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Abstract

Causal structures in the real world often exhibit
cycles naturally due to equilibrium, homeosta-
sis, or feedback. However, causal discovery
from observational studies regarding cyclic mod-
els has not been investigated extensively because
the underlying structure of a linear cyclic struc-
tural equation model (SEM) cannot be determined
solely from observational data. Inspired by the
Bayesian information Criterion (BIC), we con-
struct a score function that assesses both accuracy
and sparsity of the structure to determine which
linear Gaussian SEM is the best when only ob-
servational data is given. Then, we formulate a
causal discovery problem as an optimization prob-
lem of the measure and propose the Filter, Rank,
and Prune (FRP) method for solving it. We empir-
ically demonstrate that our method outperforms
competitive cyclic causal discovery baselines.

1 INTRODUCTION

Structural equation models (SEM) (Kaplan, 2008, Kline,
2023) are widely used in various fields such as biology
(Sachs et al., 2005, Smith et al., 2011), climatology (Runge
et al., 2019), and operations research (Barua et al., 2016,
Chowdhury et al., 2022, Shah and Goldstein, 2006) to rep-
resent complex data structures and to perform inferences
on them. For these areas where decisions are made to take
action, it is essential to infer the structure of the underlying
graphical model from which the data is generated. One
key feature of SEM is that each equation in an SEM can
be viewed as a causal mechanism, and, thus, it is naturally
represented as a causal graph.
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Causal discovery is crucial for these real-world applications.
In certain situations, including experimental settings, one
can obtain interventional data and exploit them to recover
the structure of a graphical model (Brouillard et al., 2020,
Hyttinen et al., 2013, Maathuis et al., 2009, Rothenhäusler
et al., 2015). However, in many cases, researchers are
prohibited from conducting interventions due to expensive
costs, ethical considerations, or the inexistence of interven-
tional machinery. In such cases, the system’s causal struc-
ture should be inferred solely from observational data. Most
existing methods for causal discovery from observational
data assume that the underlying model can be represented
as a directed acyclic graph (DAG) (Colombo and Maathuis,
2014, Drton and Maathuis, 2017, Lachapelle et al., 2019,
Spirtes et al., 2000, Zheng et al., 2018) with no unmeasured
confounders (i.e., causal sufficiency). However, this is not
always the case. Systems with feedback loops, e.g., brain
network modeling (Smith et al., 2011), innately involve cy-
cles in their causal structures. Therefore, it is mandatory to
incorporate cycles for the learned graphical model in certain
situations.

Despite the delineated importance of causal discovery for
cyclic graphical models, literature on this topic is consid-
erably scarce. This is mainly due to the fact that the un-
derlying directed graphs (DG) of linear SEMs cannot be
determined from observational data if the model is cyclic.
For a linear acyclic SEM, a topological order often enables
the identification of its underlying graph. For instance, a
linear acyclic SEM with homoscedastic exogenous noises
can be fully recovered by minimizing the mean squared
error (MSE) penalizing the number of edges, or equivalently
ℓ0 regularization; for the proof for this, a topological order
of the model is essential (Loh and Bühlmann, 2014, Van
de Geer and Bühlmann, 2013). As another example, Park
(2020) and Raskutti and Uhler (2018) leveraged different
assumptions about the topological order of an acyclic SEM
to identify its underlying DAG. However, this is not the
case for a linear cyclic SEM for which a topological order
cannot be defined. Furthermore, regarding linear Gaussian
SEMs, there are “equivalent” DGs by which an identical set
of distributions can be explained (Ghassami et al., 2020),

sanghack@snu.ac.kr


Filter, Rank, and Prune: Learning Linear Cyclic Gaussian Graphical Models

1 2

3

45

6

1 2

3

45

6

1 2

3

45

6

Figure 1: Directed graphs in a distribution equivalence class
(Ghassami et al., 2020).

i.e., there may exist multiple DGs that can equally explain
the observational data.

Therefore, we are destined to determine the “best” DG
among those “equivalent” DGs. In light of “Occam’s razor”,
we aim to find a DG with the fewest “causal connections”,
i.e., the smallest number of edges. It is the best among
equivalent DGs in the sense that it provides the simplest ex-
planation for observed data. Figure 1 shows equivalent DGs
of 10, 9, and 8 edges on the left, center, and right, respec-
tively; in this case, we would like to consider the DG on the
right is the “best” among them. Motivated by the Bayesian
information criterion (BIC) (Neath and Cavanaugh, 2012),
which reflects the sparsity of a model, we present a novel
mathematical formulation by offering a fresh perspective
on a BIC-like score function employed within the structure
learning method proposed by Ghassami et al. (2020).

We propose a method for solving this problem of finding
the “best” DG given observational data. Unlike the case
of acyclic DGs, designing a causal discovery method for
possibly cyclic DGs based on continuous optimization is
challenging since there is no explicit constraint to guide a
continuous formulation of the problem. Hence, we opted for
a combinatorial approach, which necessitates reducing the
search space or a set of potential edges. We built such a pro-
cedure by exploiting a precision matrix since it completely
characterizes the structure of the Gaussian distribution.

We summarize our contributions as follows. (1) Regarding
linear cyclic Gaussian SEMs, we propose a novel measure
to evaluate DGs and mathematically formulate a selection
of the best DG among equivalent DGs. (2) We devise the
Filter, Rank, and Prune (FRP) method for solving this prob-
lem based on a solid theoretical understanding of structural
coefficients and loss landscape. It efficiently and effectively
eliminates spurious edges, reaching state-of-the-art perfor-
mance.

