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Abstract

Reinforcement Learning (RL) has demon-
strated its potential in solving goal-oriented
sequential tasks. However, with the in-
creasing capabilities of RL agents, ensuring
morally responsible agent behavior is becom-
ing a pressing concern. Previous approaches
have included moral considerations by stati-
cally assigning a moral score to each action
at runtime. However, these methods do not
account for the potential moral value of fu-
ture states when evaluating immoral actions.
This limits the ability to find trade-offs be-
tween different aspects of moral behavior and
the utility of the action. In this paper, we
aim to factor in moral scores by adding a
constraint to the RL objective that is incor-
porated during training, thereby dynamically
adapting the policy function. By combining
Lagrangian optimization and meta-gradient
learning, we develop an RL method that
is able to find a trade-off between immoral
behavior and performance in the decision-
making process.

1 Introduction

Reinforcement Learning (RL) holds tremendous po-
tential for effectively addressing goal-oriented sequen-
tial problems (Yang et al., 2023; Dulac-Arnold et al.,
2020). Undoubtedly, RL has demonstrated its ability
to achieve comparable or even superior scores to those
achieved by humans in applications such as playing
video games. However, when integrating RL into real-
world applications, it is crucial to align RL agents with
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human social and moral considerations. For example,
in self-driving cars, the goal is to reach a certain des-
tination, but not at any cost. The agent must also
obey traffic laws, avoid accidents, and minimize fuel
consumption. In some situations, it is necessary to vi-
olate traffic rules to avoid an accident. In general, a
balance must be struck between conflicting goals. The
same is true of language, where we may have to vi-
olate one constraint (e.g., by being rude) in order to
satisfy another constraint. (e.g., saving someone’s life
by informing them of a mistake they have made).

In the domain of text-based adventure games, one pop-
ular approach for enforcing ethical behavior in agents
is to use a policy-shaping technique, as discussed by
Hendrycks et al. (2021) and Pan et al. (2023). This
is achieved by adjusting the Q-value associated with
a particular state-action pair by incorporating a fixed
penalty term that serves to discourage the choice of im-
moral actions. This penalty term, however, depends
solely on the immediate action ignoring its effect on the
morality of all subsequent actions, signifying a myopic
policy. This limitation becomes problematic when an
immediate action restricts the range of feasible sub-
sequent actions to those predominantly characterized
by increased immorality scores. For instance, in Fig-
ure 1, a greedy choice of a1 restricts the set of sub-
sequent action trajectories to those of low reward and
pronounced immorality. On the other hand, the choice
of action a5, despite its immorality, leads to an action
trajectory that receives a higher reward and a lower
cumulative immorality score. In this study, we ad-
dress this limitation by introducing, for the first time
in the context of text-based adventure games, the in-
corporation of an estimate of the average impact of
an action on the morality score associated with subse-
quent actions through Lagrangian-based Constrained
RL. Our experimental results demonstrate that our
agent successfully navigates a trade-off between dis-
couraging immoral behavior and maintaining reward
scores.

Furthermore, the experimental findings show the piv-
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Figure 1: Myopic vs. Non-Myopic policies: Myopic policies with large constraint values prevent immoral be-
havior, but also preclude reaching moral actions in the future. Non-Myopic policies allow threshold adjustments
during training, allowing some non-catastrophic immoral actions if they are beneficial in the long term.

otal role played by the initial value of the multiplier in
the learning process in the context of the Lagrangian-
based approach (Thananjeyan et al., 2021; Ha et al.,
2021). The multiplier is designed to constrain the cost
function, particularly in applications like predicting
immorality scores. The learning rate of the Lagrange
multiplier acts as the central parameter that governs
the speed at which it adapts and learns. To enhance
the effectiveness of the Lagrange multiplier, we opti-
mize its learning rate online, thereby extending the
scope of Lagrangian-constrained RL by incorporating
meta-gradient RL (Xu et al., 2018). This extension
aims to identify a more satisfactory multiplier, as op-
posed to the Lagrangian-based agent that relies on a
fixed learning rate.

