.

Mayekar, P., Suresh, A. T., and Tyagi, H. (2021).
Wyner-ziv estimators: Efficient distributed mean
estimation with side-information. In International
Conference on Artificial Intelligence and Statistics,
pages 3502–3510. PMLR.

Mohtashami, A., Jaggi, M., and Stich, S. (2022).
Masked training of neural networks with partial gra-
dients. In International Conference on Artificial
Intelligence and Statistics, pages 5876–5890. PMLR.

Mozaffari, H., Shejwalkar, V., and Houmansadr, A.
(2021). FRL: Federated rank learning. arXiv preprint
arXiv:2110.04350.

Ozfatura, E., Ozfatura, K., and Gündüz, D. (2021).
Time-correlated sparsification for communication-
efficient federated learning. In IEEE International
Symposium on Information Theory (ISIT), pages
461–466. IEEE.

Plassier, V., Vono, M., Durmus, A., and Moulines,
E. (2021). DG-LMC: a turn-key and scalable syn-
chronous distributed MCMC algorithm via Langevin
Monte Carlo within Gibbs. In International Confer-
ence on Machine Learning, pages 8577–8587. PMLR.

Rothchild, D., Panda, A., Ullah, E., Ivkin, N., Sto-
ica, I., Braverman, V., Gonzalez, J., and Arora, R.
(2020). Fetchsgd: Communication-efficient federated
learning with sketching. In International Conference
on Machine Learning, pages 8253–8265. PMLR.

Shah, A., Chen, W.-N., Balle, J., Kairouz, P., and
Theis, L. (2022). Optimal compression of locally
differentially private mechanisms. In International
Conference on Artificial Intelligence and Statistics,
pages 7680–7723. PMLR.

Song, Z., Wang, Y., Yu, Z., and Zhang, L. (2023).
Sketching for first order method: Efficient algorithm
for low-bandwidth channel and vulnerability. In In-
ternational Conference on Machine Learning, pages
32365–32417. PMLR.

Suresh, A. T., Felix, X. Y., Kumar, S., and McMahan,
H. B. (2017). Distributed mean estimation with
limited communication. In International Conference
on Machine Learning, pages 3329–3337. PMLR.

Theis, L. and Ahmed, N. Y. (2022). Algorithms for
the communication of samples. In International
Conference on Machine Learning, pages 21308–21328.
PMLR.

Triastcyn, A., Reisser, M., and Louizos, C. (2021). DP-
REC: Private & communication-efficient federated
learning. arXiv preprint arXiv:2111.05454.

Vallapuram, A. K., Zhou, P., Kwon, Y. D., Lee, L. H.,
Xu, H., and Hui, P. (2022). Hidenseek: Federated
lottery ticket via server-side pruning and sign super-
mask. arXiv preprint arXiv:2206.04385.

Adaptive Compression in Federated Learning via Side Information

Vargaftik, S., Basat, R. B., Portnoy, A., Mendel-
son, G., Itzhak, Y. B., and Mitzenmacher, M.
(2022). Eden: Communication-efficient and robust
distributed mean estimation for federated learning.
In International Conference on Machine Learning,
pages 21984–22014. PMLR.

Vargaftik, S., Ben-Basat, R., Portnoy, A., Mendelson,
G., Ben-Itzhak, Y., and Mitzenmacher, M. (2021).
Drive: one-bit distributed mean estimation. Ad-
vances in Neural Information Processing Systems,
34:362–377.

Vogels, T., Karimireddy, S. P., and Jaggi, M. (2019).
Powersgd: Practical low-rank gradient compression
for distributed optimization. Advances in Neural
Information Processing Systems, 32.

Vono, M., Plassier, V., Durmus, A., Dieuleveut, A.,
and Moulines, E. (2022). QLSD: Quantised Langevin
stochastic dynamics for Bayesian federated learning.
In International Conference on Artificial Intelligence
and Statistics, pages 6459–6500. PMLR.

Wang, H., Sievert, S., Liu, S., Charles, Z., Pa-
pailiopoulos, D., and Wright, S. (2018). Atomo:
Communication-efficient learning via atomic sparsifi-
cation. Advances in Neural Information Processing
Systems, 31.

Welling, M. and Teh, Y. W. (2011). Bayesian learn-
ing via stochastic gradient langevin dynamics. In
Proceedings of the 28th International Conference on
Machine Learning (ICML-11), pages 681–688.

Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y.,
and Li, H. (2017). Terngrad: Ternary gradients to
reduce communication in distributed deep learning.
Advances in Neural Information Processing Systems,
30.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes] A description of the algorithm is pro-
vided in Figure 1 and Section 4 with more
detailed algorithms for each method provided
in Appendices A, B and D. Other experimen-
tal details such as the model architecture,
dataset, and hyperparameters are provided in
Section 5 and Appendix F.2.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes] The relation between the required num-
ber of bits and the discrepancy in the esti-

mation is rigorously provided in Section 4
together with a proof of Theorem 4.1.

(c) (Optional) Anonymized source code, with
specification of all dependencies, includ-
ing external libraries. [Yes] The source
code is available at https://github.com/

FrancescoPase/Federated-KLMS.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all
theoretical results. [Yes] The assumptions are
clearly stated in Section 4 and Appendix C.

(b) Complete proofs of all theoretical results.
[Yes] The proofs are provided in Appendix C.

(c) Clear explanations of any assumptions. [Yes]
The assumptions are justified in Section 4 and
Appendix C.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed
to reproduce the main experimental re-
sults (either in the supplemental mate-
rial or as a URL). [Yes] The source
code is available at https://github.com/

FrancescoPase/Federated-KLMS.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]
The experimental details are provided in Sec-
tion 5 and Appendix F.2.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes] The error bars are pro-
vided in Appendix F over 3 runs.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster,
or cloud provider). [Yes] Provided in Ap-
pendix F.2.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes] The creators are cited
properly in Section 5 and Appendix F.2.

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

https://github.com/FrancescoPase/Federated-KLMS
https://github.com/FrancescoPase/Federated-KLMS
https://github.com/FrancescoPase/Federated-KLMS
https://github.com/FrancescoPase/Federated-KLMS

Isik, Pase, Gunduz, Koyejo, Weissman, Zorzi

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]

Adaptive Compression in Federated Learning via Side Information

A Additional Details on Prior Work

A.1 FedPM (Isik et al., 2023b)

We provide the pseudocode for FedPM in Algorithms 1 and 2. See (Isik et al., 2023b) for more details.

Algorithm 1 Federated Probablistic Mask Training (FedPM) (Isik et al., 2023b).

Hyperparameters: local learning rate ηL, minibatch size B, number of local iterations τ .
Inputs: local datasets Di, i = 1, . . . , N , number of iterations T .
Output: random SEED and binary mask parameters mfinal.

At the server, initialize a random network with weight vector winit ∈ Rd using a random SEED, and broadcast
it to the clients.
At the server, initialize the random score vector s(0,g) ∈ Rd, and compute θ(0,g) ← Sigmoid(s(0,g)).
At the server, initialize Beta priors α(0) = β(0) = λ0.
for t = 1, . . . , T do
Sample a subset Ct ⊂ {1, . . . , N} of |Ct| = C clients without replacement.
On Client Nodes:
for c ∈ Ct do
Receive θ(t−1,g) from the server and set s(t,c) ← Sigmoid−1(θ(t−1,g)).
for l = 1, . . . , τ do
ϕ(t,c) ← Sigmoid(s(t,c))
Sample binary mask m(t,c) ∼ qm(t,c) = Bern(ϕ(t,c)).
ẇ(t,c) ←m(t,c) ⊙winit

gs(t,c) ← 1
B

∑B
b=1∇ℓ(ẇ(t,c);Scb); where {Scb}Bb=1 are uniformly chosen from Dc

s(t,c) ← s(t,c) − ηL · gs(t,c)

end for
ϕ(t,c) ← Sigmoid(s(t,c))
Sample a binary mask m(t,c) ∼ Bern(ϕ(t,c)).
Send the arithmetic coded binary mask m(t,c) to the server.

end for

On the Server Node:
Receive m(t,c)’s from C client nodes.
θ(t,g) ← BayesAgg({m(t,c)}c∈Ct

, t) // See Algorithm 2.
Broadcast θ(t,g) to all client nodes.

end for
Sample the final binary mask mfinal ∼ Bern(θ(T,g)).
Generate the final model: ẇfinal ←mfinal ⊙winit.

Algorithm 2 BayesAgg. (Isik et al., 2023b)

Inputs: clients’ updates {m(t,c)}c∈Ct
, and round number t

Output: global probability mask π(t)

if ResPriors(t) then
α(t−1) ← β(t−1) = λ0

end if
Compute m(t,agg) =

∑
k∈Ct

m(t,c).

α(t) ← α(t−1) +m(t,agg)

β(t) ← β(t−1) + C · 1−m(t,agg)

π(t) ← α(t−1)

α(t)+β(t)−2

Return π(t)

Isik, Pase, Gunduz, Koyejo, Weissman, Zorzi

A.2 QSGD (Alistarh et al., 2017)

We provide the pseudocode for QSGD in Algorithm 3. See (Alistarh et al., 2017) for more details.

Algorithm 3 Quantized Stochastic Gradient Descent (QSGD) (Alistarh et al., 2017).