1.1 Related Work

Methods for learning the structure of a linear cyclic SEM
from observational data can be categorized into a few
groups: constraint-based, score-based, and others using
assumptions on external noises.

Constraint-based methods exploit a set of conditional inde-
pendence (CI) presented in the observed data, relying on

the faithfulness assumption, which states that CIs in the ob-
served data reflect CIs (i.e., d-separation) in the underlying
cyclic graph. In this approach, Richardson (1996) proposed
a method that finds an equivalence class represented as a
partial ancestral graph that is compatible with CIs in the
observed data. On the other hand, Hyttinen et al. (2013)
encoded CIs with Boolean variables, formulating a causal
discovery as a Boolean satisfiability problem (SAT). There
are also some methods that relax causal sufficiency allow-
ing latent confounders. Forré and Mooij (2018) exploited
σ-separation to permit unmeasured confounders.

Score-based methods design a score that reflects how well a
graph can model the observational data, where optimizing
it renders learning of an underlying DG. One typical ap-
proach of score-based methods is to employ the ℓ1 penalty
or LASSO (Tibshirani, 1996) to view a structure learning
problem as an instance of continuous optimization: this
approach has been investigated to devise structure learning
methods in various settings. (Friedman et al., 2008, Mein-
shausen and Bühlmann, 2006) tailored LASSO to uncover
the underlying undirected graph with a sparsity constraint.
Zheng et al. (2018) reformulated a causal discovery of an
SEM with DAG to a continuous optimization problem by
configuring the acyclicity constraint as a continuous con-
straint. This method gave rise to several follow-up methods,
including GOLEM (Ng et al., 2020), NOTEARS-TOPO
(Deng et al., 2023). Sethuraman et al. (2023) designed a
flow-based method to discover a possibly cyclic structure.
Together with the likelihood loss, they employ ℓ1 penalty
similar to (Zheng et al., 2018) to impose sparsity on the ren-
dered graph. Fitch (2019) proposed a method of learning a
possibly cyclic DG from Gaussian observational data based
on the LASSO while assuming the underlying structure
to be a stationary Gaussian process, being fundamentally
different from linear SEMs.

Other score-based methods incorporate improving the score
in a discrete manner, which allows using a discontinuous
penalty including the ℓ0 penalty. Ghassami et al. (2020)
proposed a score function that is the sum of likelihood loss
and the ℓ0 penalty to learn the causal structure of a linear
Gaussian SEM up to a quasi-equivalence class they have
defined. To elaborate in simple terms, they have defined two
DGs are quasi-equivalent if the set of precision matrices that
they can both generate has a non-zero Lebesgue measure.
Améndola et al. (2020) utilized greedy search to discover
cyclic simple mixed graphs, which permits bi-directed edges
while restricting to at most one edge per pair of nodes.

A branch of methods relies on assumptions about the exter-
nal noises. For acyclic SEMs, Shimizu et al. (2006) used
independent component analysis (ICA) (Hyvärinen and Oja,
2000) to find an underlying DAG assuming non-Gaussian
noises. Lacerda et al. (2008) takes a similar approach to re-
cover DGs that are not necessarily acyclic from continuous
observational data. Sanchez-Romero et al. (2019) exploited
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skewness assumption on external noise to construct a hy-
brid method; they find a skeleton (or undirected edges) of
the underlying DG, and then direct edges based on skew-
ness assumption or ICA. For a more extensive survey of the
literature on the causal discovery, we refer the readers to
(Glymour et al., 2019, Vowels et al., 2021).

2 PRELIMINARIES

We introduce notations essential to understanding our paper.
Let Ai,: and A:,j be the i-th row and j-th column of a
matrix A, respectively. We denote by Ip an identity matrix
in Rp×p. We write Diag(A) as a diagonal matrix whose
diagonal elements correspond to the diagonal elements of
A ∈ Rp×p.

Linear Gaussian SEM A linear SEM is a system with p
observable variables, where one variable can be represented
as a linear combination of other variables with independent
noise added. When the noise is Gaussian, the system is
called a linear Gaussian SEM. We formulate this system as
follows:

X = XW + ϵ, ϵ ∼ N (0,Ω), (1)

where X ∈ R1×p is a vector of observable variables, W ∈
Rp×p is the weight matrix of the system, a positive diagonal
matrix Ω is the covariance matrix of exogenous noise. We
assume that the system has no self-loop, thus, Diag(W ) =
0. To represent multiple samples, we denote X ∈ Rn×p

as a vertical stack of n (≫ p) samples from a linear SEM.
Therefore, X satisfies

X = XW + E , Ei,: i.i.d∼ N (0,Ω). (2)

Underlying DG and Faithfulness Consider a linear SEM
with the weight matrix W as in (1). Its underlying directed
graph G = (V,E) is constructed from W of the SEM as
follows:

V = {1, . . . , p}, E = {(i, j) |Wij ̸= 0}.
Let us denote the i-th variable of the linear SEM by Xi, the
i-th element of X . A linear SEM is said to be faithful to DG
G if

