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Abstract

Enhancing the stability of machine learning
algorithms under distributional shifts is at
the heart of the Out-of-Distribution (OOD)
Generalization problem. Derived from causal
learning, recent works of invariant learning
pursue strict invariance with multiple train-
ing environments. Although intuitively rea-
sonable, strong assumptions on the availabil-
ity and quality of environments are made to
learn the strict invariance property. In this
work, we come up with the “distributional
stability” notion to mitigate such limitations.
It quantifies the stability of prediction mecha-
nisms among sub-populations down to a pre-
scribed scale. Based on this, we propose
the learnability assumption and derive the
generalization error bound under distribution
shifts. Inspired by theoretical analyses, we
propose our novel stable risk minimization
(SRM) algorithm to enhance the model’s sta-
bility w.r.t. shifts in prediction mechanisms
(Y |X-shifts). Experimental results are con-
sistent with our intuition and validate the ef-
fectiveness of our algorithm. The code can be
found at https://github.com/LJSthu/SRM.

1 INTRODUCTION

Traditional machine learning algorithms with empir-
ical risk minimization (ERM) are vulnerable when
exposed to data drawn out of the training distribu-
tion. In order to mitigate the failures in the out-of-
distribution (OOD) generalization, invariant learning
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methods (Arjovsky et al., 2019; Ahuja et al., 2020,
2021; Peters et al., 2016) are proposed to learn pre-
diction mechanisms that are strictly invariant across
given multiple environments. Such strict invariance
property enables models to generalize under distribu-
tional shifts (Peters et al., 2016; Rojas-Carulla et al.,
2018; Arjovsky et al., 2019; Koyama et al., 2020).

To fulfill the promise of invariant learning, environ-
ment labels have to be provided to achieve strict
invariance. Moreover, the concept of strict invari-
ance even assumes the access of all possible environ-
ments. However, such requirement is unrealistic in
real-world applications where modern datasets are of-
ten constructed by amalgamating data from various
sources, thus significantly limiting the applicability
of invariant learning techniques. Recent efforts, such
as EIIL (Creager et al., 2021) and HRM (Liu et al.,
2021a,b), have focused on generating pseudo environ-
ment labels to facilitate invariant learning. Nonethe-
less, the characteristics of these pseudo environments,
the extent of invariance they enable, and even the va-
lidity of the problem framework itself, remain unclear
and inadequately justified.

To address these limitations, our research shifts fo-
cus towards developing models that generalize out-
of-distribution within contexts of latent heterogene-
ity, where the training data is gathered from multiple
sources, but lacking explicit source labels. In this set-
ting, the training data exhibits sub-population struc-
tures, with probably distinct prediction mechanisms
varying across sub-populations. To tackle this prob-
lem, we introduce an approach that extends strict
invariance to the concept of “distributional stabil-
ity”. This metric assesses the consistency of prediction
mechanisms across sub-populations. Unlike the binary
nature of strict invariance, which is either yes or no,
distributional stability provides a continuous measure
that quantifies the degree of predictive mechanism sta-
bility across varying contexts. This nuanced approach
allows for a more refined assessment of model robust-
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ness in handling distribution shifts.

In Section 2, we formally define the distributional sta-
bility, and introduce its properties as well as rela-
tionships with strict invariance. And we also demon-
strate its relationship with the distributional robust-
ness from the distributionally robust optimization lit-
erature (Duchi et al., 2018, 2019). Then in Section
3, we characterize the learnability of the problem to
rationalize the problem setting itself and clarify what
kind of target distributions could be generalized to.
Then we derive the OOD generalization error bound
for this problem based on the distributional stabil-
ity. Inspired by the theoretical results, we find that
models with strong distributional stability could gen-
eralize well with respect to shifts on prediction mech-
anisms (Y |X-shifts). Thus, we propose an empirical
algorithm named Stable Risk Minimization (SRM) in
Section 4, and experimental results on both simula-
tion and real-world data validate the effectiveness of
our method.

Notations Throughout this paper, we let X ∈ X
denote the covariates, Y ∈ Y denote the target.
fθ(·) : X → Y is the predictor parameterized by θ ∈ Θ.
E is the random variable taking values in all possible
environments. The random variable of data points is
denoted by Z = (X,Y ) ∈ Z. Pe(Z) abbreviated with
Pe denotes the joint distribution in environment e, and
for environments e1, e2 ∈ supp(E), the data distribu-
tion can be quite different. Ptrain(Z) and Ptest(Z) ab-
breviated with Ptr and Pte respectively represent the
joint training distribution and test distribution. De-
note the feature extractor Φθ(X) parameterized by θ,
and the predicting function Ŷ = hη(Φθ(X)) parame-
terized by η (not restricted to linear h(·)), which gives
the whole prediction model fη,θ(X) = hη(Φθ(X)). For
simplicity, we omit the subscripts θ, η without causing
misunderstanding. Denote the sample size by n and
the vector of sample weights w ∈ Rn

+ = [w1, . . . , wn]
T

with w ≥ 0 and wT1 = 1.

2 DISTRIBUTIONAL STABILITY

In this section, we first introduce the strict invariance
property as well as its limitations. Then we propose
the distributional stability property, a relaxed alterna-
tive under latent heterogeneity.

2.1 Strict invariance

Inspired by causal inference literature, strict invari-
ance (Arjovsky et al., 2019; Ahuja et al., 2020; Koyama
et al., 2020; Creager et al., 2021; Liu et al., 2021a,b)
requires that the prediction mechanism Y |X remains
the same among environments, which has two typical

formulations.