Hyperparameters: server learning rate ηS , local learning rate ηL, number of quantization levels s, minibatch
size B.
Inputs: local datasets Dn, n = 1, . . . , N , number of iterations T .
Output: final model w(T).

At the server, initialize a random network with weight vector w(0,g) ∈ Rd and broadcast it to the clients.
for t = 1, . . . , T do
Sample a subset Ct ⊂ {1, . . . , N} of |Ct| = C clients without replacement.
On Client Nodes:
for c ∈ Ct do
Receive w(t−1,g) from the server and set the local model parameters w(t,c) ← w(t,g).
for l = 1, . . . , τ do

g
(t,c)
w ← 1

B

∑B
b=1∇ℓ(w(t,c);Scb); where {Scb}Bb=1 are uniformly chosen from Dc

w(t,c) ← w(t,c) − ηL · g(t,c)w

end for
v(t,c) ← w(t,c) −w(t,g)

for i = 1, . . . , d do

Find integer 0 ≤ q ≤ s such that |v(t,c)
i |/∥v(t,c)∥2 ∈ [q/s, (q + 1)/s].

Take a sample z ∼ Bern(1− (
|v(t,c)

i |
∥v(t,c)∥2

s− q)).

if z = 1 then
κ
(t,c)
i ← q/s.

else
κ
(t,c)
i ← (q + 1)/s.

end if
end for
Send vectors κ(t,c), sign(v(t,c)), and norm ∥v(t,n)∥2 to the server using Elias coding (Elias, 1975) as
in (Alistarh et al., 2017).

end for

On the Server Node:
Receive κ(t,c), sign(v(t,c)), and norm ∥v(t,c)∥2 from the clients c ∈ Ct.
for c ∈ Ct do
for i = 1, . . . , d do

Reconstruct v̂
(t,c)
i ← ∥v(t,c)∥2 · sign(v(t,c)

i) · κ(t,c)
i .

end for
end for
Aggregate and update w(t,g) ← w(t−1,g) − ηS

1
C

∑
c∈Ct

v̂(t,c).

Broadcast w(t,g) to the clients.
end for

Adaptive Compression in Federated Learning via Side Information

A.3 QLSD (Vono et al., 2022)

We provide the pseudocode for QLSD in Algorithm 4. See (Vono et al., 2022) for more details.

Algorithm 4 Quantised Langevin Stochastic Dynamics (QLSD) (Vono et al., 2022).

Hyperparameters: server learning rate ηS , number of quantization levels s, minibatch size B.
Inputs: local datasets Dn, n = 1, . . . , N , number of iterations T .

Output: samples
{
θ(t)
}T
t=1

.

At the server, initialize a random network with weight vector θ(0) ∈ Rd and broadcast it to the clients.
for t = 1, . . . , T do
Sample a subset Ct ⊂ {1, . . . , N} of |Ct| = C clients without replacement.
On Client Nodes:
for c ∈ Ct do
Receive θ(t−1) from the server and set the local model parameters ϕ(t,c) ← θ(t−1).
Sample a minibatch Sc s.t. |Sc| = B uniformly from Dc.

Compute a stochastic gradient of the potential H(ϕ(t,c))← |D(c)
j |
B

∑
j∈Sc ∇Uj(ϕ

(t,c)).
for i = 1, . . . , d do

Find integer 0 ≤ q ≤ s such that
|Hi(ϕ

(t,c))|
∥H(ϕ(t,c))∥2

∈ [q/s, (q + 1)/s].

Take a sample z ∼ Bern(1− (|Hi(ϕ
(t,c))|

∥H(ϕ(t,c))∥2
s− q)).

if z = 1 then
κ
(t,c)
i ← q/s.

else
κ
(t,c)
i ← (q + 1)/s.

end if
end for
Send vectors κ(t,c), sign(H(ϕ(t,c))), and norm ∥H(ϕ(t,c))∥2 to the server using Elias coding (Elias, 1975) as
in (Alistarh et al., 2017).

end for

On the Server Node:
Receive κ(t,c), sign(H(ϕ(t,c))), and norm ∥H(ϕ(t,c))∥2 from the clients c ∈ Ct.
for c ∈ Ct do
for i = 1, . . . , d do

Reconstruct Ĥi(ϕ
(t,c))← ∥H(ϕ(t,c))∥2 · sign(Hi(ϕ

(t,c))) · κ(t,c)
i .

end for
end for
Compute Ĥ(ϕ(t))← N

C

∑
c∈Ct

Ĥ(ϕ(t,c)).

Sample ξ(t) ∼ N (0d, Id).
Compute θ(t) ← θ(t−1) − ηSĤ(ϕ(t)) +

√
2γξ(t).

Broadcast θ(t) to the clients.
end for

Isik, Pase, Gunduz, Koyejo, Weissman, Zorzi

B KLMS Pseudocode

In this section, we provide pseudocodes for both versions of KLMS: Algorithm 5 with fixed-sized blocks (Fixed-KLMS),
and Algorithm 6 with adaptive-sized blocks (Adaptive-KLMS). The algorithms are standalone coding modules
that can be applied to different FL frameworks (see Appendix D). In the experiments in Section 5, we used
Adaptive-KLMS and called it KLMS for simplicity. The decoding approach at the server is outlined in Algorithm 8.

Algorithm 5 Fixed-KLMS.

Inputs: client-only qϕ(t,c) and global pθ(t) distributions, block size S, number of per-block samples K.

Output: selected indices for each block {k(c)∗[m] }
M
m=1, where M = ⌈ dS ⌉ is the number of bloks.

Define {q
ϕ
(t,c)

[m]

}Mm=1 and {p
θ
(t,c)

[m]

}Mm=1 splitting qϕ(t,c) and pθ(t) into M distributions on S-size parameters blocks.

for all m ∈ {1, . . . ,M} do
I ← [(m− 1)S : mS].
Take K samples from the global distribution: {y[k]}Kk=1 ∼ p

θ
(t)

[I]

.

α[k] ←
q
ϕ
(t,c)
[I]

(y[k])

p
θ
(t)
[I]

(y[k])
∀k ∈ {1, . . . ,K}.

π(k)← α[k]∑K
k′=1

α[k′]
∀k ∈ {1, . . . ,K}.

Sample an index k
(c)∗
[m] ∼ π(k).

end for
Send the selected indices {k(c)∗[m] }

M
m=1 with M · log2 K bits overall for M blocks.

Adaptive Compression in Federated Learning via Side Information

Algorithm 6 Adaptive-KLMS.

Inputs: client-only qϕ(t,c) and global pθ(t) distributions, block locations M (a list of start indices of each block),

number of per-block samples K, target KL divergence Dtarget
KL , the flag UPDATE indicating whether the block

locations will be updated, the maximum block size allowed MAX BLOCK SIZE.

Output: selected indices for each block {k(c)∗[m] }
M
m=1, where the number of blocks M may vary each round.

if UPDATE then
Construct the sequence of per-coordinate KL-divergence of size d: D ←[
DKL(qϕ(t,c)

1
∥p

θ
(t)
1
), DKL(qϕ(t,c)

2
∥p

θ
(t)
2
), . . . , DKL(qϕ(t,c)

d

∥p
θ
(t)
d

)
]
.

DivideD into subsequences of {D[i1 = 1 : i2],D[i2 : i3], . . . ,D[iM : iM+1 = d]} such that for allm = 1, . . . ,M ,∑im+1

l=im
D[l] ≈ Dtarget

KL or im+1 − im = MAX BLOCK SIZE. Here M , i.e, the number of blocks, may vary each
round.
Construct new block locations: Im ← [im : im+1] for m = 1, . . . ,M .

else
Keep the old block locations I.

end if
Construct per-block client-only {q

ϕ
(t,c)

[Im]

}Mm=1 and global {p
θ
(t)

[Im]

}Mm=1 distributions.

for all m ∈ {1, . . . ,M} do
Sample {y[k]}Kk=1 ∼ p

θ
(t)

[Im]

.

α[k] ←
q
ϕ
(t,c)
[Im]

(y[k]).

p
θ
(t)
[Im]

(y[k])
∀k ∈ {1, . . . ,K}.

π(k)← α[k]∑K
k′=1

α[k′]
∀k ∈ {1, . . . ,K}.

Sample k
(c)∗
[m] ∼ π(k).

end for
if UPDATE then
Return the selected indices {k(c)∗[m] }

M
m=1 and the new block locations I spending ≈ Dtarget

KL +

log2(MAX BLOCK SIZE) bits per block (block sizes are different for each block).
else
Return the selected indices {k(c)∗[m] }

M
m=1 spending ≈ Dtarget

KL bits per block (block sizes are different for each

block).
end if

Algorithm 7 Aggregate-Block-Locations.

Inputs: client block locations {I(t,c)}c∈Ct
.

Output: new global block locations I(t).

Define empty I(t).
mmax ← maxc∈Ct

{
length(I(t,c))

}
.

for m ∈ {1, 2, . . . ,mmax} do
ĩm ← 0.
l← 0.
for c ∈ Ct do
if length(I(t,c)) ≥ m then

ĩm ← ĩm + I
(t,c)
im

.
l← l + 1.

end if
end for
īm ← ⌈̃im/l⌉.
Add īm to I(t).

end for
Return I(t).

Isik, Pase, Gunduz, Koyejo, Weissman, Zorzi

Algorithm 8 KLMS-Decoder.