Xi ⊥⊥ Xj |XS ⇒ i and j are d-separated given S in G
for all i ̸= j, S ⊆ V \ {i, j} and XS = (Xk)k∈S. In
the context of a linear “Gaussian” SEM, to determine con-
ditional independence, we can measure partial correlation
denoted by, e.g., Corr(Xi, Xj |XS) between Xi and Xj

given XS. To ensure the uniform convergence of the PC
algorithm (Spirtes et al., 2000), Zhang and Spirtes (2002)
proposed an assumption stronger than faithfulness, called
λ-strong-faithfulness:

|Corr(Xi, Xj |XS)| ≤ λ
⇒ i and j are d-separated given S in G, (3)

where λ > 0 is a constant. However, λ-strong-faithfulness
is too restrictive: λ-strong faithfulness is highly likely vio-
lated when, e.g., the weights are sampled from a uniform
distribution (Uhler et al., 2013). Against this background,
we introduce a weaker version of faithfulness, namely the
λ-edge-faithfulness:

Definition 2.1 (λ-edge-faithfulness). Consider a linear SEM
with its underlying graph G = (V,E). We say the linear
SEM is λ-edge-faithful to G if |Corr(Xi, Xj |XV \{i,j})| >
λ holds for all (i, j) ∈ E.

This relaxes λ-strong-faithfulness (3) in two folds. First, S
does not need to be other than V \ {i, j}. Second, the new
assumption only considers (i, j) ∈ E, the adjacent pairs
while ignoring cases where i and j are endpoints of a collider
i → k ← j. It turns out that rates of the two assumptions
being true are dramatically different on synthetic SEMs
generated following the generating mechanism employed in
the experiment section (12): we present numerical evidence
in Table 1.

Precision Matrix and Partial Correlation We first reca-
pitulate the definition of the partial correlation:

Definition 2.2 (Partial correlation (Kendall, 1946)). For
two random scalar variables X , Y and possibly multi-
dimensional random variable Z, the partial correlation of X
and Y given Z is defined

Corr(X,Y |Z) = Corr(RX , RY ),

where RX , RY is the linear regression residuals of X , Y
with respect to Z and Corr(RX , RY ) is the correlation be-
tween RX and RY .

The partial correlation is closely related to the precision
matrix or the inverse covariance matrix of the linear SEM
(1). They are simply the inverse of its covariance matrix
Σ = (Ip −W )−⊤Ω(Ip −W )−1, that is,

Θ := Σ−1 = (Ip −W )Ω−1(Ip −W )⊤. (4)

where we assume Ip −W to be invertible. Denoting ψij :=
Corr(Xi, Xj |XV \{i,j}), we remark on a representation of
ψij in Θ (Kendall, 1946) and its natural estimator:

ψij = −
Θij√
ΘiiΘjj

, ψ̂ij := −
Θ̂ij√
Θ̂iiΘ̂jj

. (5)

Given the precise relationship between ψij and Θ, we prefer
to specify a Gaussian distribution by its precision matrix
rather than its covariance matrix, i.e.,N (0,Θ−1) rather than
N (0,Σ).

Evaluation on Accuracy of a DG Let KL(P1∥P2) denote
the KL-divergence between two probability distributions P1

and P2. To denote the KL-divergence between two Gaussian
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distributions characterized by precision matrices Θ1 and Θ2,
we write

KLN (Θ1 ∥Θ2)

:= KL(N (0,Θ−1
1 ) ∥ N (0,Θ−1

2 ))

=
1

2
tr(Θ−1

1 Θ2) +
1

2
log detΘ1 −

1

2
log detΘ2 −

p

2
.

Identifying a DG with its edge set E, we can measure the
accuracy of the DG by calculating how close a set of dis-
tributions that E can represent and the true distribution are.
Specifically, we employ the concept of KL-divergence to
define the measure as follows:

L(E,Θ)

:= min{KLN (Θ ∥ (Ip − Ŵ )Ω̂−1(Ip − Ŵ )⊤)

|Supp
Ŵ
⊆ E, Ω̂ positive diagonal},

(6)

where Θ is the precision matrix of the true distribution and
Supp

Ŵ
:= {(i, j) | Ŵij ̸= 0}. If L(E,Θ) is smaller, it

implies that the graph having an edge set E can represent
the underlying model more accurately. In particular, E can
“represent” the true distribution if L(E,Θ) = 0.

Given access to Θ, calculating L(E,Θ) is a mathemati-
cally challenging task as it involves solving a non-convex
optimization problem:

minimize
Ŵ ,Ω̂∈Rp×p

KLN (Θ ∥ (Ip − Ŵ )Ω̂−1(Ip − Ŵ )⊤),

subject to Supp
Ŵ
⊆ E, Ω̂ positive diagonal.

We can simplify it by denoting Q = (Ip − Ŵ )Ω̂−1/2, so
that we have QQ⊤ = (Ip − Ŵ )Ω̂−1(Ip − Ŵ )⊤. This
formulation renders Qii > 0; with a slight relaxation to
Qii ≥ 0, we can dismiss this condition because negating
i’th column ofQ for each iwithQii < 0 will not change the
value of QQ⊤. Since Ω̂−1/2 is a positive diagonal matrix,
the zero entries of Q and Ip − Ŵ coincide. Therefore, we
obtain the following problem:

minimize
Q∈Rp×p

KLN (Θ ∥QQ⊤),

subject to Qij = 0 for all i ̸= j with (i, j) /∈ E.
(7)

We remark on two analytical features of this problem. First,
the term QQ⊤ in the objective function reminds the low-
rank approximation of a matrix or Burer–Monteiro factor-
ization (Burer and Monteiro, 2003). However, its approxi-
mation target Θ is full-rank rather than low-rank, so most
theories regarding the literature of Burer–Monteiro factor-
ization is hardly applicable to our problem. Additionally,
while KLN (Θ ∥ ·) is convex when defined on the set of
positive definite matrices, KLN (Θ ∥QQ⊤) is not a convex
function of Q. Therefore, we take a random initialization
approach based on L-BFGS (Nocedal and Wright, 2006) to
solve this non-convex problem. Further elaboration can be
found in Appendix F.