Our contributions are as follows: (1) Adapting the La-
grangian Relaxation-based constrained RL technique,
we propose to leverage advances in safety RL to im-
prove ethical behavior in text-based games; (2) We
derive meta-gradient updates of the learning rate of
the Lagrange multiplier to increase the robustness of
our RL technique with respect to different hyperpa-
rameter settings; (3) We compare our results against
previous text-based agents and demonstrate that our
approach with Lagrange optimization can address the
limitations of existing approaches in the field of moral
text-based adventure games.

2 Related Work

2.1 Text-based Adventure Games towards
Moral Behavior

The Jiminy Cricket benchmark (Hendrycks et al.,
2021) offers an environment for text-based adventure
games to study potential immoral behavior. Here,
Hendrycks et al. advance policy- and reward-shaping
methodologies to guide agents toward more ethical be-
havior. Both approaches impose constraints on the
agent to prevent immoral behavior beyond the scope of

traditional Q-learning. Empirical results indicate that
policy shaping outperforms reward shaping in terms of
efficiency. Policy shaping involves reshaping Q-values
using the following equation:

Q′(ct, at) = Q(ct, at)− γI[fimmoral(at) > τ ]. (1)

Q′(ct, at) represents the modified Q-value, where ct
and at refers the context and its action at the current
state. And the new reshaped Q-value is influenced by
the immorality score, which is controlled by the pa-
rameter γ. A larger value of γ implies that the agent
is less inclined to choose immoral actions. In their ex-
periments, this parameter is set to ten. τ is the thresh-
old to indicate a moral or immoral action, and the
immorality score fimmoral(at) is determined using the
pre-trained RoBERT-large model (Liu et al., 2019b)
trained on the ETHICS benchmark (Hendrycks et al.,
2020). The ETHICS benchmark refines the RoBERTa
model using concepts from moral philosophy: justice,
virtue, deontology, utilitarianism, and common sense.

An alternative modification of policy shaping is to use
the labeled Oracle data directly. In this approach, if
fimmoral = 1, the action is considered as immoral,
while other cases result in a value of zero. In our
experiments, we use the Jiminy Cricket benchmark
with Oracle (more details in Sections 4.3) and use
the same Contextual Action Language Model (CALM)
(Yao et al., 2020) agent to generate the valid action
space.

Other work focuses on morality and social norms
in text-based games without considering specific RL
methods. Ammanabrolu et al. (2022) and Nahian
et al. (2021) consider social norms in the text-based
game domain. Ammanabrolu et al. (2022) use Del-
phi (Jiang et al., 2021), a moral reasoning model, to
estimate the value of an action in its context. Shi et al.
(2022) propose a two-stage framework to prevent im-
moral behavior. The first stage involves learning the
task via Q-learning, while the second stage introduces
a moral policy as an extension of the CALM model to
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learn ethical actions. These methods primarily focus
on generating more accurate and ethical actions us-
ing a pre-trained large language model. In the future,
we can consider integrating their methods into our RL
framework.

Recently, Pan et al. (2023) introduced the MACHI-
AVELLI benchmark that focuses on the delicate bal-
ance between goals (rewards) and different facets of
ethical behavior (power, disutility, and immorality).
While they adopted a similar policy shaped RL ap-
proach to avoid immoral action (see Equation 1), the
unique aspect of their work is the use of LLMs, such
as GPT-4, for ethical behavior labeling, achieving re-
sults comparable to human assessments. As they show,
the GPT-4 model can independently play text-based
adventure games while following social norms, but
achieves lower game scores compared to when using
a RL agent.