Inputs: global pθ(t) distribution, block locations I of M blocks, number of per-block samples K, selected indices

for each block {k(c)∗[m] }
M
m=1, where M = ⌈ dS ⌉ is the number of blocks.

Output: The selected samples {y∗
[m]}

M
m=1 for each block.

Define {p
θ
(t)

[Im]

}Mm=1 splitting pθ(t) into M distributions with block locations in I.

for all m ∈ {1, . . . ,M} do
Take K samples from the global distribution: {y[k]}Kk=1 ∼ p

θ
(t)

[Im]

.

Recover y∗
[m] ← y

k
(c)∗
[m]

. (Recall that k
(c)∗
[m] for each block m was received from the client.)

end for
Return the selected samples {y∗

[m]}
M
m=1 for each block.

Adaptive Compression in Federated Learning via Side Information

C Proofs

In this section, we provide the proof for Theorem 4.1. But before that, we first define the formal problem
statement, introduce some new notation, and give another theorem (Theorem C.1) that will be required for the
proof of Theorem 4.1.

We consider a scenario where N distributed nodes and a centralized server share a prior distribution pθ over a set
X equipped with some sigma algebra. Each node n also holds a posterior distribution qϕ(n) over the same set.

The server wants to estimate EX(n)∼q
ϕ(n)∀n∈[N][

1
N

∑N
m=1 f(X

(m))], where f(·) : X → R is a measurable function.

In order to minimize the cost of communication from the nodes to the centralized server, each node n and the

centralized server take K(n) samples from the prior distribution y
(n)
[1] , . . . ,y

(n)

[K(n)]
∼ pθ. Then client n performs

the following steps:

1. Define a new probability distribution over the indices k = 1, . . . ,K(n):

π(n)(k) =
qϕ(n)(y

(n)
[k])/pθ(y

(n)
[k])∑K(n)

l=1 qϕ(n)(y
(n)
[l])/pθ(y

(n)
[l])

(7)

and over the samples y
(n)
[1] , . . . ,y

(n)

[K(n)]
:

q̃π(n)(y) =

K(n)∑
k=1

π(n)(k) · 1(y(n)
[k] = y). (8)

2. Sample k(n)∗ ∼ π(n).

3. Communicate k(n)∗ to the centralized server with logK(n) bits.

Then, the centralized server recovers the sample y
(n)

[k(n)∗]
that it generated in the beginning. (Note that y

(n)

[k(n)∗]
is

actually a sample from q̃π(n) .) Finally, the server aggregates these samples 1
N

∑N
n=1 f(y

(n)

k(n)∗) which is an estimate
of

EY (n)∼q̃
π(n)∀n∈[N][

1

N

N∑
m=1

f(Y (m))]. (9)

We want to find a relation between the number of samples K(1), . . . ,K(N) (or the number

of bits logK(1), . . . , logK(N)) and the error in the estimate, |EY (n)∼q̃
π(n)∀n∈[N][

1
N

∑N
m=1 f(Y

(m))] −
EX(n)∼q

ϕ(n)∀n∈[N][
1
N

∑N
m=1 f(X

(m))]|. In our proofs, we closely follow the methodology in Theorems 1.1. and 1.2.

in (Chatterjee and Diaconis, 2018). In Theorem C.1, we use the probability density of qϕ(n) with respect to pθ for

each node n and denote it by ρn =
dq

ϕ(n)

dpθ
. We refer to the following definitions often:

I(f) =

∫
x(1)

· · ·
∫
x(N)

(
1

N

N∑
n=1

f(x(n))

)
N∏

n=1

dqϕ(n)(x(n)), (10)

IK(f) =
1∏N

n=1 K
(n)

K(1)∑
k(1)=1

· · ·
K(N)∑

k(N)=1

(
1

N

N∑
n=1

f(y
(n)

[k(n)]
)

)
N∏

n=1

ρn(y
(n)

[k(n)]
), (11)

Isik, Pase, Gunduz, Koyejo, Weissman, Zorzi

and

JK(f) =

K(1)∑
k(1)=1

· · ·
K(N)∑

k(N)=1

(
1

N

N∑
n=1

f(y
(n)

[k(n)]
)

)
N∏

n=1

qϕ(n)(y
(n)

[k(n)]
)/pθ(y

(n)

[k(n)]
)∑K(n)

l=1 qϕ(n)(y
(n)
[l])/pθ(y

(n)
[l])

. (12)

Notice that I(f) corresponds to the target value the centralized server wants to estimate, JK(f) is the estimate
from the proposed approach, and IK(f) is a value that will be useful in the proof and that satisfies E[IK(f)] = I(f).

Theorem C.1. Let pθ and qϕ(n) for n = 1, . . . , N be probability distributions over a set X equipped with some

sigma-algebra. Let X(n) be an X -valued random variable with law qϕ(n) . Let r ≥ 0 and q̃π(n) for n = 1, . . . , N

be discrete distributions each constructed by K(n) = exp
(
DKL(qϕ(n)∥pθ) + r

)
samples {y(n)

[k(n)]
}K(n)

k(n)=1
from pθ

defining q̃π(n)(y) =
∑K(n)

k=1

q
ϕ(n) (y

(n)

[k]
)/pθ(y

(n)

[k]
)∑K(n)

l=1 q
ϕ(n) (y

(n)

[l]
)/pθ(y

(n)

[l]
)
·1(y(n)

[k] = y). Furthermore, for f(·) defined above, let ||f ||qϕ
=√

EX(n)∼q
ϕ(n)∀n∈[N][(

1
N

∑N
m=1 f(X

(m)))2] be its 2-norm under qϕ = qϕ(1) , . . . , qϕ(N) . Then,

E|IK(f)− I(f)| ≤ ||f ||qϕ

e−Nr/4 + 2

√√√√ N∏
n=1

P
(
log ρn(X(n)) > DKL(qϕ(n) ||pθ) + r/2

) . (13)

Conversely, let 1 denote the function from X into R that is identically equal to 1. If for n = 1, . . . , N , K(n) =
exp

(
DKL(qϕ(n) ||pθ)− r

)
for some r ≥ 0, then for any δ ∈ (0, 1),

P(IK(1) ≥ 1− δ) ≤ e−Nr/2 +

∏N
n=1 P

(
log ρn(X

(n)) ≤ DKL(qϕ(n) ||pθ)− r/2
)

1− δ
. (14)

Proof. Let L(n) = DKL(qϕ(n) ||pθ),∀n ∈ [N]. Suppose that K(n) = eL
(n)+r and a(n) = eL

(n)+r/2. Let h(z) = f(z)

if ρn(z) ≤ a(n) and 0 otherwise ∀n ∈ [N]. We first make the following assumption:

E[| 1
N

∑
n∈Q⊆[N]

f(X(n))|;∀n ∈ Q ⊆ [N], ρn(X
(n)) > a(n)] ≤

E[| 1
N

∑
n∈[N]

f(X(n)|;∀n ∈ [N], ρn(X
(n)) > a(n)].

(15)

This is indeed a reasonable assumption. To see this, following (Chatterjee and Diaconis, 2018), we note that
log ρn(Z) is concentrated around its expected value, which is L(n) = DKL(qϕ(n) ||pθ), in many scenarios. Therefore,

for small t (and t is indeed negligibly small in our experiments), the events 1{∀n ∈ Q ⊆ [N], ρn(X
(n)) > a(n)}

occur with the approximately same frequency for each set Q ⊆ [N] since the likelihood of event 1{ρn(X(n)) > a(n)}
is close to being uniform. Consider also that | 1N

∑
n∈Q⊆[N] f(X

(n))| ≤ | 1N
∑

n∈[N] f(X
(n))| holds when f(Xn)’s

have the same signs per coordinate for each n = 1, . . . , N , which is a realistic assumption given that the clients
are assumed to be able to train a joint model and hence should not have opposite signs in the updates very
often. With these two observations, we argue that the assumption in (15) is indeed reasonable for many scenarios,
including FL.