3 PROBLEM FORMULATION

In this section, we formulate a causal discovery problem
for a linear Gaussian SEM. We consider a linear Gaussian
SEM with p observable variables and the exogenous noise
distribution N (0,Ω) as in (2). Observational data X ∈
Rn×p follows a Gaussian distribution

Xi,:
i.i.d∼ N (0,Θ−1), (8)

where the precision matrix Θ = (Ip −W )Ω−1(Ip −W )⊤.
We aim to find a sparse structure by which N (0,Θ−1) can
be explained. There can be DGs with a fewer number of
edges than the true DG that explain N (0,Θ−1) with the
same level of accuracy as depicted in Figure 1. Hence, we
are not targeting to recover edges of the true underlying DG,
i.e., {(i, j) |Wij ̸= 0}.

Performance Measure Recall the measure L(E,Θ) de-
fined in (6), which serves to quantify the representability
of the set of edges E with respect to the Gaussian distribu-
tion N (0,Θ−1). As we put more elements in E, L(E,Θ)
monotonically decreases. This is a trade-off between the
sparsity and the accuracy of the model. Therefore, we
should consider both in measuring the quality of the es-
timated DG. In this regard, we inspect the Bayesian in-
formation criterion (BIC) (Neath and Cavanaugh, 2012),
defined BIC = −2 logL + k log n, where n, k, and L are
the number of samples, the number of parameters, and the
maximized value of the likelihood function of the model,
respectively. Informally, the term −2 logL serves as a mea-
sure of how well the model can explain the data, correspond-
ing to L(E,Θ) in our context. Moreover, the term k log n
represents the sparsity of the model, drawing an analogy to
the number of edges |E| in our specific problem. This gives
rise to the following measure, which we aim to minimize:

Lµ(E,Θ) := L(E,Θ) + µ|E|. (9)

Aligned with our motivation for constructing this measure,
Lµ(E,Θ) is equivalent to the BIC up to scaling and transla-
tion when µ = logn

2n and Θ = (X⊤X/n)−1. In this aspect,
we call Lµ(E,Θ) as the BIC score. Indeed, it also equals
a score function introduced by Ghassami et al. (2020) (see
Appendix C for details). Thus, we aim to find an edge set E
that minimizes Lµ(E,Θ).

Assumptions and Theoretical Guarantees We assume
that X is a full-rank matrix so that X⊤X is invertible. There-
fore, we can compute the MLE of Θ by Θ̂ = (X⊤X/n)−1,
which characterizes ψ̂ij defined in (5). We can prove that
ψ̂ij is consistent in the sense of Theorem 3.2 under As-
sumption 3.1, which is common in the literature of inverse
covariance matrix estimation (Janková and van de Geer,
2015, Liu et al., 2012, Yuan, 2010).
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Assumption 3.1 (Bounded eigenvalues). Consider the
ground truth distribution N (0,Θ−1) of p variables. Let
Mp > 0 be a constant dependent on p. Then, we assume

1/Mp ≤ λmin(Θ) ≤ λmax(Θ) ≤Mp,

where λmin(Θ) and λmax(Θ) are the minimum and maxi-
mum eigenvalue of Θ, respectively.

Theorem 3.2. Consider a Gaussian distribution of p vari-
ables as in (2) satisfying Assumption 3.1. Let ψij and ψ̂ij

be as in (5). Then, for a sufficiently large n, |ψ̂ij − ψij | ≤
Cpn

−1/4 holds with probability at least 1−2 exp(−cpn1/2)
for all i, j, where c > 0 is an absolute constant and Cp > 0
depends only on p.

Theorem 3.2 and the following Assumption 3.3, which re-
gards the edge-faithfulness of the true distribution, lead to
Theorem 3.4.
Assumption 3.3. Consider the ground truth distribution
N (0,Θ−1) of p variables, where each of them corresponds
to V = {1, . . . , p}. Let ϵp be a constant dependent on p.
We assume there exists a set of edges E that minimizes
Lµ(E,Θ) while ensuring the corresponding linear SEM
being ϵp-edge-faithful to the graph (V,E).

Theorem 3.4. Consider a Gaussian distributionN (0,Θ−1)
of p variables, satisfying Assumptions 3.1 and 3.3. Let
ψ̂ij be as in (5). Then, there exists a set of edges E that
minimizes Lµ(E,Θ) and satisfies the following property:

For a sufficiently large n, E ⊆ {(i, j) | |ψ̂ij | >
Cpn

−1/4} holds with probability at least 1 −
2 exp(−cpn1/2), where c > 0 is an absolute con-
stant and Cp > 0 depends only on p.

We remark that Theorems 3.2 and 3.4 can be derived from
Lemma 29 in (Loh and Bühlmann, 2014) and Remark 5.40
in (Vershynin, 2010). We defer proofs to Appendix D. In
Section 4.1, we will demonstrate how we can use Theo-
rem 3.4 to refine probable edges.

4 FILTER, RANK, AND PRUNE METHOD

We now propose a method, namely the Filter, Rank, and
Prune (FRP) algorithm to solve the problem presented in
the previous section. FRP can be summarized as follows:
(1) We calculate ψ̂ij from observational data and invoke
Theorem 3.4 for filtering out spurious edges. (2) Then, we
execute an algorithm (Section 4.2) which repeats ranking
the candidates and pruning unnecessary ones of the lowest
ranks. If there are no edge candidates to prune, then the
algorithm terminates.