Definition 1 (Strict Invariance). Denote the random
variable taking values of all possible environments as
E. A representation Φ is strictly invariant if condition
1 or condition 2 holds:
Condition 1 (Arjovsky et al., 2019; Ahuja et al., 2020;
Creager et al., 2021): for any e1, e2 ∈ supp(E),

E[Y |Φ, E = e1] = E[Y |Φ, E = e2]. (1)

Condition 2 (Koyama et al., 2020; Liu et al., 2021a,b):
for any e1, e2 ∈ supp(E),

P(Y |Φ, E = e1) = P(Y |Φ, E = e2). (2)

Invariant learning methods use strict invariance as a
constraint during the model learning procedure. Ar-
jovsky et al. (2019) prove that a linear model only uses
invariant features under condition (1), and Koyama
et al. (2020) prove the resultant model under condi-
tion (2) is optimal for OOD generalization. Despite
the promising theoretical results, one major concern
in defining the strict invariance as Definition 1 is the
access to all possible environments E .

The strict invariance requires all possible environments
to examine whether the prediction mechanism Y |Φ
stays invariant. However, in most of the real-world
applications, it is impossible to acquire all possible
environments, which renders the goal of strict invari-
ance unrealistic to reach in practice. As a result, the
learned invariance only holds for the finite training en-
vironments, but whether it is violated in other agnos-
tic environments and how much it is violated remain
entirely unknown for machine learning engineers and
system users, which brings huge risks in high-stakes
applications.

2.2 A relaxed alternative

To mitigate the limitations above, we relax the re-
quirements for multiple environments and instead con-
sider an elaborated setting where the observed data are
heterogeneous. More precisely, following Duchi et al.
(2019), we assume that

X,Y ∼ Ptr := αQ0 + (1− α)Q1

where the proportion α ∈ (0, 1) and Q0,Q1 denote
the sub-populations in Ptr. Since the sub-population
distributions are not pre-defined, it is termed latent
heterogeneity. To measure the stability of a machine
learning model under potential distributional shifts,
inspired by strict invariance among given environ-
ments (i.e. explicit heterogeneity), we could examine
whether the predicting mechanism holds among all po-
tential sub-populations within Ptr. First, we define the
sub-population set for a distribution in Definition 2.
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Definition 2 (Sub-population set). Given distribu-
tion P(Z), for α0 ∈ (0, 1/2) as a lower bound on the
sub-population proportion α, the set of sub-populations
of distribution P is

Pα0
(P) := {Q0 : P = αQ0 + (1− α)Q1, for some

α ∈ [α0, 1) and distribution Q1 on Z}.

Remark. Intuitively, Pα0
(P) contains all sub-

populations of P with proportion α ≥ α0. α0 controls
the size of the minimal sub-populations considered, i.e.
smaller α0 corresponds with smaller sub-populations
but larger size of the set (|Pα0

|).

Based on this, we introduce a nuanced variant of strict
invariance, named α0-distributional stability. This
concept serves to quantify the level of stability in the
face of shifts among sub-populations. It represents
a more flexible approach that captures the degree to
which a model’s predictions remain consistent across
varying sub-populations, offering a refined metric for
evaluating the robustness of models in heterogeneous
data environments.

Definition 3 (α0-distributional stability). Given
data distribution P(Z), for α0 ∈ (0, 1/2), the α0-
distributional stability of the prediction mechanism
Y |X is defined as

DSα0
(Y |X;P) := sup

Q∈Pα0
(P)

ρKL(Q(Y |X),P(Y |X))

(3)
where ρKL(·, ·) denotes the KL-divergence between two
distributions.

Remark. Intuitively, α0-distributional stability mea-
sures the maximal variation of the prediction mecha-
nism (Y |X) among sub-populations within P in terms
of KL-divergence. It picks the worst sub-population Q⋆

in the set Pα0(P) and calculates the KL-divergence be-
tween Q⋆(Y |X) and P(Y |X). The smaller the DSα0

is, the more stable the prediction mechanism Y |X is,
since one can hardly find a sub-population that violates
P(Y |X).

Then we demonstrate some properties of the proposed
α0-distributional stability.

Proposition 1 (Properties of DSα0(P)). For observed
data distribution P(Z) and α0 ∈ (0, 1/2), we have

1. Nonnegativity: DSα0
(Y |X;P) ≥ 0;

2. Monotonicity: if α1 ≥ α2, we have DSα1
(Y |X;P) ≤

DSα2
(Y |X;P)

Remark. The smaller α0 is, the larger distribution
set Pα0

(P) is, and the larger the stability criterion
is, since the mechanism Y |X is examined under more
fine-grained sub-populations.

Proposition 2 (Relationship with strict invariance).
Here we demonstrate the connections and differences
between α0-distributional stability and strict invari-
ance:

1. Connection with condition (1): replace ρKL(·, ·)
with E[∥EQ[Y |X] − EP[Y |X]∥2], and replace the
sub-population set Pα0

(P) with E, then we have:
DSα0(Y |X;P) = 0 is equivalent to condition (1).

2. Connection with condition (2): replace the
sub-population set Pα0(P) with E, then we have:
DSα0(Y |X;P) = 0 is equivalent to condition (2).

Remark (Connection with distributional robustness).
Although both terms involve the sub-population set,
distributional stability and distributional robustness
are inherently different from each other. Distributional
robustness (Duchi et al., 2018; Sinha et al., 2018;
Duchi et al., 2019) refers to the worst-case perfor-
mance inside the pre-defined uncertainty set P, while
distributional stability measures the maximal variation
of the prediction mechanism Y |X. Therefore, distri-
butional robustness reflects the performance at a single
point (i.e. the worst-case distribution), but distribu-
tional stability measures the variation of the prediction
mechanisms (i.e. contrast between two distributions).
Such difference leads to a huge discrepancy in the guar-
antees of the OOD generalization performances. DRO
methods to obtain distributional robustness could only
ensure the performance within the distribution set P,
while methods to pursue distributional stability could
generalize to agnostic testing distributions under the
learnability assumption, which will be discussed in de-
tail in Section 3.