Now, going back to the proof, from triangle inequality, we have,

|IK(f)− I(f)| ≤ |IK(f)− IK(h)|+ |IK(h)− I(h)|+ |I(h)− I(f)|. (16)

Adaptive Compression in Federated Learning via Side Information

First, note that by Cauchy-Schwarz inequality and by the assumption in (15), we have

|I(h)− I(f)| =
∑

Q⊆[N]

E[| 1
N

∑
m∈Q

f(X(m))|;∀n ∈ Q, ρn(X
(n)) > a(n)]·

· P(∀n ∈ Q, ρn(X
(n)) > a(n))

(17)

≤ E[| 1
N

∑
m∈[N]

f(X(m))|;∀n ∈ [N], ρn(X
(n)) > a(n)]

∑
Q⊆[N]

P(∀n ∈ Q, ρn(X
(n)) > a(n)) (18)

= E[| 1
N

∑
m∈[N]

f(X(m))|;∀n ∈ [N], ρn(X
(n)) > a(n)] (19)

=

∫
x(1),...,x(N)

| 1
N

N∑
n=1

f(x(n))| · 1{∀n ∈ [N], ρn(x
(n)) > a(n)}

N∏
n=1

dqϕ(n)(x(n)) (20)

≤

√√√√∫
x(1),...,x(N)

| 1
N

N∑
m=1

f(x(m))|2 ·
N∏

n=1

dqϕ(n)(x(n))·

·

√√√√∫
x(1),...,x(N)

1{∀n ∈ [N], ρn(x(n)) > a(n)}
N∏

n=1

dqϕ(n)(x(n))

(21)

=

√√√√EX(n)∼q
ϕ(n) ,∀n∈[N][(

1

N

N∑
m=1

f(X(m)))2] ·
√

P(∀n ∈ [N], ρn(X(n)) > a(n)) (22)

= ||f ||qϕ
·
√
P(∀n ∈ [N], ρn(X(n)) > a(n)). (23)

Similarly,

E|IK(f)− IK(h)| = E

∣∣∣∣∣∣ 1∏N
n=1 K

(n)

K(1)∑
k(1)=1

· · ·
K(N)∑

k(N)=1

1

N
(

N∑
m=1

f(Y
(m)

[k(m)]
)− h(Y

(m)

[k(m)]
))

N∏
n=1

ρn(Y
(n)

[k(n)]
)

∣∣∣∣∣∣ (24)

≤ E

∣∣∣∣∣ 1N (

N∑
m=1

f(Y
(m)

[k(m)]
)− h(Y

(m)

[k(m)]
))

N∏
n=1

ρn(X
(n))

∣∣∣∣∣ (25)

= E[| 1
N

N∑
m=1

f(X(m))|;∀n ∈ [N], ρn(X
(n)) > a(n)] (26)

≤ ||f ||qϕ
·
√
P(∀n ∈ [N], ρn(X(n)) > a(n)). (27)

From (26) to (27), we follow the same steps in (19)-(23).

Finally, note that

E|IK(h)− I(h)| ≤
√
V ar(IK(h)) (28)

=

√√√√ 1∏N
n=1 K

(n)
V ar

(
1

N

N∑
m=1

h(Y
(m)
[1]) ·

N∏
n=1

ρn(Y
(n)
[1])

)
(29)

≤

√√√√ 1∏N
n=1 K

(n)
E

[
(
1

N

N∑
m=1

h(Y
(n)
[1]))2

N∏
n=1

(ρn(Y
(n)
[1]))2

]
(30)

Isik, Pase, Gunduz, Koyejo, Weissman, Zorzi

≤

√√√√ ∏N
n=1 a

(n)∏N
n=1 K

(n)
E

[
(
1

N

N∑
m=1

f(Y
(m)
[1]))2

N∏
n=1

ρn(Y
(n)
[1])

]
(31)

= ||f ||qϕ

N∏
n=1

(
a(n)

K(n)

)1/2

. (32)

Combining the upper bounds above, we get

E [|IK(f)− I(f)|] ≤ ||f ||qϕ

 N∏
n=1

(
a(n)

K(n)

)1/2

+ 2

√√√√ N∏
n=1

P
(
log ρn(X(n)) > log a(n)

) (33)

= ||f ||qϕ

e−Nr/4 + 2

√√√√ N∏
n=1

P
(
log ρn(X(n)) > L(n) + r/2

) (34)

= ||f ||qϕ

e−Nr/4 + 2

√√√√ N∏
n=1

P
(
log ρn(X(n)) > DKL(qϕ(n) ||p) + r/2

) . (35)

This completes the proof of the first part of the theorem.

For the converse part, suppose K(n) = eL
(n)−r and a(n) = eL

(n)−r/2 ∀n ∈ [N]. Then,

P(IK(1) ≥ 1− δ) = P

(
1∏N

n=1 K
(n)

K1∑
k1=1

· · ·
KN∑

kN=1

N∏
n=1

ρn(Y
(n)

[k(n)]
) ≥ 1− δ

)
(36)

≤P
(

max
1≤k≤K(n)

ρn(Y
(n)
[k]) > a(n),∀n ∈ [N]

)

+ P

 1∏N
n=1 K

(n)

K(1)∑
k(1)=1

· · ·
K(N)∑

k(N)=1

N∏
n=1

ρn(Y
(n)

[k(n)]
)1{∀n ∈ [N], ρn(Y

(n)

[k(n)]
) ≤ a(n)} ≥ 1− δ

 (37)

≤
K(1)∑

k(1)=1

· · ·
K(N)∑

k(N)=1

P
(
ρn(Y

(n)

[k(n)]
) > a(n),∀n ∈ [N]

)

+
1

1− δ
E

 1∏N
n=1 K

(n)

K(1)∑
k(1)=1

· · ·
K(N)∑

k(N)=1

N∏
n=1

ρn(Y
(n)

[k(n)]
)1{∀n ∈ [N], ρn(Y

(n)

[k(n)]
) ≤ a(n)}

 (38)

≤ 1∏N
n=1 a

(n)

K(1)∑
k(1)=1

· · ·
K(N)∑

k(N)=1

N∏
n=1

E
[
ρn(Y

(n)

[k(n)]
)
]
+

1−
∏N

n=1 P
(
ρn(Z) ≥ a(n)

)
1− δ

(39)

=

N∏
n=1

K(n)

a(n)
+

∏N
n=1 P

(
ρn(Z) ≤ a(n)

)
1− δ

(40)

= e−Nr/2 +

∏N
n=1 P

(
log ρn(X

(n)) ≤ DKL(qϕ(n) ||pθ)− r/2
)

1− δ
, (41)

where from (36) to (38) and (37) to (38), we use Markov’s inequality. This completes the proof of the second
inequality in the theorem statement.

Now, we restate Theorem 4.1 below and provide the proof afterward.

Adaptive Compression in Federated Learning via Side Information

Theorem C.2 (Theorem 4.1). Let all notations be as in Theorem C.1 and let JK(f) be the estimate defined in
(12). Suppose that K(n) = exp

(
L(n) + r

)
for some r ≥ 0. Let

ϵ =

e−Nr/4 + 2

√√√√ N∏
n=1

P(log ρn(X(n)) > L(n) + r/2)

1/2

. (42)

Then

P
(
|JK(f)− I(f)| ≥

2||f ||qϕ
ϵ

1− ϵ

)
≤ 2ϵ. (43)

Proof. Suppose that K(n) = eL
(n)+r and a(n) = eL

(n)+r/2 ∀n ∈ [N]. Let

b =

√√√√ N∏
n=1

a(n)

K(n)
+ 2

√√√√ N∏
n=1

P
(
ρn(X(n)) > a(n)

)
. (44)

Then, by Theorem C.1, for any ϵ, δ ∈ (0, 1),

P (|IK(1)− 1| ≥ ϵ) ≤ b

ϵ
(45)

and

P (|IK(f)− I(f)| ≥ δ) ≤
||f ||qϕ

b

δ
. (46)

Now, if |IK(f)− I(f)| < δ and |IK(1)− 1| < ϵ, then

|JK(f)− I(f)| =
∣∣∣∣IK(f)

IK(1)
− I(f)

∣∣∣∣ (47)

≤ |IK(f)− I(f)|+ |I(f)||1− IK(1)|
IK(1)

(48)

<
δ + |I(f)|ϵ

1− ϵ
. (49)

Taking ϵ =
√
b and δ = ||f ||qϕ

ϵ completes the proof of the first inequality in the theorem statement. Note that if
ϵ is bigger than 1, the bound is true anyway.

This completes the proof of the theorem.

Isik, Pase, Gunduz, Koyejo, Weissman, Zorzi

D Additional Details on Example Use Cases of KLMS

Here, we present the pseudocodes for the example use cases of KLMS we covered in the main body.

D.1 FedPM-KLMS

The pseudocode for FedPM-KLMS can be found in Algorithm 9.

Algorithm 9 FedPM-KLMS.

Hyperparameters: thresholds to update block locations D̄max
KL and D̄min

KL , maximum block size MAX BLOCK SIZE.
Inputs: number of iterations T , initial block size S, number of samples K, initial number of blocks M = ⌈ dS ⌉,
target KL divergence Dtarget

KL .
Output: random SEED and binary mask parameters m(T).

At the server, initialize a random network with weight vector winit ∈ Rd using a random SEED, and broadcast it
to the clients; initialize the random score vector s(0,g) ∈ Rd, and compute θ(0,g) ← Sigmoid(s(0,g)), Beta priors

α(0) = β(0) = λ0; initialize UPDATE←TRUE and the block locations I
(t)
i = [(i− 1)S : iS] for i = 1, . . . ,M and

broadcast to the clients.
for t = 1, . . . , T do
Sample a subset Ct ⊂ {1, . . . , N} of |Ct| = C clients without replacement.
On Client Nodes:
for c ∈ Ct do
Compute ϕ(t,c) as in FedPM in Algorithm 1.
if UPDATE then
{k∗[i]}

M
i=1, I

(t,c) ← Adaptive-KLMS(Bern(θ(t,g)),Bern(ϕ(t,c)), I(t), Dtarget
KL) // See Algorithm 6.

M ← length(I(t,c)). // New number of blocks.
else
{k∗[i]}

M
i=1 ← Adaptive-KLMS(Bern(θ(t,g)),Bern(ϕ(t,c)), I(t), Dtarget

KL) // See Algorithm 6.
end if
Send {k∗[i]}

M
i=1 with K · M bits and the average KL divergence across blocks D̄

(t,c)
KL ←

1
M

∑M
m=1 DKL(Bern(ϕ

(t,c)
[Im])∥Bern(θ

(t,g)
[Im])) with 32 bits to the server.

if UPDATE then
Send I(t,c) with M · log2(MAX BLOCK SIZE) bits.

end if
end for

On the Server Node:
Receive the selected indices {k∗[i]}

M
i=1, and the average KL divergences {D̄(t,c)

KL }c∈Ct
.