4.1 Filter Stage via Partial Correlation

Recall the result of Theorem 3.4; with probability at least
1−2 exp(−cpn1/2),E ⊆ {(i, j) | |ψ̂ij | > Cpn

−1/4}.Now,

consider a procedure of removing (i, j) that satisfies |ψ̂ij | ≤
Cpn

−1/4 from edge candidates. If we can use a sufficiently
large number of samples, this procedure will not exclude
any true edges from edge candidates with arbitrarily high
probability, as Theorem 3.4 indicates. Therefore, setting
initial edge candidates by Ê0 = {(i, j) | |ψ̂ij | > Cpn

−1/4}
is a sensible choice. We note that setting the threshold
Cpn

−1/4 = 0.1 for n = 1000 showed good performance in
our experiments.

It is worth comparing with a similar thresholding approach
to learn the structure of a (undirected) graphical model. Loh
and Bühlmann (2014) used, in Lemma 15, entries of the
precision matrix, i.e., Θ̂ij , instead of partial correlations ψ̂ij

to determine whether (i, j) belongs to the edge set. Since
partial correlation is invariant upon the scale of exogenous
noise, we do not need to estimate the variance of the noise,
as opposed to using the precision matrix itself. Therefore,
utilizing partial correlation has a practical advantage, not
only providing a connection to relax strong-faithfulness as
mentioned in Section 2.

4.2 Rank and Prune Stages

After obtaining the initial edge candidates Ê0, we try to
minimize Lµ(E,Θ). However, as we do not have access
to Θ, we use Θ̂ instead. We mathematically formulate our
problem as follows:

minimize
Ê

Lµ(Ê, Θ̂) subject to Ê ⊆ Ê0. (10)

We take an iterative approach to solve the problem. Each
iteration consists of two stages: the Rank stage and the
Prune stage. In the Rank stage, we “rank” the current edge
candidates by solving a subproblem about whether we can
remove an edge without causing much loss of accuracy. In
the Prune stage, we “prune” unnecessary edges through a
hybrid of binary and sequential searches utilizing the rank
determined in the previous stage. We repeat these two stages
until there are no more edge candidates to prune.

Rank Stage Let Ê be a set of edges to be considered in
this stage. We solve the following problem to rank the edges
to prune some of them in the later stage:

minimize
Q∈Rp×p

KLN (Θ̂ ∥QQ⊤) + reg(Q),

subject to Qij = 0 for all i ̸= j with (i, j) /∈ Ê,
(11)

where reg is a regularization term that induces sparsity in
a solution. To prevent a bias created by the regularization
term from being large, we adopt SCAD penalty (Fan and
Li, 2001) (see Appendix F for details). Once we have ob-
tained a solution Q⋆, we rank edges (i, j) ∈ Ê by |Q⋆

ij |
in ascending order as demonstrated in RANK function in
Algorithm 1. Notably, edges with low ranks would have
small corresponding weights, allowing for their removal
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with the increase in only a small fraction of the empirical
loss.

Prune Stage Let Ê be the ordered set of edges sorted
from the previous stage. We aim to prune edges as much
as possible while keeping the empirical score of the remain-
ing edges smaller than or equal to T = Lµ(Ê, Θ̂) + ϵtol,
where ϵtol is a tolerance parameter. We first seek to prune
edges with the lowest ranks. If removing the first edge
is unacceptable, we seek the possibility of removing an-
other edge without harming the accuracy seriously: the
necessity of this process is supported in Section 5.2. The
Prune stage is described in Algorithm 1 (0-based index-
ing), where Ê[i :] = {Êi, Êi+1, . . . , Ê|Ê|−1} and Ê[−i]
denotes a set of all elements of Ê except the i-th ele-
ment. We employ binary search for the second action taken
in the PRUNE function.1 Such technique is possible be-

cause (L(Ê[i :], Θ̂))
|Ê|−1
i=0 is sorted in an increasing order—

removing more edges does not decrease the accuracy term
of the BIC score, that is, L(E1, Θ̂) ≤ L(E2, Θ̂) ifE1 ⊇ E2.
We choose ϵtol = µ, where µ is a predefined penalty con-
stant in (9), as this choice renders L(Ê, Θ̂) to be the exact
BIC score when Θ̂ = Θ.

4.3 Complete Algorithm

The FRP algorithm is described in Algorithm 2. It starts
with initializing edge candidates Ê, followed by iterations of
the Rank and Prune stages until no further edges are pruned
from Ê. We note that the Rank stage relies on solving a non-
convex problem (11), thus, the algorithm may not converge
to a global optimum. Therefore, we run multiple (Ninit)
instances (it has been observed that 2 instances are enough
to outperform other baselines in Section 5.1) of FRP and
choose Ê giving the smallest Lµ(Ê, Θ̂) among all outputs.
We run these instances in parallel, preventing the process
from excessive additional time costs.

5 EXPERIMENTS

In this section, we provide the experimental results of FRP.
We first measure the performance of FRP on a synthetic
dataset with competitive baselines, which are revised from
their original versions to ensure a fair comparison. Next,
we present ablation studies and the roles of hyperparam-
eters on the performance. Finally, we apply FRP to a
real-world dataset. All experiments are conducted using
two 24-core CPUs (Intel Xeon 6342 with a base frequency
of 2.8 GHz). Our implementation of FRP is available at
https://github.com/soheunyi/frp.