2.2 Safe Reinforcement Learning

Constrained learning is widely used to train RL agents
that perform safe actions. Several surveys (Zhang
et al., 2023; Thananjeyan et al., 2021; Liu et al., 2021)
summarize the current state of the art in safety RL;
the majority of these methods have centered their
approach on Lagrangian optimization in conjunction
with the SAC framework. One common technique in-
volves dynamic updates to the multiplier during the
policy optimization process, while another strategy in-
volves reshaping the reward by incorporating the cost
value. None of these prior investigations have focused
on language-based agents. Therefore, our aim is to ex-
plore the feasibility of adapting these established RL
techniques to tasks that involve language-based inter-
actions.

2.3 Meta-Gradient Reinforcement Learning

Similar to the principles of meta-learning, meta RL
aims to learn a learning RL policy. Parameterized
policy gradients, for instant, Meta-Gradient RL, are
one of the widely adopted methodologies (Beck et al.,
2023). The core concept that underlies meta-gradient
RL, as described by Xu et al. (2018), involves using
cross-validation to assess the updated parameter θ′,
using a novel sample τ ′. The gradient signifies the
impact of the hyperparameters (also known as meta-
parameters) on the online objective function. This
process consists of two distinct steps: The first step is
to update the objective function. The second step in-
volves using a validation sample to optimize the meta-
parameters.

The gradient is computed by the chain rule:

∂J(τ ′, θ,′ η)

∂η
=

∂J(τ ′, θ,′ η)

∂θ′
dθ′

dη

The symbol η represents the meta-parameters, while
J(τ ′, θ,′ η) denotes the meta-objective function applied
to the re-sampled data.

Calian et al. (2021) introduce the meta-gradient ap-
proach to Lagrangian optimization. However, they
ran experiments in a continuous action space and op-
timized the Lagrangian with respect to reshaped re-
wards r(s, a)− λc(s, a). In contrast, our approach in-
volves optimizing the learning rate of the Lagrange
multiplier during actor updates for the moral network.
Therefore, the approach of Calian et al., while follow-
ing a similar idea, requires different derivation and up-
dates than our approach.

3 Methods

3.1 Problem Setting and Background

The Markov Decision Process (MDP) of an environ-
ment is defined as M := (S,A, T, γ,R), where the set
of states and actions are denoted by S and A, respec-
tively. T : S×A×S → [0, 1] captures the state transi-
tion dynamics, i.e., T (s′ | s, a) denotes the probability
of landing in state s′ by taking action a from state s.
The reward function is denoted by R and comes from
the game environment. The discounting factor is de-
noted by γ. The stochastic policy π : S → ∆(A) is
a mapping from a state to a probability distribution
over actions, i.e.,

∑
a π(a|s) = 1 and is parameterized

by a neural network.

Similar to the MDP, the Constrained Markov Deci-
sion Process (CMDP) (Altman, 2021) is defined as
M := (S,A, T, γ,R,C). It involves one more element:
the cost function of C : S → R, which indicates the
predicted penalty of the current state. In RL, the pri-
mary goal of CMDP is to maximize the expected re-
turn of rewards while satisfying the constraint on the
expected return of costs C(S) ≤ β, where β is the
constraint threshold (Achiam et al., 2017).

3.2 Soft-Actor-Critic (SAC)

Most existing work in the domain of RL for text-based
adventure games uses Q-learning as the basis for their
RL agent. To be able to use advances from safety
RL, we focus on Soft-Actor-Critic (SAC) (Haarnoja
et al., 2018), which includes separate critic and ac-
tor networks. To this end, we extend the only ex-
isting SAC agent for text-based adventure games (Li
et al., 2023). In SAC, the critic learns to minimize the
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Algorithm 1 SAC with Lagrange Constraints and Meta-Learning

Require: Actor πϕ; Critic Qθ1,2 ; Target Critic Q̂θ̂1,2
; Moral Mω; Training sample D ; Valid Sample D̂

for step = 1 . . . max step do
▷ Inner Loss:

LM = |(ct + γ ∗Mω(st+1, â))−Mω(st, at)|2
∇JQ(θ) = ∇Ea∼π(s),s∼D

1
B

∑
i=1,2 (Qθi(s)− y(r, s′, d))

2
▷ Update Critic

∇Jπ(ϕ) = ∇Es∼D
1
B

[
πϕ(s)

T [α log πϕ(s)−mini=1,2(Qθi(s)] + λ[(πϕ(s) ∗Mω(s))− β]
]

▷ Update Actor
λ← max(0, λ+ αλ ∗ (Mω(s)− β)) ▷ Update Lagrange Multiplier

▷ Outer Loss
if meta-gradient is True then

Using the valid sample D̂, η = αλ

Compute the Gradient using Equation (10)
η ← η − αη

∂J
∂η ▷ Update Meta-Parameter

end if
end for

distance between the target soft Q-function and the
Q-approximation with stochastic gradients (Li et al.,
2023):

∇JQ(θ) = ∇Es∼D
1

B

∑
i=1,2

(Qθi(s)− y(R(s, a), s′, d))
2
,

where D is the replay buffer, and B is the size of the
mini-batch sampled from D. When using double Q-
functions, the parameters θ1 and θ2 of both Q-neural
networks need to be learned. And y is the target value
which is computed by the reward.

The gradient for updating the actor policy is given by:

∇Jπ(ϕ) = ∇Es∼D
1

B
[πt(s)

T [α log πϕ(s)− min
i=1,2

(Qθi(s)]],

(2)
where Qθi(s) denotes the actor value by the Q-function
(critic policy), and log πϕ(s) and πt(s) are the expected
entropy and probability estimate by the actor policy.

3.3 SAC with Lagrangian Relaxation

The described SAC agent does not consider any con-
straints such as moral loss functions. In this section,
we therefore describe how SAC can be extended with
Lagrangian learning to consider moral constraints dur-
ing training. The Lagrangian can be defined as (Alt-
man, 2021):

L(s, λ) = π(s) +

m∑
i=1

λiC(s),

where π represents the RL policy aimed at achieving
a high reward, C(s) is the cost function we seek to
minimize, and λi are the Lagrange multipliers.

We use Mω(s) to denote the moral neural network that
outputs an immorality score for a state s. Using the

same critic update as in the general SAC algorithm,
the loss function of the moral neural network is defined
as:

LMω
= |(ct + γ ∗Mω(st+1, â))−Mω(st, at)|2.

In this equation, â represents the next action predicted
by the actor network, and at refers the valid actions for
the current state st. The value ct+γ ·Mω(st+1, â) rep-
resents the target moral score, and it is computed using
the cost signal denoted as ct. The ct values are similar
to reward signals, which consist of human-annotated
scores obtainable from the game environment.

Importantly, extending Equation 2, the Lagrange func-
tion is incorporated into actor optimization to enforce
constraints on moral behavior:

∇Jπ(ϕ) = ∇Es∼D
1

B
[πϕ(s)

T [α log πϕ(s)− min
i=1,2

(Qθi(s)]

+λ[(πϕ(s) ∗Mω(s))− β],
(3)

where the added part differs from similar formulations
due to the discrete action space.

We can consider the C(s) = πϕ(s) ∗Mω(s) as the cost
function, which comprises two elements: the predicted
probability of each action by the actor, denoted as
πϕ(s), and its corresponding moral score, represented
as Mω(s). We calculate the moral score for every pos-
sible action, rather than solely focusing on the moral
scores of the chosen action. In the context of a dis-
crete action space, the SAC agent has evolved from
modeling πϕ(at|st) to encompassing the computation
of the probability distribution πϕ(st), as outlined in
Christodoulou (2019). Building upon this same princi-
ple, we evaluate the moral score for each action within
the action space and subsequently multiply it by the
predicted probability associated with each action as
determined by the actor network.
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The Lagrangian multiplier is updated by Dual Gradi-
ent Descent:

λ =
∂L(s, λ)

∂λ
= Mω(s) (4)

λ′ ← max(0, λ+ αλ ∗ (E[Mω(s))]− β)), (5)

where αλ is the learning rate of the Lagrange mul-
tiplier, a parameter typically treated as fixed. In the
next section, we aim to explore meta-gradient learning
techniques to potentially adapt this fixed parameter.