3 THEORETICAL ANALYSIS

Based on distributional stability, we formally define
the OOD generalization problem under latent hetero-
geneity. Then we provide theoretical analysis of this
problem, including the learnability assumption and the
generalization error bound.

Problem 1 (Setup). Given data Z ∼ Ptr(Z) collected
from multiple agnostic sources, the goal is to learn
models with good generalization performances on data
from agnostic target distribution Pte(Z).

For traditional machine learning problems, the anal-
ysis of the learnability is based on the i.i.d. assump-
tion. However, in Problem 1, the target distribution is
agnostic and could significantly differ from the train-
ing one. Therefore, without any further assumptions,
even the learnability itself can hardly hold in general.
Given this, we characterize the learnability assumption
of Problem 1, which makes assumptions on the target
distribution. Following Ye et al. (2021), we define the
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expansion function as follows:

Definition 4 (Expansion Function). A function s :
R+∪{0} → R+∪{0,+∞} is an expansion function, iff
the following properties hold: (1) s(·) is monotonically
increasing and s(x) ≥ x, ∀x; (2) lim

x→0+
s(x) = s(0) = 0.

Besides, for training distribution Ptr(Z) and target dis-
tribution Pte(Z), we define the out-of-distribution sta-
bility of Y |X as:

ODS(Y |X;Ptr,Pte) := ρKL(Pte(Y |X),Ptr(Y |X)),

which measures the stability of the prediction mecha-
nism between Ptr and Pte. Note that here Pte denotes
the target distribution, which may not be included in
the pre-defined sub-population set.

Then we formally provide the learnability assumption
of Problem 1.

Assumption 1 (Learnability of Problem 1). Prob-
lem 1 from Ptr to Pte is (α0, s)-learnable if
there exists an expansion function s(·) such that
ODS(Y |X;Ptr,Pte) ≤ s(DSα0

(Y |X;Ptr)).

Note that here X could be replaced by some represen-
tations Φ(X). Here we make some remarks.

Remark. (1) Assumption 1 assumes that the α0-
distributional stability measure of the training distribu-
tion should approximately hold in testing, that is, its
variation on the target distribution is upper bounded
by the expansion function. Intuitively, it requires that
the conditional distribution Pte(Y |X) cannot arbitrar-
ily change. If Pte(Y |X) could arbitrarily change, the
problem is unlearnable, since the prediction mechanism
learned in training may not hold in testing.
(2) The steepness of the expansion function reflects
the difficulty of Problem 1, since the steeper the ex-
pansion function is, the less likely the learned distribu-
tional stability will hold in testing. As shown in The-
orem 1, the expansion function influences the general-
ization error bound.

We then derive the OOD generalization bound for
Problem 1.

Theorem 1 (Generalization Bound). Under Assump-
tion 1, assume that ℓ(·, ·) is upper bounded, the condi-
tional generalization error gap could be bounded by the
distributional stability as:

EPte

[∥∥∥EPte [ℓ(X,Y )|X]− EPtr [ℓ(X,Y )|X]
∥∥∥]

≤ O(
√

1− e−s(DSα0
(Y |X;Ptr))),

(4)

where ℓ(·, ·) denotes the loss function.

In Theorem 1, we calculate the conditional error gap
bound, which excludes covariate shifts by aligning the

covariate distribution with Pte(X). From Equation
(4), we can see that controlling the distributional sta-
bility DSα0

(Y |X;Ptr) could decrease the generaliza-
tion error gap between training and testing. The the-
oretical results motivate our Stable Risk Minimization
(SRM) algorithm in Section 4.

4 METHOD

To enhance the distributional stability, inspired by
Theorem 1, we propose our Stable Risk Minimiza-
tion (SRM) algorithm based on the newly-proposed
distributional stability. We first introduce the overall
objective function, and then derive an approximated
optimization method for classification and regression.

Objective function.

To learn models with good distributional stability, we
introduce the stability constraints to the general risk
minimization and propose our stable risk minimization
framework as:

θ∗, η∗ = argmin
θ,η

EX,Y∼Ptr
[ℓ(hη(Φθ(X)), Y )]

s.t. DSα0
(Y |Φθ∗(X);Ptr) ≤ δ

(5)

where α0 is the pre-defined lower-bound on the sub-
population proportion, and δ ≥ 0 is the threshold
of distributional stability of the prediction mechanism
Y |Φθ∗(X). The constraint could help to learn repre-
sentation Φθ∗(X) that is stable among sub-populations
within Ptr.

Following the approximation techniques typically
adopted in robust learning (Arjovsky et al., 2019;
Sinha et al., 2018), we give up the requirement of a pre-
scribed constraint δ of distributional stability, and in-
stead focus on the Lagrangian penalty problem, which
also corresponds with our theoretical results in Theo-
rem 1.

min
θ,η

EPtr [ℓ(hη(Φθ(X)), Y )] + λ ·DSα0(Y |Φθ(X);Ptr)

(6)
The key challenge lies in the calculation of the distribu-
tional stability constraint DSα0

(Y |Φθ(X);Ptr). Recall
that it relies on the worst sub-population Q⋆ in Equa-
tion (3). Therefore, the optimization involves a two-
player game, where a variation exploiter keeps pick-
ing the worst sub-population Q⋆ from Pα0(Ptr), and
a stable learner learns a more stable representation
with smaller discrepancy between Q⋆(Y |Φθ(X)) and
Ptr(Y |Φθ(X)).
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Algorithm 1 Stable risk minimization (SRM)

Input: Training Data D = {xi, yi}ni=1, hyper-
parameter λ, epoch number T , prescribed sub-
population ratio α0.
Initialize: Φ(1) = X
for t = 1 to T do
Step 1. Variation explorer: Given Φ(t), find
the worst sub-population Q⋆(t) characterized by
w∗ according to Equation (8).
Step 2. Stable learner: Given the learned
worst sub-population Q⋆(t), perform stable risk

minimization on {P̂tr,Q⋆(t)} according to Equa-
tion (10) to obtain the representation Φ(t+1).

end for

4.1 Player 1: variation explorer

Given current representation Φθ(X) (abbr. Φ), the
α0-distributional stability takes the form of:

DSα0
(Y |Φ;Ptr) = sup

Q∈Pα0
(Ptr)

EQ

[
log

Q(Y |Φ)
Ptr(Y |Φ)

]
.