1Binary search has been utilized by Lengerich et al. (2021)
and Sethuraman et al. (2023) to threshold a possibly cyclic weight
matrix to obtain a DAG.

Algorithm 1 Rank and Prune Stages

1: function RANK(Ê, Θ̂)
2: Solve (11) to obtain Q⋆

3: Sort (i, j) ∈ Ê by |Q⋆
ij | ascendingly

4: return Ê
5: function PRUNE(Ê, Θ̂, ϵtol)
6: T ← L(Ê, Θ̂) + ϵtol
7: i← max{i ≥ 0 | L(Ê[i :], Θ̂) ≤ T} ▷ Binary search
8: if i ≥ 1 return Ê[i :]

9: for i← 1 to |Ê| − 1 do
10: if L(Ê[−i], Θ̂) ≤ T
11: return Ê[−i] ▷ Single-edge removal phase
12: return Ê

Algorithm 2 The FRP Algorithm
1: function FRP(X, ϵtol, Cp, Ninit)
2: Θ̂← (X⊤X/n)−1

3: ψ̂ij ← −Θ̂ij/

√
Θ̂iiΘ̂jj for all i, j

4: for k ← 1 to Ninit do ▷ Parallel execution
5: Êk ← {(i, j) | |ψ̂ij | > Cpn

−1/4}
6: while True do
7: Êk ← RANK(Êk, Θ̂)

8: Ê′
k ← PRUNE(Êk, Θ̂, ϵtol)

9: if Ê′
k = Êk then break

10: Êk ← Ê′
k

11: return argminÊk
Lµ(Êk, Θ̂)

5.1 Performance Evaluation

Baselines To demonstrate the performance of FRP, we
include DGLEARN (Ghassami et al., 2020) to our baselines,
which is designed to solve a similar problem by minimizing
the similar score with FRP. In addition, we add the following
baselines to make our comparison more comprehensive:
NOTEARS (Zheng et al., 2018), GOLEM (Ng et al., 2020),
and NODAGS-Flow (Sethuraman et al., 2023). This is in
line with baseline choices made by Sethuraman et al. (2023),
while LLC (Hyttinen et al., 2012) is excluded as it returns
the zero weight matrix when only observational data is
given. We used the implementation from https://github.
com/syanga/dglearn for DGLEARN, https://github.
com/Genentech/nodags-flows for NODAGS-Flow and
GOLEM, and https://github.com/xunzheng/notears
for NOTEARS.

Synethtic Graphs and Data We conducted experiments
on p ∈ {10, 15, 20}. For each p, we created 10 different
Erdős–Rényi graphs (Erdős and Rényi, 1960) with numbers
of edges that, in expectation, give 0.75, 0.5, 0.25, and 0.125
of non-diagonal entries of the precision matrix to be zero;
we provide the details in Appendix G. When an underlying
DG G = (V,E) is specified, we generate a random weight
matrix W and the covariance matrix of exogenous noise Ω

https://github.com/soheunyi/frp
https://github.com/soheunyi/frp
https://github.com/syanga/dglearn
https://github.com/syanga/dglearn
https://github.com/syanga/dglearn
https://github.com/syanga/dglearn
https://github.com/Genentech/nodags-flows
https://github.com/Genentech/nodags-flows
https://github.com/Genentech/nodags-flows
https://github.com/Genentech/nodags-flows
https://github.com/xunzheng/notears
https://github.com/xunzheng/notears
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by the following procedure:

Wij ∼
{
Uniform([−1,−0.6] ∪ [0.6, 1]) if (i, j) ∈ E,
0 otherwise.

Ωij ∼
{
Uniform([1, 2]) if i = j,

0 otherwise.

(12)

Observational data of size n = 1000 is sampled via X =
E(Ip−W )−1 where each row of E is sampled fromN (0,Ω).
To ensure Assumption 3.1 is satisfied, we restrict the true
precision matrix to have eigenvalues in [10−3, 103] via the
accept-reject approach.

Evaluation We evaluated FRP and the baselines on the
BIC score Lµ(Ê,Θ), where Ê is the estimated edge set
and Θ is the ground truth precision matrix. There are some
considerations regarding the baselines to make the compari-
son fair. To make FRP and DGLEARN minimize the same
score, we set µ = logn

2n for Lµ(E, Θ̂) (9). We set a total
timeout of DGLEARN to 3600 seconds by terminating each
stage of the algorithm as in Appendix G. For NOTEARS, we
evaluated performance varying ℓ1-regularization parameter
in {10−3, 10−2, 10−1} and reported the best performance
for each synthetic graph. As we allow cycles, we inactivated
the acyclicity constraint of GOLEM to prevent it from being
misguided by the constraint. Also, NOTEARS, GOLEM,
and NODAGS-Flow estimate a weight matrix and then apply
thresholding just once to obtain an edge set. Since different
thresholds can lead to different performances, we should
evaluate the performance of these baselines with multiple
thresholds. We set thresholds to be (1) set absolutely to 0.1,
0.2, 0.3, (2) set relatively to 1/16, 1/8, 1/4 of the maximum
absolute value of the estimated weight matrix. We report
the best performance among these thresholds to make our
baselines more competitive.