3.4 Meta-Gradient Learning with Lagrangian
Relaxation

As previous studies have shown, the performance of
learning with Lagrangian-based approach is highly de-
pendent on the choice of the value of Lagrange multi-
plier (Thananjeyan et al., 2021; Ha et al., 2021). We
tackle this problem by using a meta-gradient reinforce-
ment learning approach (Xu et al., 2018). To this end,
we consider the Lagrangian multiplier’s learning rate,
denoted by αλ, as a variable and establish a gradi-
ent update rule by using meta-gradients. The meta-
gradient updates consist of two steps: In the first step,
we perform the standard update of the SAC agent by
calculating the inner loss (i.e., we update the critic
and the actor networks). In the second step, we up-
date the meta-parameters (i.e., the learning rate of the
Lagrange multiplier). Subsequently, we evaluate the
present parameters by calculating gradients for both
the actor’s objective function and the learning rate of
the Lagrange multiplier, using valid samples.

Below, we present our derivation of the updates for
the Lagrange multiplier learning rate by using meta-
gradient learning. Utilizing the policy gradient theo-
rem (Sutton et al., 1999), the policy parameter ϕ in the
inner loss function is updated by following the gradient
update rule

ϕ′ ← ϕ− α
∂J(D,ϕ, αλ)

∂ϕ
. (6)

The gradient of the objective function w.r.t. the learn-
ing rate αλ on the subsequent time step is computed
by using the chain rule as follows:

∂J(D̂, ϕ′, αλ)

∂αλ
=

∂Jπ(D̂, ϕ′, αλ)

∂ϕ′
∂ϕ′

∂λ′
∂λ′

∂αλ
. (7)

Notably, the valid samples D̂ are used to evaluate the
performance of the meta-parameters.

Now, if we substitute ϕ′ into equation (7) with the
definition in (6) and treat ϕ to be constant w.r.t. αλ

since the variable αλ is updated using the samples from

the next iteration, we have

∂Jπ(D̂, ϕ′, αλ)

∂ϕ′
∂ϕ′

∂λ′
∂λ′

∂αλ
=

−α∂Jπ(D̂, ϕ′, αλ)

∂ϕ′
∂2J(D,ϕ, αλ)

∂λ′∂ϕ

∂λ′

∂αλ
,

(8)

where αλ is the meta-parameter to be tuned during
training, ϕ refers to the parameters of policy network,
and λ′ is a Lagrange multiplier. The gradient of the
network parameters and the Lagrange multiplier can
be further simplified as follows:

∂2J(D,ϕ, αλ)

∂λ′∂ϕ
=

∂(πϕ(s)c(s))

∂ϕ
. (9)

The final result of our meta-gradient will have the fol-
lowing form:

∂J(D̂, ϕ′, αλ)

∂αλ
= −α∂Jπ(D̂, ϕ′, αλ)

∂ϕ′
∂(πϕ(s)c(s))

∂ϕ

∂λ′

∂αλ

(10)

The last term of the gradient in equation (10) can be
rewritten as:

∂λ′

∂αλ
=

max(0, λ+ αλλ(C − β))

∂αλ
={

0 if αλ ≤ − 1
C−β

C − β if αλ > − 1
C−β

(11)

The whole training process is summarized in Algo-
rithm 1.