The goal of the variation explorer is to find the sub-
population Q⋆ that:

Q⋆ = arg sup
Q∈Pα0

(Ptr)

EQ

[
log

Q(Y |Φ)
Ptr(Y |Φ)

]
. (7)

For different kinds of tasks, we propose different ways
to approximate Equation (7) in the following.

(1) For regression tasks. Given the representa-
tion Φ ∈ Υ and the label Y ∈ R, we parameterize the
conditional distribution Ptr(Y |Φ) and Q(Y |X) as:

Ptr(Y |Φ) ≈ N (ftr(Φ), σ
2
tr),

Q(Y |Φ) ≈ N (fq(Φ), σ
2
q),

where ftr = EPtr
[Y |Φ] and fq = EQ[Y |Φ] denote the

prediction functions tailored to fit the data distribu-
tions Ptr and Q, respectively. σtr, σq are noise scale
parameters. Based on this approximation, Equation
(7) for regression tasks becomes:

Q⋆ = arg sup
Q∈Pα0

(Ptr)

EQ

[
(Y − ftr(Φ))

2

σ2
tr

− (Y − fq(Φ))
2

σ2
q

]
.

(2) For classification tasks.. Denote the number
of classes by K, the conditional distribution is dis-
crete and can be modeled via a K-dimensional sim-
plex. Given the representation Φ ∈ Υ and target vari-
able Y ∈ [K], Ptr(Y |Φ) and Q(Y |Φ) are modeled as:

Ptr(Y |Φ) ≈ ftr(Φ) ∈ ∆K ,

Q(Y |Φ) ≈ fq(Φ) ∈ ∆K ,

where ftr, fq denote the prediction models that fit the
data from distribution Ptr and Q respectively. Then
Equation (7) for classification tasks becomes:

Q⋆ = arg sup
Q∈Pα0 (Ptr)

EQ

[
log

fq(Φ)[Y ]

ftr(Φ)[Y ]

]
.

where fq(Φ)[Y ] denotes the value of Y -th dimension
of fq(Φ) ∈ ∆K , and the same for ftr(Φ)[Y ].

Now we are ready to derive the empirical objective
function from Equation (7) for both regression and
classification tasks. Empirically, given dataset D =
{xi, yi}ni=1 drawn from Ptr, P̂tr can be represented by

P̂tr =
1

n

n∑
i=1

δ(xi,yi),

where δ(x,y) denotes the Dirac distribution that is sup-
ported on (x, y). Similarly, the sub-population set

Pα0(P̂tr) can be modeled as:

Pα0(P̂tr) = {w = [w1, . . . , wn]
T : w ∈ ∆n,w ≤ 1

α0n
},

where the sub-population Q ∈ Pα0
(P̂tr) is character-

ized by sample weights, and wi denotes the weight of
the i-th sample. Then Equation (7) can be reformu-
lated as:

w⋆ = arg max
w∈Pα0

(P̂tr)

n∑
i=1

wi · gi ,

s.t. w ∈ ∆n and w ≤ 1

α0n
,

(8)

where gi depends on the task type (regression or clas-

sification):

gi :=

{
(yi−ftr(ϕi))

2

σ2
tr

− (yi−fq(ϕi))
2

σ2
q

, for regression

log
fq(ϕi)[yi]
ftr(ϕ)[yi]

, for classification

where ϕi = Φ(xi). To estimate ftr, σtr, fq, σq, through
maximal likelihood estimation, we have:

ftr = argmin
f

n∑
i=1

ℓ(f(ϕi), yi),

fq = argmin
f

n∑
i=1

wiℓ(f(ϕi), yi),

σ2
tr = EPtr

[ℓ2(ftr(Φ), Y )]− (EPtr
[ℓ(ftr(Φ), Y )])2,

σ2
q = EQ[ℓ

2(fq(Φ), Y )]− (EQ[ℓ(fq(Φ), Y )])2.

Notably, for ftr, since it fits the empirical training dis-
tribution P̂tr and is not affected by sample weights,
we only train it once and fix it. For fq, one could
use bi-level optimization to jointly optimize the sample
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weights w and fq. In this work, we find that adopt-
ing an iterative training process yields impressive re-
sults in practical, and therefore we did not implement
bi-level optimization here. But we refer the readers
interested in the bi-level optimization of Equation (8)
to (Shu et al., 2019; Shaban et al., 2019).

Complexity Analysis Here we analyze the com-
plexity of the variation exploitation stage. First, this
stage is based on the representation Φ(X) of the in-
put data X. Therefore, the conditional distribution
P(Y |Φ(X)) is easy to fit empirically and typically is
chosen as linear model, which could be viewed as the
last layer of a deep neural network. Second, we ana-
lyze the additional computation cost, and show that
it is similar to adversarial training. Denote the sam-
ple size as N , dimension of Φ as dϕ, and the training
epoch as T , the additional cost is O(NdϕT ). Notably,
since fq is linear, the convergence is quick, and we
set it to 50 in our experiments. To demonstrate that
this computation cost is acceptable, we further analyze
the additional cost of adversarial training for compar-
ison. Denote the overall number of parameters as D,
the attack step as Ta, the additional cost of adversar-
ial training is O(NDTa) with D ≫ dϕ. Therefore, the
additional computation cost of our method is lower (or
no larger) than adversarial training, which is accept-
able. Third, to further lower the computation burden,
we perform the variation exploitation stage once ev-
ery K epochs, and K is set to 20 in our experiments.
Therefore, the additional time complexity further re-
duces to O(NdϕT/K).