Empirical Results FRP shows the best performance in
terms of the BIC score in most pairs of node and edge (p, e),
as depicted in Figure 2. Indeed, FRP renders the best score
in all tuples except for (p, e) = (10, 9) (as shown in Table 2).
As seen in the first graph of Figure 2, the performance gap
between FRP and the others widens as the underlying graph
has more edges. A similar trend appears when the number
of nodes grows with fixed sparsity of the true precision
matrix. These observations imply the robustness of FRP to
the increase in the number of nodes and edges.

5.2 Ablation Studies

Necessity of Each Stage We investigated the effects on
the performance induced by three components consisting of
FRP: the Filter stage, the Rank stage, and the single-edge
removal. Specifically, we conducted experiments with (1)
disabling the Filter stage and feeding all edges to the initial
edge candidate, (2) using a random order of edges instead

Underlying FRP (Ours) NOTEARS DGLEARN GOLEM NODAGS
-Flow
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Figure 2: The BIC score between estimated graphs for FRP
(ours), NOTEARS, DGLEARN, GOLEM, and NODAGS-
Flow. Markers and half-width of the error bar indicate the
mean and standard deviation, respectively. p and e are the
numbers of nodes and edges in the underlying graph, and
“Underlying” indicates µe, the BIC score of the underlying
graph. See Table 2 for full results.

of the order provided by RANK function, and (3) removing
the single-edge removal phase. The results are depicted in
Figure 3 (Full results are in Appendix H). The BIC score was
observed to be worse in each case, suggesting the necessity
of the three ingredients for better performance.

Hyperparameters We studied how hyperparameters ϵtol
(tolerance parameter in the Prune stage), Cpn

−1/4 (the par-
tial correlation threshold in the Filter stage), and Ninit (the
number of initializations in FRP) influence the performance.
Results are presented in Figure 4, which we explain in the
following.

ϵtol: In theory, ϵtol = µ yields the best BIC score. While
this choice shows decent performance in every case, there
are some cases where ϵtol = 2µ performs better. This is
possible because the FRP is using Lµ(Ê, Θ̂) which is an
estimate but not the true BIC score.

Cpn
−1/4: Using very small values for the threshold is

similar to deactivating the Filter stage, thus aggravating the
BIC score. Conversely, setting the threshold too high results
in excessive filtration of the initial edge candidate, making
the output incapable of accurately representing the data.

Ninit: Running more instances of the FRP improves the
BIC score. While execution time gets longer as Ninit in-
creases, the growth rate is much slower compared to that of
Ninit.
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Figure 3: The BIC score between estimated graphs for FRP
with (True) and without (False) the Filter stage, the Rank
stage, and the one edge removal phase with p = 15. The
red dashed lines indicate µe.

5.3 Application to a Real World Dataset

We applied FRP to the resting state fMRI data collected by
Shah et al. (2018). Although there is no evidence supporting
that this data is generated from a linear Gaussian SEM, our
results indicate a potential symmetry in the connectivity
present in the left and right hemispheres, which aligns with
the findings reported by Shah et al. (2018). We refer the
readers Appendix E for a more detailed demonstration.

6 DISCUSSION

We presented a novel method, FRP, for learning a linear
cyclic Gaussian SEM from observational data. FRP out-
performed competitive baselines in terms of the BIC score.
We note that our assumption of X being a full-rank matrix
might be invalidated in a high-dimensional setting, where
the number of variables p is much larger than the sample
size n. In this case, one might replace the MLE estimate of
the precision matrix with other methods introduced in the
literature of inverse covariance matrix estimation, including
the graphical LASSO (Meinshausen and Bühlmann, 2006)
to take advantage of sparsity in the underlying graph. Such
variation does not affect the FRP but Section 4.1, which
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Figure 4: The BIC score/execution time between estimated
graphs for FRP with different values of hyperparameters
(ϵtol, Cpn

−1/4, and Ninit) with p = 15.
d

does not matter since we can establish a result analogous
to Theorem 3.4 as long as the inverse covariance matrix
estimation method is consistent.

FRP has some room for improvement. Regarding the filter
stage, an edge that violates the edge-faithfulness assumption
can be excluded from initial edge candidates, and would
not be considered in the following stages. It is possible
that the output DG would lose accuracy or add more edges
to compensate for this loss of accuracy. Furthermore, the
prune stage does not add or exchange edges, so the algorithm
might get stuck into a local optimum. To mitigate this issue,
transformations between DGs in the same equivalence class
proposed by Ghassami et al. (2020) might allow FRP to
escape from a local optimum, improving its performance.
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(b) The license information of the assets, if applicable. [Yes]
(c) New assets either in the supplemental material or as a URL, if applicable. [Yes]
(d) Information about consent from data providers/curators. [Yes]
(e) Discussion of sensible content if applicable, e.g., personally identifiable information or offensive content. [Not

Applicable]

5. If you used crowdsourcing or conducted research with human subjects, check if you include:

(a) The full text of instructions given to participants and screenshots. [Not Applicable]
(b) Descriptions of potential participant risks, with links to Institutional Review Board (IRB) approvals if applicable.

[Not Applicable]
(c) The estimated hourly wage paid to participants and the total amount spent on participant compensation. [Not

Applicable]
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A OMITTED DEFINITIONS

Definition A.1 (d-separation (Richardson, 1996)). Let G = (V,E) be a graph with the set of nodes V and the set of edges E.
For X , Y ∈ V and Z ⊆ V \ {X,Y }, X , Y are d-separated given Z if and only if there does not exist an acyclic undirected
path (X = X0, X1, . . . , Xn = Y ) between X and Y satisfying

• for any 1 ≤ k ≤ n− 1 with Xk ∈ Z, (Xk−1, Xk, Xk+1) forms a collider, i.e., Xk−1 → Xk ← Xk+1, and

• for any 1 ≤ k ≤ n− 1 with (Xk−1, Xk, Xk+1) forming a collider, there exists a descendent of Xk that is a member of
Z.