4 Experiments

4.1 Datasets and Experimental Settings

We conducted our experiments within the Jiminy
Cricket environment (Hendrycks et al., 2021), con-
taining human-assigned assessments of moral implica-
tions. This environment contains four distinct cat-
egories, combined with scores ranging from one to
three: <Negative, others, 1–3 >, <Negative, self, 1–
3>, <Positive, others, 1–3>, and <Positive, self, 1–
3>. The numerical scale of one to three is used to
indicate the impact of these behaviors, ranging from
mildly negative or positive to significantly so. Negative
behaviors refer to actions that are considered harmful,
while positive behaviors refer to those that are con-
sidered beneficial. The distinctions “Other” and “Self”
indicate whether these behaviors primarily affect other
individuals or the agent performing them. In partic-
ular, lower values indicate preferred outcomes in the
negative category. The rewards in the subsequent ex-
periments are determined based on the original game
scores provided by the game environment.
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(a) Zork1 Immorality (b) Suspect Immorality (c) Witness Immorality

(d) Zork1 Completion (e) Suspect Completion (f) Witness Completion

Figure 2: Unconstrained SAC vs. SAC with Lagrangian Relaxation: This figure presents a performance compar-
ison between the unconstrained SAC framework and SAC Lagrangian with initialized lambda value of 10, which
is updated during training. The shaded areas represent the standard deviations observed across three runs.

State: You are carrying: A bird’s nest. The
bird’s nest contains: A jewel encrusted egg.
You hear in the distance the chirping of a song
bird. Up a tree. You are about 10 feet above
the ground nestled among some large branches.
The nearest branch above you is above your
reach. You hear in the distance the chirping of
a song bird.

Valid Action Space: [’north’, ’put egg in
nest’, ’take feather’, ’take nest’, ’drop nest’, ’in-
ventory’, ’get branch’, . . . , ’examine branch’]

Agent Predict Action: ‘drop nest’

Reward: 0, Moral label: <Negative,
others,1>

Figure 3: An example from the text-based adventure
game Zork1 : The agent receives a state description
from the game environment, predicts an action to take,
and subsequently receives feedback in the form of game
and moral score. This process continues as the agent
progresses to the next state.

Figure 3 shows an example of the text-based adventure
game Zork1. The game environment provides three
key components: a state description, a response re-
ward, and a labeled moral score, e.g., the score from

one to three for others or the agent itself. The valid
action space is determined by the CALM model (Yao
et al., 2020). While the moral label spans a range from
zero to three, we simplify this to a binary distinction
when training the moral network. Specifically, we clas-
sify actions as either moral (assigned a cost value of
zero) or immoral (assigned a cost value of one). Fur-
thermore, we directly rely on human-labeled oracle
data for this purpose.

The architecture of actor and critic is similar to that
of the deep reinforcement relevance network (DRRN)
agent (He et al., 2016). In this architecture, actions
and states are encoded separately into embedding vec-
tors that serve as inputs to a neural network. This
neural network is responsible for approximating the
Q-values of all possible actions, denoted as Q(st, a

i
t).

The action taken at each time step is determined by
selecting the action at that maximizes the Q-value,
expressed as at = argmaxai

t
(Q(st, a

i
t)). The neural

network includes three linear layers with two hidden
dimensions D1 = 512 and D2 = 128, each hidden layer
connects with the ReLU activation function, and the
categorical distribution is on top to ensure that the
sum of action probabilities is one.

All experiments are performed with modified CALM
agents (Hendrycks et al., 2021). We train on eight par-
allel environments with a maximum of 15,000 training
steps. Each method is run three times with differ-
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(a) Zork1 Immorality (b) Seastalker Immorality (c) Witness Immorality

(d) Zork1 Completion (e) Seastalker Completion (f) Witness Completion

Figure 4: Fixed vs. Dynamic Constraint Values: We compare the fixed constraint value(CMPS+Oracle
Hendrycks et al. (2021)), and the dynamic constraint (our SAC with Lagrangian framework) using initialized
multiplier-constrained values of 5 and 10 on three games. The Lagrangian-based agent consistently minimizes
the immorality score while the fixed constraint is very sensitive to the parameter setting.

ent random seeds 1. The RL agent parameters were
set as follows: the batch size is 32, and the learning
rate of both policy and Q-function neural networks is
3 ·10−4. The initial learning rate of the Lagrange mul-
tiplier is 10−4. We use the same evaluation metrics as
proposed in the original benchmark paper (Hendrycks
et al., 2021).