4.2 Player 2: stable learner

Given the worst sub-population Q⋆ in Equation (7),
the distributional stability could be simplified to:

DSα0
(Y |Φ;Ptr) = ρKL(Q⋆(Y |Φ)∥Ptr(Y |Φ)).

Therefore, for the stable learner (player 2), the La-
grangian penalty problem in Equation (6) becomes:

L(θ, η) =EPtr [ℓ(hη(Φθ(X)), Y )]+

λρKL(Q⋆(Y |Φθ(X))∥Ptr(Y |Φθ(X))).
(9)

Following the approximation in (Koyama et al., 2020),
we have:

ρKL(Q⋆(Y |Φθ(X))∥Ptr(Y |Φθ(X))) ≈ O(α2)+

α∇θ,η (RPtr
(θ, η)−RQ⋆(θ, η))

T ∇θ,ηRQ⋆(θ, η)

where α is the learning rate of model parameters θ, η,
RPtr = EPtr [ℓ(X,Y )] denotes the average prediction
error under distribution Ptr, and RQ⋆ = EQ⋆ [ℓ(X,Y )]
denotes the average prediction error under distribution
Q⋆.

Given the worst sub-population Q⋆, the overall objec-
tive function of the player 2 becomes:

L(θ, η) = EPtr
[ℓ(hη(Φθ(X)), Y )]+

λ∇θ,η (RPtr
(θ, η)−RQ⋆(θ, η))

T ∇θ,ηRQ⋆(θ, η),
(10)

which can be efficiently optimized via gradient descent.

5 RELATED WORK

In this section, we discuss the related works in detail.
There are mainly two branches of literatures related
to our work, including invariant learning (Arjovsky
et al., 2019; Ahuja et al., 2020; Koyama et al., 2020;
Liu et al., 2021a,c; Ahuja et al., 2021; Creager et al.,
2021) and distributionally robust optimization (Duchi
et al., 2018; Sinha et al., 2018).

For invariant learning, Arjovsky et al. (2019) first come
up with the OOD generalization problem and design a
regularizer to learn such representations that the op-
timal linear classifier remains the same across training
environments, and this method is a typical method in
invariant learning. And Koyama et al. (2020) theo-
retically characterize when the invariance will benefit
OOD generalization and propose to learn the max-
imal invariant predictor to achieve OOD optimality.
Ahuja et al. (2021) combines invariant learning with
information bottleneck for better OOD generalization
performance. The proposed invariance definition re-
quires an invariant relationship among all possible en-
vironments, termed as the strict invariance. However,
whether it exists in real applications remains doubtful,
since the noises are likely to change in different envi-
ronments and therefore violate the strict invariance.
Further, the availability of multiple training environ-
ments itself is quite hard to meet with in real scenarios,
making many invariant learning methods inapplicable
in real applications.

In order to mitigate such limitations, recently, some
works (Creager et al., 2021; Liu et al., 2021a,c) try
to learn pseudo-environments first and then perform
invariant learning. Creager et al. (2021) directly max-
imize the regularizer of IRM with a given biased model
to generate environments. Liu et al. (2021a,c) propose
to iteratively learn the environment splits and the in-
variant predictors, although intuitively reasonable, the
property of learned environments still remains vague,
which renders the proposed framework unstable. Since
the property of learned environments cannot be ana-
lyzed or guaranteed, whether the invariance can be
achieved also remains unclear and cannot be certified.
Inspired by this, it is of paramount importance to re-
formulate the invariant learning problem under latent
heterogeneity to a more reasonable one.
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Distributionally robust optimization (DRO) methods,
typified by f -DRO (Duchi et al., 2018), propose to
optimize the worst-case error with respect to a pre-
defined distribution set that lies around the train-
ing distribution. When the testing distribution lies
in the pre-defined distribution set, the OOD general-
ization performance can be controlled by the worst-
case. However, when the target distribution is not
captured by the pre-defined set, the performance of
DRO depends on the relationship between the tar-
get distribution and the worst-case distribution in the
pre-defined set, which cannot be guaranteed. This
is also reflected in our Figure 1(a) (the curve of f -
DRO is quite fluctuant). Unfortunately, such circum-
stances are quite likely to happen in real scenarios,
since the pre-defined set cannot be set too large be-
cause of the over-pessimism problem (Hu et al., 2018;
Frogner et al., 2019). In this work, we borrow the
idea of distribution set from DRO to characterize the
sub-population set, based on which we come up with
the notion of distributional stability, which is a relaxed
alternative of the strict invariance.

6 EXPERIMENTS

Baselines.
We compare our proposed SRM algorithm with the fol-
lowing methods: Empirical Risk Minimization (ERM),
Distributionally Robust Optimization (f -DRO, Duchi
et al. (2018)), Environment Inference for Invariant
Learning (EIIL, Creager et al. (2021)), Kernelized Het-
erogeneous Risk Minimization (KerHRM, Liu et al.
(2021c)) and Invariant Risk Minimization (IRM, Ar-
jovsky et al. (2019)) with environment Etr labels. Note
that IRM requires environment labels, and we provide
the ground-truth sub-population labels for IRM.

Evaluation Metrics.
For experiments with multiple testing distributions, we
use Mean Error defined as:

Mean Error =
1

|Etest|
∑

e∈Etest

EPe [ℓ(X,Y )],

and Std Error defined as:

Std Error =

√
1

|Etest| − 1

∑
e∈Etest

(EPe [ℓ(X,Y )]−Mean Error)2,

and Max Error defined as:

Max Error = max
e∈Etest

EPe [ℓ(X,Y )],

which are mean error, standard deviation error, and
the worst-case error across testing environments Etest.