Compute D̄
(t)
KL = 1

C

∑
c∈Ct

D̄
(t,c)
KL .

if UPDATE then
I(t) ← Aggregate-Block-Locations

(
{I(t,c)}c∈Ct

)
// See Algorithm 7.

UPDATE = False.
else
I(t,c) ← I(t) for all c ∈ Ct.
if D̄

(t)
KL > D̄max

KL or D̄
(t)
KL < D̄min

KL then UPDATE = True else UPDATE = False.
end if
for c ∈ Ct do
{m̂(t,c)

[i] }
M
i=1 ← KLMS-Decoder(Bern(θ(t)), I(t,c),K) // See Algorithm 8.

end for
θ(t) = BayesAgg

(
{m̂(t,c)}c∈Ct , t

)
// See Algorithm 2.

Broadcast UPDATE, I(t) and θ(t) to the clients.
end for
Sample mfinal ∼ Bern(θ(T)) and return the final model ẇfinal ←mfinal ⊙winit.

Adaptive Compression in Federated Learning via Side Information

D.2 QSGD-KLMS

The pseudocode for QSGD-KLMS can be found in Algorithm 10.

Algorithm 10 QSGD-KLMS.

Hyperparameters: server learning rate ηS , thresholds to update block locations D̄max
KL , D̄min

KL , maximum block
size MAX BLOCK SIZE.
Inputs: number of iterations T , initial block size S, number of samples K, initial number of blocks M = ⌈ dS ⌉,
target KL divergence Dtarget

KL .
Output: Final model w(T).

At the server, initialize a random network parameters w(0) ∈ Rd and broadcast it to the clients; initialize

UPDATE←TRUE and the block locations I
(t)
i = [(i− 1)S : iS] for i = 1, . . . ,M and broadcast to the clients.

for t = 1, . . . , T do
Sample a subset Ct ⊂ {1, . . . , N} of |Ct| = C clients without replacement.
On Client Nodes:
for c ∈ Ct do
Receive the empirical frequency from the previous round pθ(t) from the server.
Compute v(t,c) as in QSGD in Algorithm 3.
Compute the local client-only distribution qϕ(t,c) with v(t,c) using pQSGD(·) in (5).
if UPDATE then
{k∗[i]}

M
i=1, I

(t,c) ← Adaptive-KLMS(pθ(t) , qϕ(t,c) , I(t), D
target
KL) // See Algorithm 6.

M ← length(I(t,c)). // New number of blocks.
else
{k∗[i]}

M
i=1 ← Adaptive-KLMS(pθ(t) , qϕ(t,c) , I(t), D

target
KL) // See Algorithm 6.

end if
Send {k∗[i]}

M
i=1 with K · M bits and the average KL divergence across blocks D̄

(t,c)
KL ←

1
M

∑M
m=1 DKL(qϕ(t,c)

[Im]

∥p
θ
(t)

[Im]

)) with 32 bits to the server.

if UPDATE then
Send I(c) with M · log2(MAX BLOCK SIZE) bits.

end if
end for

On the Server Node:
Receive the selected indices {k∗[i]}

M
i=1, and the average KL divergences {D̄(t,c)

KL }c∈Ct
.

Compute D̄
(t)
KL = 1

C

∑
c∈Ct

D̄
(t,c)
KL .

if UPDATE then
I(t,c) ← Aggregate-Block-Locations

(
{I(t,c)}c∈Ct

)
// See Algorithm 7.

UPDATE = False.
else
I(t,c) ← I(t) for all c ∈ Ct.
if D̄

(t)
KL > D̄max

KL or D̄
(t)
KL < D̄min

KL then UPDATE = True else UPDATE = False.
end if
for c ∈ Ct do
{v̂(t,c)

[i] }
M
i=1 ← KLMS-Decoder(pθ(t) , I(t,c),K) // See Algorithm 8.

Construct the empirical frequency pθ(t+1) from {v̂(t,c)
[i] }

M
i=1.

end for
Compute w(t) = w(t−1) − ηS

1
C

∑
c∈Ct

v̂(t,c).

Broadcast UPDATE, I(t), w(t), and pθ(t) to the clients.
end for

Isik, Pase, Gunduz, Koyejo, Weissman, Zorzi

D.3 SignSGD-KLM

The pseudocode for SignSGD-KLMS can be found in Algorithm 11.

Algorithm 11 SignSGD-KLMS.

Hyperparameters: server learning rate ηS , thresholds to update block locations D̄max
KL , D̄min

KL , maximum block
size MAX BLOCK SIZE.
Inputs: number of iterations T , initial block size S, number of samples K, initial number of blocks M = ⌈ dS ⌉,
target KL divergence Dtarget

KL .
Output: Final model w(T).

At the server, initialize a random network parameters w(0) ∈ Rd and broadcast it to the clients; initialize

UPDATE←TRUE and the block locations I
(t)
i = [(i− 1)S : iS] for i = 1, . . . ,M and broadcast to the clients.

for t = 1, . . . , T do
Sample a subset Ct ⊂ {1, . . . , N} of |Ct| = C clients without replacement.
On Client Nodes:
for c ∈ Ct do
Compute v(t,c) as in other standard FL frameworks such as QSGD in Algorithm 3.
Compute the local client-only distribution qϕ(t,c) with v(t,c) using pSignSGD(·) in (6).
pθ(t) ← Unif(0.5) over {−1, 1}.
if UPDATE then
{k∗[i]}

M
i=1, I

(t,c) ← Adaptive-KLMS(pθ(t) , qϕ(t,c) , I(t), D
target
KL) // See Algorithm 6.

M ← length(I(t,c)). // New number of blocks.
else
{k∗[i]}

M
i=1 ← Adaptive-KLMS(pθ(t) , qϕ(t,c) , I(t), D

target
KL) // See Algorithm 6.

end if
Send {k∗[i]}

M
i=1 with K · M bits and the average KL divergence across blocks D̄

(t,c)
KL ←

1
M

∑M
m=1 DKL(qϕ(t,c)

[Im]

∥p
θ
(t,g)

[Im]

)) with 32 bits to the server.

if UPDATE then
Send I(t,c) with M · log2(MAX BLOCK SIZE) bits.

end if
end for

On the Server Node:
Receive the selected indices {k∗[i]}

M
i=1, and the average KL divergences {D̄(t,c)

KL }c∈Ct
.

Compute D̄
(t)
KL = 1

C

∑
c∈Ct

D̄
(t,c)
KL .

if UPDATE then
I(t) ← Aggregate-Block-Locations

(
{I(t,c)}c∈Ct

)
// See Algorithm 7.

UPDATE = False.
else
I(t,c) ← I(t) for all c ∈ Ct.
if D̄

(t)
KL > D̄max

KL or D̄
(t)
KL < D̄min

KL then UPDATE = True else UPDATE = False.
end if
for c ∈ Ct do
{v̂(t,c)

[i] }
M
i=1 ← KLMS-Decoder(pθ(t) , I(t,c),K) // See Algorithm 8.

end for
Compute w(t) = w(t−1) − ηS

1
C

∑
c∈Ct

v̂(t,c).

Broadcast UPDATE, I(t) and w(t) to the clients.
end for

Adaptive Compression in Federated Learning via Side Information

D.4 SGLD-KLMS

The pseudocode for SGLD-KLMS can be found in Algorithm 12.

Algorithm 12 SGLD-KLMS.

Hyperparameters: server learning rate ηS , minibatch size B, thresholds to update block locations D̄max
KL , D̄min

KL ,
maximum block size MAX BLOCK SIZE.
Inputs: number of iterations T , initial block size S, number of samples K, initial number of blocks M = ⌈ dS ⌉,
target KL divergence Dtarget

KL .

Output: samples
{
θ(t)
}T
t=1

.

At the server, initialize a random network with weight vector θ(0) ∈ Rd and broadcast it to the clients; initialize

UPDATE←TRUE and the block locations I
(t)
i = [(i− 1)S : iS] for i = 1, . . . ,M and broadcast to the clients.

for t = 1, . . . , T do
Sample a subset Ct ⊂ {1, . . . , N} of |Ct| = C clients without replacement.
On Client Nodes:
for c ∈ Ct do
Receive θ(t−1) from the server and set ϕ(t,c) ← θ(t−1).
Compute a stochastic gradient of the potential H(ϕ(t,c)) as in QLSD in Algorithm 4.

Set pθ(t) ← N
(
0,
√

2
γC2 Id

)
.

Set qϕ(t,c) ← N
(
H(ϕ(t,c)),

√
2

γC2 Id

)
.

if UPDATE then
{k∗[i]}

M
i=1, I

(t,c) ← Adaptive-KLMS(pθ(t) , qϕ(t,c) , I(t), D
target
KL) // See Algorithm 6.