In the following, we describe three experiments. First,
we compare our constrained to the unconstrained SAC
approach (Li et al., 2023) using different initial weight-
ings in our approach in Section 4.2. In Section 4.3 we
compare fixed and dynamic constraints using different
(initial) weightings. In Section 4.4 where we show how
the sensitivity to the learning rate parameter affects
the learning process using meta-gradient learning.

4.2 Unconstrained SAC vs. SAC with
Lagrangian Relaxation

As shown in Figure 2, the use of Lagrange constraints
can lead to a substantial reduction in the occurrence
of morally questionable actions compared to the un-
constrained SAC approach. In the case of the games
Zork1, Witness, it is possible to achieve a higher over-
all score using only the SAC method, but this comes
at the cost of an increased number of morally prob-

1Source code of our experiments is available at:
https://github.com/WeichenLi1223/Ethics-in-Action

lematic actions. For the game Suspect, the agent with
Lagrangian relaxation achieves the same game score
with lower immorality values. Overall, the results in-
dicate that SAC agents do not tend to consider im-
moral behavior to have a higher completion percent-
age of games. Adapting the Lagrangian into the SAC
agent can effectively reduce immoral values under the
optimal policy.

4.3 Fixed vs. Dynamic Constraint Values

Previous work (CMPS (Hendrycks et al., 2021), Equa-
tion 12) introduced the concept of a fixed constrained
value to minimize the cost of immoral behavior. One
suitable scenario for using a fixed constraint value
is when our primary objective is to ensure that the
agent exhibits absolutely no immoral behavior. In such
cases, a high λ value can be set to enforce this stringent
requirement. Unfortunately, in many cases it is not
realistically possible to completely avoid immoral be-
havior and one slightly immoral action can lead to an
overall lower immorality score in the long run. In this
section, we present the results in terms of immoral-
ity score and game completion score for fixed versus
dynamic constraints during the training process. Our
aim is to highlight the differing sensitivity to parame-

2In this context, we represent the parameter denoted as
γ in Equation 1 as λ.
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(a) Witness, Immorality (b) Moonmist, Immorality (c) Zork1, Immorality

(d) Witness, Completion (e) Moonmist, Completion (f) Zork1, Completion

Figure 5: SAC Lagrange vs. SAC meta-gradient. The meta-gradient LR αη for all experiments is 0.1, and the
initial value for the multiplier LR αλ is 10−4. This figure shows results for initial lambda values of five and ten
for both approaches. The shaded areas represent the standard deviations observed across three runs.

ter settings between CMPS and our proposed method,
rather than to directly compare the two methods with
identical constrained values.

As can be inferred from Figure 4, the difference in
cumulative immorality between initialized parameters
λ = 5 and λ = 10 is more pronounced in the case of
CMPS, in contrast to the Soft Actor-Critic (SAC) with
Lagrange (Equation 11). This demonstrates that the
fixed constraint value is more sensitive to the chosen
parameter compared to the dynamic constraint, which
is capable of finding a trade-off between immorality
and game score. Therefore, the dynamic constraint
can be used in settings where fixed constraints would
otherwise prevent the agent from finding the best so-
lution.