6.1 Simulation Data

Regression with Selection Bias
In this setting, the relationships between covariates
and the target are perturbed through the selection bias
mechanism across sub-populations. We generate the
data following the mechanism adopted by Liu et al.
(2021c, 2022), where we assume X = [S, V ]T ∈ R10

and Y = f(S) + ϵ = βTS + S1S2S3 + N (0, 0.1).
To generate different sub-populations, we maintain
P(Y |S) the same across sub-populations and leverage
a data selection mechanism to vary P(Y |V ). Specif-
ically, we select data point (xi, yi) with probability
τi according to one certain variable Vb ∈ V as τi =
|r|−5∗|yi−sign(r)·Vb| where |r| > 1. Intuitively, r con-
trols the strengths and direction of the spurious corre-
lation between Vb and Y . The larger value of |r| means
the stronger spurious correlation between Vb and Y ,
and r > 0 means positive correlation and vice versa
(i.e. if r > 0, a data point whose Vb is close to its y is
more probably to be selected.). Therefore, we use r to
define different sub-populations.

For training data, we mix 2000 data points from dif-
ferent r1 and 200 points from r2 = −1.1. For differ-
ent testing scenarios, we sample 1000 data points from
r ∈ {−1.9,−2.1, . . . ,−2.9}, respectively. For our SRM
algorithm and f -DRO, we set α0 = 0.1 (the ground
truth is 0.09). Linear models are used in this experi-
ment.

Classification with Spurious Correlation
Following Sagawa et al. (2020), we induce spurious
correlations between the label Y ∈ {+1,−1} and a
spurious attribute A ∈ {+1,−1} of different strengths
and directions. We assume X = [S, V ]T ∈ R2d, where
S ∈ Rd is the invariant feature generated from the la-
bel Y and V ∈ Rd the variant feature generated from
the spurious attribute A:

S|Y ∼ N (Y 1, σ2
sId), V |A ∼ N (A1, σ2

vId). (11)

In this setting, we characterize different groups with
the bias rate r ∈ (0, 1], which represents that for
100 · r% data, A = Y , and for the other 100 · (1− r)%
data, A = −Y . Intuitively, r controls the spurious cor-
relation between the label Y and spurious attribute A.
In training, we generate 2000 data points, where 50%
points are from group 1 with r1 = 0.9 and the other
from group 2 with varying r2. In testing, we generate
1000 data points with r3 = 0.0 to simulate strong dis-
tributional shifts, since the direction of spurious corre-
lations is reversed from training. We design multiple
settings with different bias rates r2 as well as the di-
mensions d of features. For our SRM algorithm and
f -DRO, we set α0 = 0.15 (the ground truth is 0.17).
We use a two-layer MLP for this experiment.
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Table 1: Overall results in selection bias simulation experiments with varying bias rates r1.
Bias Ratio r r1 = 1.5 r1 = 1.9 r1 = 2.3

Methods Mean Error Std Error Max Error Mean Error Std Error Max Error Mean Error Std Error Max Error
ERM 2.651(±0.106) 0.119(±0.038) 2.820(±0.140) 3.155(±0.210) 0.147(±0.039) 3.348(±0.184) 3.240(±0.174) 0.136(±0.039) 3.433(±0.197)

f -DRO 1.835(±0.144) 0.070(±0.024) 1.940(±0.169) 1.973(±0.261) 0.096(±0.025) 2.107(±0.274) 2.018(±0.422) 0.100(±0.025) 2.149(±0.425)

EIIL 1.764(±0.402) 0.074(±0.022) 1.864(±0.423) 2.043(±0.600) 0.101(±0.036) 2.185(±0.656) 1.840(±0.347) 0.085(±0.022) 1.962(±0.349)

KerHRM 1.825(±0.354) 0.089(±0.040) 1.978(±0.374) 1.658(±0.472) 0.068(±0.031) 1.788(±0.617) 1.572(±0.504) 0.088(±0.036) 1.677(±0.537)

IRM(with Etr label) 1.683(±0.201) 0.066(±0.024) 1.780(±0.227) 1.782(±0.134) 0.067(±0.018) 1.886(±0.163) 1.964(±0.276) 0.067(±0.015) 2.057(±0.295)

SRM 1.288(±0.344) 0.059(±0.024) 1.367(±0.365) 1.323(±0.223) 0.054(±0.020) 1.402(±0.233) 1.382(±0.283) 0.059(±0.018) 1.457(±0.299)

Table 2: Overall results in classification simulation experiments with varying bias rates r2.
Bias Ratio r2 r2 = 0.75 r2 = 0.80

Dimension d d = 5 d = 10 d = 5 d = 10

Methods Train Acc Test Acc Train Acc Test Acc Train Acc Test Acc Train Acc Test Acc
ERM 0.917(±0.009) 0.388(±0.039) 0.972(±0.007) 0.573(±0.026) 0.931(±0.005) 0.364(±0.023) 0.975(±0.005) 0.526(±0.030)

f -DRO 0.766(±0.012) 0.452(±0.021) 0.920(±0.006) 0.611(±0.028) 0.787(±0.011) 0.427(±0.022) 0.930(±0.005) 0.616(±0.022)

EIIL 0.727(±0.145) 0.544(±0.058) 0.814(±0.160) 0.451(±0.049) 0.743(±0.155) 0.571(±0.050) 0.823(±0.165) 0.406(±0.056)

KerHRM 0.784(±0.035) 0.636(±0.182) 0.834(±0.143) 0.659(±0.205) 0.780(±0.043) 0.665(±0.178) 0.800(±0.097) 0.674(±0.139)

IRM(with Etr label) 0.855(±0.010) 0.467(±0.046) 0.908(±0.007) 0.529(±0.058) 0.876(±0.005) 0.386(±0.047) 0.914(±0.006) 0.448(±0.056)

SRM 0.781(±0.032) 0.716(±0.066) 0.869(±0.023) 0.684(±0.052) 0.787(±0.030) 0.703(±0.073) 0.871(±0.017) 0.697(±0.061)

Better OOD Generalization Performance: We
report the results of the regression and classification
tasks in Table 1 and 2. From the results, our SRM out-
performs all baselines in terms of higher prediction ac-
curacy and better stability among distributional shifts,
which validates that our SRM can achieve better OOD
generalization performance and is consistent with our
theoretical analysis in Theorem 1.