M ← length(I(t,c)). // New number of blocks.
else
{k∗[i]}

M
i=1 ← Adaptive-KLMS(pθ(t) , qϕ(t,c) , I(t), D

target
KL) // See Algorithm 6.

end if
Send {k∗[i]}

M
i=1 with K · M bits and the average KL divergence across blocks D̄

(t,c)
KL ←

1
M

∑M
m=1 DKL(qϕ(t,c)

[Im]

∥p
θ
(t,g)

[Im]

)) with 32 bits to the server.

if UPDATE then
Send I(t,c) with M · log2(MAX BLOCK SIZE) bits.

end if
end for

On the Server Node:
Receive the selected indices {k∗[i]}

M
i=1, and the average KL divergences {D̄(t,c)

KL }c∈Ct
.

Compute D̄
(t)
KL = 1

C

∑
c∈Ct

D̄
(t,c)
KL .

if UPDATE then
I(t) ← Aggregate-Block-Locations

(
{I(t,c)}c∈Ct

)
// See Algorithm 7.

UPDATE = False.
else
I(t,c) ← I(t) for all c ∈ Ct.
if D̄

(t)
KL > D̄max

KL or D̄
(t)
KL < D̄min

KL then UPDATE = True else UPDATE = False.
end if
for c ∈ Ct do
{Ĥ(ϕ

(t,c)
[i] }

M
i=1 ← KLMS-Decoder(pθ(t) , I(t,c),K) // See Algorithm 8.

end for
Compute θ(t) = θ(t−1) − ηS

1
C

∑
c∈Ct

Ĥ(ϕ(t,c)).

Broadcast UPDATE, I(t) and θ(t) to the clients.
end for

Isik, Pase, Gunduz, Koyejo, Weissman, Zorzi

E Additional Experimental Details

In Tables 3, 4, and 5, we provide the architectures for all the models used in our experiments, namely CONV4,
CONV6, ResNet-18, and LeNet. In the non-Bayesian experiments, clients performed three local epochs with a
batch size of 128 and a local learning rate of 0.1; while in the Bayesian experiments, they performed one local
epoch. We conducted our experiments on NVIDIA Titan X GPUs on an internal cluster server, using 1 GPU per
one run.

Table 3: Architectures for CONV4 and CONV6 models used in the experiments.

Model CONV-4 CONV-6

Convolutional
Layers

64, 64, pool
128, 128, pool

64, 64, pool
128, 128, pool
256, 256, pool

Fully-Connected
Layers

256, 256, 10 256, 256, 10

Table 4: ResNet-18 architecture.

Name Component
conv1 3× 3 conv, 64 filters. stride 1, BatchNorm

Residual Block 1

[
3× 3 conv, 64 filters
3× 3 conv, 64 filters

]
× 2

Residual Block 2

[
3× 3 conv, 128 filters
3× 3 conv, 128 filters

]
× 2

Residual Block 3

[
3× 3 conv, 256 filters
3× 3 conv, 256 filters

]
× 2

Residual Block 4

[
3× 3 conv, 512 filters
3× 3 conv, 512 filters

]
× 2

Output Layer 4× 4 average pool stride 1, fully-connected, softmax

Table 5: LeNet architecture for MNIST experiments.

Name Component
conv1 [5× 5 conv, 20 filters, stride 1], ReLU, 2× 2 max pool
conv2 [5× 5 conv, 50 filters, stride 1], ReLU, 2× 2 max pool
Linear Linear 800→ 500, ReLU

Output Layer Linear 500→ 10

During non-i.i.d. data split, we choose the size of each client’s dataset |D(n)| = Dn by first uniformly sampling an
integer jn from {10, 11, . . . , 100}. Then, a coefficient jn∑

n jj
is computed, representing the size of the local dataset

Dn as a fraction of the full training dataset size. Moreover, we impose a maximum number of different labels, or
classes, cmax, that each client can see. This way, highly unbalanced local datasets are generated.

Adaptive Compression in Federated Learning via Side Information

F Additional Experimental Results

F.1 KLMS on a Toy Model

We provide additional insights on KLMS employed in a distributed setup similar to that of FL. Specifically, we design
a set of experiments in which the server keeps a global distribution p = N (0, 1), and N clients need to communicate
samples according to their local client-only distributions {q(n)}Nn=1 = {N

(
µ(n), 1

)
}Nn=1, which are induced by a

global and unknown distribution q = N (µ, 1). Each client n applies KLMS (see Figure 1) to communicate a sample

x(n) from q(n) using as coding distribution the global distribution p. The server then computes µ̂ = 1
N

∑N
n=1 x

(n)

to estimate µ. We study the effect of N , i.e., the number of clients communicating their samples, on the estimation
of µ in different scenarios by varying the rate adopted by the clients (Appendix F.1.1), and the complexity of the
problem (Appendix F.1.2).

F.1.1 The Effect of the Overhead r

In this example, we simulate an i.i.d. data split by providing all the clients with the same local client-only
distribution q(n) = N (0.8, 1) ∀n ∈ [N]. We analyze the bias in the estimation of µ by computing a Monte Carlo
average of the discrepancy in (3) (see Figure 4-(right)), together with its empirical standard deviation (see
Figure 4-(left)). From Figure 4, we can observe that, as conjectured, the standard deviation of the gap decreases
when N increases, meaning that the estimation is more accurate around its mean value, which is also better for
larger values of N . Also, as expected, a larger value of the overhead r induces better accuracy.

Figure 4: Estimation gap statistics for different values of r, as a function of the number of participating clients N .
(left) The empirical standard deviation of the estimation gap, computed over 100 runs. (right) Estimation gap
between µ and µ̂ averaged over 100 runs.

F.1.2 The Effect of Non-i.i.d. Data Split

In this other set of experiments, we simulate a non-i.i.d. data split by inducing, starting from the same
global distribution p, different local client-only distributions, simulating drifts in updates statistics due to data
heterogeneity. Specifically, we set again µ = 0.8, and then, ∀n ∈ [N], µ(n) = 0.8+u(n), where u(n) ∼ Unif([−η, η]),
for η ∈ {0.05, 0.1, 0.25, 0.4}. In all experiments, r = 6. As we can see from Figure 5, when N is very small (∼ 1),
then high level of heterogeneity in the update statistics can indeed lead to poor estimation accuracy. However,
for reasonable values of N , this effect is considerably mitigated, suggesting that for real-world applications of FL,
where the number of devices participating to each round can be very large, KLMS can still improve state-of-the-art
compression schemes by large margin, as reported in the results of Section 5.1 and Appendix F.2.

F.2 Additional Results with Non-i.i.d. CIFAR-10

In Figure 6, we give the results on CONV6 and ResNet-18 on non-i.i.d. CIFAR-10 with cmax = 2 and CIFAR-100
with cmax = 20, respectively. In both experiments, 10 clients out of 100 clients participate in each round. It is
seen that similar accuracy and bitrate improvements are observed to the non-i.i.d. results in Table 2.

Isik, Pase, Gunduz, Koyejo, Weissman, Zorzi

Figure 5: Estimation gap statistics for different values of η, as a function of the number of participating clients N .
(left) The empirical standard deviation of the estimation gap, computed over 100 runs. (right) Estimation gap
between µ and µ̂ averaged over 100 runs.

Figure 6: Comparison of FedPM-KLM, QSGD-KLM, and SignSGD-KLM with FedPM (Isik et al., 2023b), QSGD (Alistarh
et al., 2017), DRIVE (Vargaftik et al., 2021), EDEN (Vargaftik et al., 2022), and DP-REC (Liu et al., 2021) with non
i.i.d. split and 10 out of 100 clients participating every round.

F.3 Stack Overflow Experiments

Table 6 shows additional results on the Stack Overflow dataset (Caldas et al., 2018) constructed with real posts,
where KLMS reduces the bitrate by 16 times.

Table 6: Results on Stack Overflow (real data split).

DRIVE EDEN SignSGD SignSGD-KLMS FedPM FedPM-KLMS QSGD QSGD-KLMS

Accuracy 0.216 0.216 0.186 0.211 0.240 0.240 0.210 0.224
Bitrate 0.980 0.980 1.000 0.016 0.910 0.015 0.120 0.016

F.4 Bayesian FL Experiments with Non-i.i.d. Data and Partial Client Participation

Table 7 shows additional Bayesian FL results with non-iid data split and partial client participation. We cover a
variety of combinations of data splits and partial/full participation and observe similar gains as Table 2.

Table 7: Bayesian FL results (cmax = 4 when non-iid.)

ρ = 10/10, non-iid ρ = 10/50, iid ρ = 10/50, non-iid
QLSD QLSD-KLMS QLSD QLSD-KLMS QLSD QLSD-KLMS

Accuracy 0.875 0.922 0.868 0.922 0.854 0.920
Bitrate 0.48 0.08 0.50 0.07 0.51 0.06

Adaptive Compression in Federated Learning via Side Information

F.5 Confidence Intervals

Finally, we report the confidence intervals for all the experimental results in the paper in Tables 8, 9, 10, 11, 12,
13, 14, and 15 corresponding to Tables 1 and 2, and Figure 6.

Table 8: Average bitrate ±σ vs final accuracy ±σ in i.i.d. split CIFAR-10 with full client participation. The
training duration was set to tmax = 400 rounds.