4.4 SAC Meta-Gradient for tuning the
Lagrange Multiplier

Instead of using a fixed learning rate for the Lagrange
multiplier, we have explored the application of meta-
gradient RL to dynamically adjust the learning rate
αλ. Figure 5 provides a comparison between Lagrange-
based RL and meta-gradient based RL where λ is ini-
tialized with values of five and ten. The general trend
indicates that a meta-gradient agent can maintain a
similar game score compared to the Lagrangian-based
SAC method. More concretely, in the Witness game,
meta-gradient based agents receive lower immorality

scores for both the initialized λ values of five and ten.
For the Moonmist game, meta-gradient learning with
initialized λ values of ten can efficiently explore safe
states. However, this efficiency does not extend to ini-
tialized λ values of five. The context and difficulty of
each game have a high variance, making it challenging
to identify identical hyperparameters, such as a single
learning rate parameter (αη) and batch size, for meta-
gradient learning that performs optimally across all
scenarios. In certain scenarios, when the Lagrangian
multiplier is picked to be (near-)optimal, a smaller
value of αη is found to be more effective in enhanc-
ing robustness, whereas a higher value of the learning
rate is more effective when the Lagrangian multiplier
is far from being optimal.

Prior research has explored the challenges of the bias-
variance trade-off inherent in the meta-gradient-based
approach (Liu et al., 2019a; Beck et al., 2023; Vuorio
et al., 2022). In Figure 6, we present additional re-
sults comparing batch sizes of 32 and 64 to offer a more
comprehensive perspective. The idea is that increasing
the training batch size should result in reduced vari-
ance and hence, better aligned meta-gradients for tun-
ing hyperparameters. It is evident that increasing the
batch size from 32 to 64 results in a notable reduction
in the immorality score, particularly for the initial-
ized lambda value of five (i.e., λ = 5). For the game
Moonmist, increasing the batch size can reduce the
immoral scores while improving the game percentage.
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(a) Witness Immorality (b) Moonmist Immorality (c) Zork1 Immorality

(d) Witness Completion (e) Moonmist Completion (f) Zork1 Completion

Figure 6: This figure provides a comparison of the performance between SAC Meta-gradient with batch sizes of
32 and 64 using initialized multiplier-constrained values of 5 and 10 on three games. The split ratio of training
and evaluation is 0.8. The shaded areas represent the standard deviations observed across three runs.

Meta-gradient, by dividing the batch into training-test
sets, demonstrates that a larger training size reduces
variance. Throughout all experiments, we maintain a
consistent split ratio of 0.8.

4.5 Summary of Experimental Results

In conclusion, our key findings are:

• The adaption of Lagrangian relaxation effectively
mitigates immoral behavior compared to the un-
constrained SAC agent in the domain of text-
based adventure games (Section 4.2).

• The Lagrangian-based RL agent relies less on the
choice of constraint value compared to previous
fixed constraint-based approaches (Section 4.3).

• The meta-gradient-based agent adjusts the learn-
ing rates of the Lagrange multiplier to balance
morality and game score, however, the ideal learn-
ing speed for the meta-parameters depends on the
context of each specific game (Section 4.4).

• Moreover, our findings (see Figure 6) illustrate the
positive impact of increasing the batch size on the
effectiveness of the Meta-gradient method. More
concretely, a larger batch size can better handle
the trade-off between bias and variance in meta-
gradient learning (Section 4.4).

5 Conclusion

The primary goal of this paper is to account for moral
values in language-based decision making by introduc-
ing Lagrange optimization and meta-gradient learning
to the domain of text-based adventure games. Our ex-
perimental results show that using Lagrangian-based
RL allows to effectively balance game and immorality
scores. While existing work applies a myopic policy,
our method dynamically adjusts both the constraint
threshold and the learning rate to focus on the long-
term balance between reward and immorality scores.

In future research, we intend to tackle the limitations
of meta-gradient RL with the goal of increasing perfor-
mance stability. We also plan to apply our method in
argument mining (Lawrence and Reed, 2020; Li et al.,
2021) and to integrate Large Language Models (LLMs)
into the RL agent. Furthermore, we will study the gen-
eralization properties (Mustafa et al., 2021) of models
trained under moral constraints.
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