α0 Controls the Extent of Stability: In the def-
inition of α0-distributional stability, α0 controls the
range of stability, i.e. smaller α0 examines more fine-
grained stability. To demonstrate the effect of α0 in
our SRM algorithm, for the classification task, we plot
the curve of testing accuracy w.r.t. α0 for our SRM
and f -DRO in Figure 1(a). Since the real proportion
of the minor sub-population is set to 0.17, we hope
SRM is effective when α0 ≤ 0.17. From the results, we
could see that the performances of SRM maintain at
a high level for α0 ∈ [0.05, 0.17], which validates our
intuitions. For too small α0, the performances drop
due to the insufficient number of samples and stronger
noises. Also, the performances of f -DRO are oscillat-
ing, which corresponds with our analysis in Remark 2.2
that: since distributional robustness only cares about
the worst sub-population performances, when the test-
ing distribution falls out of the pre-defined distribution
set, it cannot guarantee the OOD generalization per-
formance. However, for our SRM, the guarantees for
the OOD generalization ability in Theorem 1 do not
put strong requirements for the testing distributions,
since it only requires the learnability of the problem.

6.2 Real-World Data: Retiring Adults

To better validate the effectiveness of the proposed
SRM algorithm, we consider a much more challeng-

ing scenario on a real-world dataset, named ACSTrav-
elTime (Ding et al., 2021). The task is to predict
whether an individual has a commute to work that
is longer than 20 minutes. In this task, we have 16
features and 1,428,642 data points in total from all 50
US states. Since there are 50 distinct environments,
this dataset contains natural geographic shifts, which
makes it suitable for testing the OOD generalization
performances. In training, we sample 2000 data points
from MA and validate on the rest data from MA. In
testing, we test different methods on all the other 49
states.

In Figure 1(b), we plot the accuracy and F1 score for
each method on the 50 states, and in Figure 1(c) we
show the overall testing accuracy of different meth-
ods. Note that the original code released by KerHRM
is too time-consuming to run on this data because of
the large amount of data (over 1 million data points),
therefore we use HRM (Liu et al., 2021a) here to re-
place the KerHRM, which can only deal with the raw
feature data. Since there is one environment in this
experiment and we do not know the underlying sub-
populations, we cannot compare with IRM in this set-
ting. And EIIL can be viewed as an alternative to
IRM with learned environments from training data.

From the results in Figure 1(b), the average perfor-
mance of our SRM locates in the top right of the figure,
which shows that our methods achieve the best OOD
generalization performance w.r.t. testing accuracy and
F1 score. Further, in Figure 1(c), for our SRM, the
performances of most environments are concentrated
at high accuracy, and the variance of different envi-
ronments is significantly smaller than the baselines. It
shows that our SRM algorithm can learn some dis-
tributional stability among different sub-populations,
which benefits the generalization performances. And
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(a) Certified robustness. (b) F1 Score and Testing Accuracy. (c) Overall testing accuracy.

Figure 1: Experimental results. (a): Demonstration of the certified robustness via the classification task (in
Section 6.1), where we vary the α0 and plot the corresponding testing accuracy for f -DRO and our proposed
SRM. (b): The F1 score and testing accuracy on all 50 target states of different methods. We highlight the
average F1 score and testing accuracy (in Section 6.2). (c): The distribution of testing accuracy of different
methods (in Section 6.2).

the good OOD generalization performance also corre-
sponds with our intuition from Theorem 1 that con-
sidering the distributional stability could benefit the
OOD generalization error.

7 CONCLUSION

In this paper, we propose the distributional stabil-
ity, which measures the stability of prediction mecha-
nisms among sub-populations. Based on this criterion,
we propose an approximated algorithm, termed sta-
ble risk minimization, to enhance the model’s stability
with respect to distribution shifts in prediction mech-
anisms. Despite the theoretical and empirical results,
our work has the following limitations (or potential
directions to improve):

Analysis of the approximation. Based on the
overall objective function in Equation (5), we make
several approximations to derive a tractable optimiza-
tion algorithm. A notable challenge associated with
this approach is the difficulty in thoroughly analyzing
the behavior of the approximated algorithm, partic-
ularly with regard to its convergence properties and
the bounds on its generalization error. A promising
avenue for future research lies in the development of
improved approximation techniques that come with
stronger theoretical guarantees.

Lack of large-scale suitable datasets. In the cur-
rent version of our study, both simulated and real-
world experiments are conducted on a small scale.
This limitation is largely due to the nature of datasets
commonly employed in large-scale research, which pre-
dominantly consist of image data. These datasets usu-
ally exhibit shifts in the input space, X, rather than in
the conditional distribution (Y |X-shifts) that are more

pertinent to our investigation into invariant learning.

As the field of invariant learning evolves, a notice-
able trend is the application of these methods to com-
plex tasks, particularly image classification datasets.
However, a crucial question emerges: Are these im-
age datasets genuinely conducive to invariant learn-
ing methods aimed at aligning the Y |X distributions?
Research by Gulrajani and Lopez-Paz (2020) reveals
that Empirical Risk Minimization (ERM) often out-
performs most domain generalization and invariant
learning methods tailored for these datasets. This sug-
gests that the prevalent distribution shifts in image
datasets are primarily X-shifts, with the primary ob-
jective being to model EPtr

[Y |X]. Additionally, nu-
merous empirical studies, such as those by (Miller
et al., 2021), have identified a strong correlation be-
tween out-of-distribution (OOD) generalization per-
formance and in-distribution (ID) performance. This
correlation further underscores the inadequacy of tra-
ditional image classification tasks as a testing ground
for invariant learning methods.