Framework Bitrate Accuracy

FedPM-KLMS (ours) 0.070 ± 0.0001 0.787 ± 0.0012
FedPM-KLMS (ours) 0.004 ± 0.0001 0.786 ± 0.0010
FedPM-KLMS (ours) 0.014 ± 0.0001 0.786 ± 0.0012
QSGD-KLMS (ours) 0.071 ± 0.0001 0.765 ± 0.0011
QSGD-KLMS (ours) 0.0355 ± 0.0001 0.761 ± 0.0012
QSGD-KLMS (ours) 0.0142 ± 0.0001 0.755 ± 0.0010

SignSGD-KLMS (ours) 0.072 ± 0.0002 0.745 ± 0.0008
SignSGD-KLMS (ours) 0.040 ± 0.0002 0.745 ± 0.0008
SignSGD-KLMS (ours) 0.015 ± 0.0001 0.739 ± 0.0008

FedPM (Isik et al., 2023b) 0.845 ± 0.0001 0.787 ± 0.0011
QSGD (Alistarh et al., 2017) 0.140 ± 0.0000 0.766 ± 0.0012
QSGD (Alistarh et al., 2017) 0.072 ± 0.0000 0.753 ± 0.0013

SignSGD (Bernstein et al., 2018) 0.993 ± 0.0012 0.705 ± 0.0021
TernGrad (Wen et al., 2017) 1.100 ± 0.0001 0.680 ± 0.0016
DRIVE (Vargaftik et al., 2021) 0.890 ± 0.0000 0.760 ± 0.0010
EDEN (Vargaftik et al., 2022) 0.890 ± 0.0000 0.760 ± 0.0010
FedMask (Li et al., 2021) 1.000 ± 0.0001 0.620 ± 0.0017

DP-REC (Triastcyn et al., 2021) 1.12 ± 0.0001 0.720 ± 0.0011
DP-REC (Triastcyn et al., 2021) 0.451 ± 0.0001 0.690 ± 0.0012
DP-REC (Triastcyn et al., 2021) 0.188 ± 0.0001 0.640 ± 0.0011
DP-REC (Triastcyn et al., 2021) 0.124 ± 0.0001 0.622 ± 0.0013

Isik, Pase, Gunduz, Koyejo, Weissman, Zorzi

Table 9: Average bitrate ±σ vs final accuracy ±σ in i.i.d. split CIFAR-100 with full client participation. The
training duration was set to tmax = 400 rounds.

Framework Bitrate Accuracy

FedPM-KLMS (ours) 0.072 ± 0.0001 0.469 ± 0.0010
FedPM-KLMS (ours) 0.040 ± 0.0001 0.461 ± 0.0011
FedPM-KLMS (ours) 0.018 ± 0.0001 0.455 ± 0.0010
QSGD-KLMS (ours) 0.074 ± 0.0001 0.327 ± 0.0010
QSGD-KLMS (ours) 0.043 ± 0.0001 0.319 ± 0.0012
QSGD-KLMS (ours) 0.020 ± 0.0001 0.320 ± 0.0010

SignSGD-KLMS (ours) 0.073 ± 0.0001 0.260 ± 0.0014
SignSGD-KLMS (ours) 0.041 ± 0.0001 0.259 ± 0.0014
SignSGD-KLMS (ours) 0.018 ± 0.0001 0.250 ± 0.0014

FedPM (Isik et al., 2023b) 0.880 ± 0.0001 0.470 ± 0.0010
QSGD (Alistarh et al., 2017) 0.150 ± 0.0000 0.335 ± 0.0011
QSGD (Alistarh et al., 2017) 0.082 ± 0.0000 0.330 ± 0.0011

SignSGD (Bernstein et al., 2018) 0.999 ± 0.0002 0.230 ± 0.0019
TernGrad (Wen et al., 2017) 1.070 ± 0.0001 0.220 ± 0.0015
DRIVE (Vargaftik et al., 2021) 0.540 ± 0.0000 0.320 ± 0.0011
EDEN (Vargaftik et al., 2022) 0.540 ± 0.0000 0.320 ± 0.0010
FedMask (Li et al., 2021) 1.000 ± 0.0001 0.180 ± 0.0014

DP-REC (Triastcyn et al., 2021) 1.06 ± 0.0001 0.280 ± 0.0012
DP-REC (Triastcyn et al., 2021) 0.503 ± 0.0001 0.240 ± 0.0012
DP-REC (Triastcyn et al., 2021) 0.240 ± 0.0001 0.220 ± 0.0012
DP-REC (Triastcyn et al., 2021) 0.128 ± 0.0001 0.170 ± 0.0012

Table 10: Average bitrate ±σ vs final accuracy ±σ in i.i.d. split MNIST with full client participation. The
training duration was set to tmax = 200 rounds.

Framework Bitrate Accuracy

FedPM-KLMS (ours) 0.067 ± 0.0001 0.9945 ± 0.0001
FedPM-KLMS (ours) 0.041 ± 0.0001 0.9945 ± 0.0001
FedPM-KLMS (ours) 0.014 ± 0.0001 0.9943 ± 0.0001
QSGD-KLMS (ours) 0.071 ± 0.0001 0.9940 ± 0.0001
QSGD-KLMS (ours) 0.041 ± 0.0001 0.9938 ± 0.0001
QSGD-KLMS (ours) 0.019 ± 0.0001 0.9935 ± 0.0001

SignSGD-KLMS (ours) 0.0720 ± 0.0001 0.9932 ± 0.0002
SignSGD-KLMS (ours) 0.0415 ± 0.0001 0.9930 ± 0.0002
SignSGD-KLMS (ours) 0.0230 ± 0.0001 0.9918 ± 0.0001

FedPM (Isik et al., 2023b) 0.99 ± 0.0001 0.995 ± 0.0001
QSGD (Alistarh et al., 2017) 0.13 ± 0.0000 0.994 ± 0.0001
QSGD (Alistarh et al., 2017) 0.080 ± 0.0000 0.994 ± 0.0001

SignSGD (Bernstein et al., 2018) 0.999 ± 0.0012 0.990 ± 0.0004
TernGrad (Wen et al., 2017) 1.05 ± 0.0001 0.980 ± 0.0003
DRIVE (Vargaftik et al., 2021) 0.91 ± 0.0000 0.994 ± 0.0001
EDEN (Vargaftik et al., 2022) 0.91 ± 0.0000 0.994 ± 0.0001
FedMask (Li et al., 2021) 1.0 ± 0.0001 0.991 ± 0.0003

DP-REC (Triastcyn et al., 2021) 0.996 ± 0.0001 0.991 ± 0.0001
DP-REC (Triastcyn et al., 2021) 0.542 ± 0.0001 0.989 ± 0.0001
DP-REC (Triastcyn et al., 2021) 0.191 ± 0.0001 0.988 ± 0.0001
DP-REC (Triastcyn et al., 2021) 0.125 ± 0.0001 0.985 ± 0.0001

Adaptive Compression in Federated Learning via Side Information

Table 11: Average bitrate ±σ vs final accuracy ±σ in i.i.d. split EMNIST with full client participation. The
training duration was set to tmax = 200 rounds.

Framework Bitrate Accuracy

FedPM-KLMS (ours) 0.068 ± 0.0001 0.889 ± 0.0001
FedPM-KLMS (ours) 0.034 ± 0.0001 0.888 ± 0.0001
FedPM-KLMS (ours) 0.017 ± 0.0001 0.885 ± 0.0001
QSGD-KLMS (ours) 0.072 ± 0.0001 0.884 ± 0.0001
QSGD-KLMS (ours) 0.042 ± 0.0001 0.884 ± 0.0001
QSGD-KLMS (ours) 0.022 ± 0.0001 0.883 ± 0.0001

SignSGD-KLMS (ours) 0.072 ± 0.0001 0.881 ± 0.0003
SignSGD-KLMS (ours) 0.044 ± 0.0001 0.880 ± 0.0003
SignSGD-KLMS (ours) 0.025 ± 0.0001 0.875 ± 0.0003

FedPM (Isik et al., 2023b) 0.890 ± 0.0001 0.890 ± 0.0001
QSGD (Alistarh et al., 2017) 0.150 ± 0.0000 0.884 ± 0.0001
QSGD (Alistarh et al., 2017) 0.086 ± 0.0000 0.882 ± 0.0001

SignSGD (Bernstein et al., 2018) 1.0 ± 0.0001 0.873 ± 0.0005
TernGrad (Wen et al., 2017) 1.1 ± 0.0001 0.870 ± 0.0005
DRIVE (Vargaftik et al., 2021) 0.9 ± 0.0001 0.8835 ± 0.0001
EDEN (Vargaftik et al., 2022) 0.9 ± 0.0001 0.8835 ± 0.0001
FedMask (Li et al., 2021) 1.0 ± 0.0001 0.862 ± 0.0005

DP-REC (Triastcyn et al., 2021) 1.100 ± 0.0001 0.885 ± 0.0001
DP-REC (Triastcyn et al., 2021) 0.488 ± 0.0001 0.880 ± 0.0001
DP-REC (Triastcyn et al., 2021) 0.196 ± 0.0001 0.873 ± 0.0001
DP-REC (Triastcyn et al., 2021) 0.119 ± 0.0001 0.861 ± 0.0001

Table 12: Average bitrate ±σ vs final accuracy ±σ in non-IID split CIFAR-10 with cmax = 2, and partial
participation with 10 out of 100 clients participating every round. The training duration was set to tmax = 200
rounds.

Framework Bitrate Accuracy

FedPM-KLMS (ours) 0.073 ± 0.0001 0.277 ± 0.0005
FedPM-KLMS (ours) 0.036 ± 0.0001 0.276 ± 0.0005
FedPM-KLMS (ours) 0.0161 ± 0.0001 0.261 ± 0.0004
QSGD-KLMS (ours) 0.071 ± 0.0001 0.277 ± 0.0005
QSGD-KLMS (ours) 0.036 ± 0.0001 0.208 ± 0.0005
QSGD-KLMS (ours) 0.014 ± 0.0001 0.198 ± 0.0005

SignSGD-KLMS (ours) 0.074 ± 0.0001 0.211 ± 0.0009
SignSGD-KLMS (ours) 0.060 ± 0.0001 0.195 ± 0.0008
SignSGD-KLMS (ours) 0.018 ± 0.0001 0.180 ± 0.0009

FedPM (Isik et al., 2023b) 0.997 ± 0.0001 0.277 ± 0.0006
QSGD (Alistarh et al., 2017) 0.140 ± 0.0000 0.220 ± 0.0005
QSGD (Alistarh et al., 2017) 0.072 ± 0.0000 0.200 ± 0.0005
DRIVE (Vargaftik et al., 2021) 0.885 ± 0.0000 0.221 ± 0.0005
EDEN (Vargaftik et al., 2022) 0.885 ± 0.0000 0.219 ± 0.0004

DP-REC (Triastcyn et al., 2021) 1.080 ± 0.0001 0.220 ± 0.0007
DP-REC (Triastcyn et al., 2021) 0.490 ± 0.0001 0.201 ± 0.0006
DP-REC (Triastcyn et al., 2021) 0.205 ± 0.0001 0.193 ± 0.0006
DP-REC (Triastcyn et al., 2021) 0.171 ± 0.0001 0.180 ± 0.0006

Isik, Pase, Gunduz, Koyejo, Weissman, Zorzi

Table 13: Average bitrate ±σ vs final accuracy ±σ in non-IID split CIFAR-10 with cmax = 4, and partial
participation with 20 out of 100 clients participating every round. The training duration was set to tmax = 200
rounds.

Framework Bitrate Accuracy

FedPM-KLMS (ours) 0.073 ± 0.0001 0.612 ± 0.0010
FedPM-KLMS (ours) 0.036 ± 0.0001 0.606 ± 0.0010
FedPM-KLMS (ours) 0.016 ± 0.0001 0.599 ± 0.0010
QSGD-KLMS (ours) 0.071 ± 0.0001 0.552 ± 0.0010
QSGD-KLMS (ours) 0.036 ± 0.0001 0.549 ± 0.0011
QSGD-KLMS (ours) 0.014 ± 0.0001 0.545 ± 0.0010

SignSGD-KLMS (ours) 0.074 ± 0.0001 0.530 ± 0.0013
SignSGD-KLMS (ours) 0.060 ± 0.0001 0.522 ± 0.0013
SignSGD-KLMS (ours) 0.018 ± 0.0001 0.518 ± 0.0013

FedPM (Isik et al., 2023b) 0.993 ± 0.0001 0.612 ± 0.0009
QSGD (Alistarh et al., 2017) 0.140 ± 0.0000 0.552 ± 0.0010
QSGD (Alistarh et al., 2017) 0.072 ± 0.0000 0.531 ± 0.0010
DRIVE (Vargaftik et al., 2021) 0.888 ± 0.0000 0.526 ± 0.0010
EDEN (Vargaftik et al., 2022) 0.888 ± 0.0000 0.528 ± 0.0010

DP-REC (Triastcyn et al., 2021) 1.080 ± 0.0001 0.530 ± 0.0012
DP-REC (Triastcyn et al., 2021) 0.490 ± 0.0001 0.521 ± 0.0012
DP-REC (Triastcyn et al., 2021) 0.205 ± 0.0001 0.519 ± 0.0012
DP-REC (Triastcyn et al., 2021) 0.171 ± 0.0001 0.506 ± 0.0012

Table 14: Average bitrate ±σ vs final accuracy ±σ in non-IID split CIFAR-100 with cmax = 20, and partial
participation with 10 out of 100 clients participating every round. The training duration was set to tmax = 200
rounds.

Framework Bitrate Accuracy

FedPM-KLMS (ours) 0.076 ± 0.0001 0.180 ± 0.0012
FedPM-KLMS (ours) 0.048 ± 0.00101 0.176 ± 0.0011
FedPM-KLMS (ours) 0.012 ± 0.0001 0.170 ± 0.0011
QSGD-KLMS (ours) 0.072 ± 0.0001 0.122 ± 0.0012
QSGD-KLMS (ours) 0.040 ± 0.0001 0.117 ± 0.0012
QSGD-KLMS (ours) 0.017 ± 0.0001 0.115 ± 0.0012

SignSGD-KLMS (ours) 0.073 ± 0.0001 0.117 ± 0.0014
SignSGD-KLMS (ours) 0.041 ± 0.0001 0.113 ± 0.0014
SignSGD-KLMS (ours) 0.018 ± 0.0001 0.110 ± 0.0013

FedPM (Isik et al., 2023b) 0.999 ± 0.0001 0.181 ± 0.0011
QSGD (Alistarh et al., 2017) 0.150 ± 0.0000 0.123 ± 0.0012
QSGD (Alistarh et al., 2017) 0.082 ± 0.0000 0.118 ± 0.0012
DRIVE (Vargaftik et al., 2021) 0.840 ± 0.0000 0.121 ± 0.0012
EDEN (Vargaftik et al., 2022) 0.840 ± 0.0000 0.121 ± 0.0012

DP-REC (Triastcyn et al., 2021) 1.060 ± 0.0001 0.119 ± 0.0012
DP-REC (Triastcyn et al., 2021) 0.503 ± 0.0001 0.118 ± 0.0013
DP-REC (Triastcyn et al., 2021) 0.240 ± 0.0001 0.117 ± 0.0013
DP-REC (Triastcyn et al., 2021) 0.128 ± 0.0001 0.110 ± 0.0013

Adaptive Compression in Federated Learning via Side Information

Table 15: Average bitrate ±σ vs final accuracy ±σ in non-IID split CIFAR-100 with cmax = 40, and partial
participation with 20 out of 100 clients participating every round. The training duration was set to tmax = 200
rounds.

Framework Bitrate Accuracy

FedPM-KLMS (ours) 0.074 ± 0.0001 0.488 ± 0.0013
FedPM-KLMS (ours) 0.048 ± 0.0001 0.484 ± 0.0013
FedPM-KLMS (ours) 0.012 ± 0.0001 0.480 ± 0.0013
QSGD-KLMS (ours) 0.072 ± 0.0001 0.428 ± 0.0013
QSGD-KLMS (ours) 0.040 ± 0.0001 0.424 ± 0.0013
QSGD-KLMS (ours) 0.017 ± 0.0001 0.419 ± 0.0013

SignSGD-KLMS (ours) 0.072 ± 0.0001 0.421 ± 0.0016
SignSGD-KLMS (ours) 0.044 ± 0.0001 0.419 ± 0.0016
SignSGD-KLMS (ours) 0.020 ± 0.0001 0.415 ± 0.0016

FedPM (Isik et al., 2023b) 0.980 ± 0.0001 0.488 ± 0.0012
QSGD (Alistarh et al., 2017) 0.150 ± 0.0000 0.429 ± 0.0013
QSGD (Alistarh et al., 2017) 0.082 ± 0.0000 0.424 ± 0.0013
DRIVE (Vargaftik et al., 2021) 0.81 ± 0.0000 0.424 ± 0.0013
EDEN (Vargaftik et al., 2022) 0.81 ± 0.0000 0.425 ± 0.0013

DP-REC (Triastcyn et al., 2021) 1.00 ± 0.0001 0.424 ± 0.0014
DP-REC (Triastcyn et al., 2021) 0.49 ± 0.0001 0.422 ± 0.0014
DP-REC (Triastcyn et al., 2021) 0.27 ± 0.0001 0.412 ± 0.0014
DP-REC (Triastcyn et al., 2021) 0.13 ± 0.0001 0.408 ± 0.0014

	Introduction
	Related Work
	Preliminaries
	KL Divergence Minimization with Side Information (KLMS)
	KLMS for Stochastic FL Frameworks
	Adaptive Block Selection for Optimal Bit Allocation
	Examples of KLMS Adaptated to Well-Known Stochastic FL Frameworks

	Experiments
	Non-Bayesian Federated Learning
	Bayesian Federated Learning
	Ablation Study: The Effect of the Adaptive Bit Allocation Strategy

	Discussion & Conclusion
	Acknowledgements
	Additional Details on Prior Work
	FedPM isik2023sparse
	QSGD alistarh2017qsgd
	QLSD vono2022qlsd

	KLMS Pseudocode
	Proofs
	Additional Details on Example Use Cases of KLMS
	FedPM-KLMS
	QSGD-KLMS
	SignSGD-KLM
	SGLD-KLMS

	Additional Experimental Details
	Additional Experimental Results
	KLMS on a Toy Model
	The Effect of the Overhead r
	The Effect of Non-i.i.d. Data Split

	Additional Results with Non-i.i.d. CIFAR-10
	Stack Overflow Experiments
	Bayesian FL Experiments with Non-i.i.d. Data and Partial Client Participation
	Confidence Intervals