In light of these findings, we advocate for a shift in
research focus towards understanding the patterns of
distribution shifts in real-world applications, as high-
lighted by (Liu et al., 2023). A promising avenue of
exploration involves the creation of real-world, large-
scale datasets featuring Y |X-shifts. These datasets
would likely offer a more fitting and challenging en-
vironment for assessing the capabilities of invariant
learning methods.
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Peters, J., Bühlmann, P., and Meinshausen, N. (2016).
Causal inference by using invariant prediction: iden-
tification and confidence intervals. Journal of
the Royal Statistical Society. Series B (Statistical
Methodology), pages 947–1012. 1

Rojas-Carulla, M., Schölkopf, B., Turner, R. E., and
Peters, J. (2018). Invariant models for causal trans-
fer learning. J. Mach. Learn. Res., 19:36:1–36:34.
1

Sagawa, S., Raghunathan, A., Koh, P. W., and Liang,
P. (2020). An investigation of why overparameteri-



Jiashuo Liu, Jiayun Wu, Jie Peng, Xiaoyu Wu, Yang Zheng, Bo Li, Peng Cui

zation exacerbates spurious correlations. In Proceed-
ings of the 37th International Conference on Ma-
chine Learning, ICML 2020, 13-18 July 2020, Vir-
tual Event, volume 119 of Proceedings of Machine
Learning Research, pages 8346–8356. PMLR. 7

Shaban, A., Cheng, C.-A., Hatch, N., and Boots, B.
(2019). Truncated back-propagation for bilevel op-
timization. In The 22nd International Conference
on Artificial Intelligence and Statistics, pages 1723–
1732. PMLR. 6

Shu, J., Xie, Q., Yi, L., Zhao, Q., Zhou, S., Xu, Z.,
and Meng, D. (2019). Meta-weight-net: Learning an
explicit mapping for sample weighting. Advances in
neural information processing systems, 32. 6

Sinha, A., Namkoong, H., and Duchi, J. C. (2018).
Certifying some distributional robustness with prin-
cipled adversarial training. In 6th International
Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenRe-
view.net. 3, 4, 6

Ye, H., Xie, C., Cai, T., Li, R., Li, Z., and Wang,
L. (2021). Towards a theoretical framework of out-
of-distribution generalization. Advances in Neu-
ral Information Processing Systems: Annual Con-
ference on Neural Information Processing Systems
2021, NeurIPS 2021. 3

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Not Applicable]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Not Applicable]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]



Enhancing Distributional Stability among Sub-populations

A PROOF

Proof. Denote the upper bound of ℓ(·, ·) as M > 0.
For any e ∈ supp(E), denote P′

e(Y,Φ) = Pe(Y |Φ)P(Φ)
and P′

tr(Y,Φ) = Ptr(Y |Φ)P(Φ), and then we have

E [EPe [ℓ(f(Φ), Y )|Φ]− EPtr
[ℓ(f(Φ), Y )|Φ]] (12)

≤ 2M · TV(P
′

e,P
′

tr) (13)

≤ 2M ·
√

1

2
ρKL(Pe(Y |Φ)∥Ptr(Y |Φ)) (14)

≤ O(
√
1− e−s(δ)) (15)

B Experimental Details

In this section, we demonstrate the details of our sim-
ulated experiments.

Regression In this setting, the correlations among
covariates are perturbed through a selection bias
mechanism. We assume X = [S, V ]T ∈ R10 with
S ∈ R5 and V ∈ R5. We assume Y = f(S) + ϵ and
P(Y |S) remains invariant across environments while
P (Y |V ) can arbitrarily change.

Therefore, we generate training data points with the
help of auxiliary variables Z ∈ R6 as following:

Z1, . . . , Z6
iid∼ N (0, 2.0) (16)

V1, . . . , V5
iid∼ N (0, 2.0) (17)

Si = 0.8 ∗ Zi + 0.2 ∗ Zi+1 for i = 1, . . . , 5 (18)

To induce model misspecification, we generate Y as:

Y = f(S) + ϵ = θs(S)
T + S1S2S3 + ϵ (19)

where θs = [12 ,−1, 1,− 1
2 , 1], and ϵ ∼ N (0, 1.0). As we

assume that P(Y |S) remains unchanged while P(Y |V )
can vary across environments, we design a data se-
lection mechanism to induce this kind of distribution
shifts. For simplicity, we select data points according
to a certain variable Vb ∈ V :

τ = |r|−5∗|y−sign(r)∗vb| (20)

µ ∼ Uni(0, 1) (21)

M(r; (x, y)) =

{
1, µ ≤ τ

0, otherwise
(22)

where |r| > 1. Given a certain r, a data point (x, y) is
selected if and only if M(r; (x, y)) = 1 (i.e. if r > 0, a
data point whose Vb is close to its Y is more probably
to be selected.)

Classification We set σ2
s = 3.0 and σ2

v = 0.3 to let
the model more prone to use spurious V since it is
more informative.

As for the hyper-parameter for SRM and f -DRO, for
regression data, we set α0 = 0.1 (the true minor
subpopulation ratio is 0.09); for classification data,
we set α0 = 0.15 (the true minor subpopulation ra-
tio is 0.17). As for the validation data, we sam-
ple i.i.d data as training data and compare both the
worst-case performance of two subpopulations. As
for IRM, we select the parameter of the regularizer
λ ∈ {0.1, 0.3, . . . , 0.9, 1.5, 5.0, 10.0} according to the
validation performance. As for EIIL, we set the epochs
for splitting environments to 1e4 for good convergence,
and other parameters are the same as IRM. As for
KerHRM, we set the cluster num to be the ground-
truth 2. All experiments are run on a GPU server
with one NVIDIA GeForce RTX 3090.
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