B IMPOSSIBILITY OF DISCOVERING LINEAR CYCLIC SEMS VIA MINIMIZING THE
LEAST SQUARE ERROR

Consider the following linear cyclic SEM represented by a 2-cycle:

X1 = aX2 + ϵ1,

X2 = bX1 + ϵ2,

ϵ1, ϵ2 ∼ N (0, 1),

where ϵ1, ϵ2 are independent and a, b are nonzero constants satisfying ab ̸= 1. Given this, we can compute X1 and X2 in
terms of ϵ1 and ϵ2 as follows:

X1 =
1

1− ab (ϵ1 + aϵ2), X2 =
1

1− ab (bϵ1 + ϵ2). (13)

Now, consider the least square loss function of weights (â, b̂):

LS(â, b̂) = E[(X1 − âX2)
2 + (X2 − b̂X1)

2].

Using (13), we can calculate LS in terms of ϵ1 and ϵ2 as follows:

LS(â, b̂) =
1

(1− ab)2E[(ϵ1 + aϵ2 − â(bϵ1 + ϵ2))
2 + (bϵ1 + ϵ2 − b̂(ϵ1 + aϵ2))

2]

=
1

(1− ab)2
[
((1− âb)2 + (b− b̂)2)E[ϵ21] + ((a− â)2 + (1− ab̂)2)E[ϵ22]

+ 2((1− âb)(a− â) + (b− b̂)(1− ab̂))E[ϵ1ϵ2]
]

=
1

(1− ab)2
[
((1− âb)2 + (a− â)2) + ((b− b̂)2 + (1− ab̂)2)

]
.

Therefore, the minimizer of LS is given by

â =
a+ b

1 + b2
, b̂ =

a+ b

a2 + 1
,

which, in general, are not equal to a and b. In particular, if a+ b = 0, then â = b̂ = 0, thus failing to recover the true causal
directions.

C THE BIC AND OUR PERFORMANCE MEASURE

Consider fitting observational data X ∈ Rn×p with a linear Gaussian SEM with an edge set E as in (1). Denote its weight
and covariance matrix of exogenous noises by W and Ω, respectively. Then, the log-likelihood function can be represented
by the precision matrix Θ = (Ip −W )Ω−1(Ip −W )⊤ as follows:

ℓ(Θ) = −np
2

log 2π +
n

2
log detΘ− 1

2

n∑
i=1

XiΘX⊤
i
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= −np
2

log 2π +
n

2
log detΘ− 1

2
tr(X⊤XΘ)

= −np
2

log 2π +
n

2
log detΘ− n

2
tr(Θ̂−1Θ),

where Θ̂ = (X⊤X/n)−1. Note that Wij = 0 for (i, j) /∈ E and Ω is a positive diagonal matrix, so there are p+ |E| free
parameters in this model in total. Hence, the BIC of this model is

BIC = −2max
W,Ω

ℓ(Θ) + (p+ |E|) log n

= −2max
W,Ω

{
−np

2
log 2π +

n

2
log detΘ− n

2
tr(Θ̂−1Θ)

}
+ (p+ |E|) log n

= 2n

[
min
W,Ω

{
−1

2
log detΘ +

1

2
tr(Θ̂−1Θ)

}
+

log n

2n
|E|
]
+ np log 2π + p log n

= 2n

[
min
W,Ω

{
KLN (Θ̂ ∥Θ)

}
+

log n

2n
|E|+ p

2
− 1

2
log det Θ̂

]
+ np log 2π + p log n (14)

= 2nLµ(E, Θ̂)− n log det Θ̂ + (n+ n log 2π + log n)p, (15)

where µ = logn
2n is the penalty coefficient. For (15), we used the definition of L and Lµ given in (6) and (9) to obtain

Lµ(E, Θ̂) = L(E, Θ̂) + µ|E| = min
W,Ω
{KLN (Θ̂ ∥Θ)}+ µ|E|,

given Θ = (Ip −W )Ω−1(Ip −W )⊤. This concludes that the BIC is equivalent to Lµ(E, Θ̂) up to scaling and tranlation,
where µ = logn

2n and Θ̂ = (X⊤X/n)−1.

Furthermore, the similar holds for Lµ(E, Θ̂) and the score function of a DG introduced in Ghassami et al. (2020). The score
function is defined as

L̃(X;W,Ω) = min
W,Ω

{
−n log det(Ip −W ) +

p∑
i=1

(
n

2
log Ωii +

∥X:,i −XW:,i∥2
2Ωii

)}
+

log n

2
∥W∥0

in Equation (3) of Ghassami et al. (2020). Observe that

− n log(det(Ip −W )) +

p∑
i=1

n

2
log(Ωii)

= −n
2

(
log det(Ip −W ) + log det(Ip −W )⊤ − log detΩ

)
= −n

2
log det((Ip −W )Ω−1(Ip −W )⊤)

= −n
2
log detΘ,

and
p∑

i=1

1

2Ωii
∥X:,i −XW:,i∥2

=
1

2

p∑
i=1

(Ω−1)ii(X(Ip −W ):,i)
⊤X(Ip −W ):,i

=
1

2

p∑
i=1

(Ω−1)ii(Ip −W )⊤:,iX
⊤X(Ip −W ):,i

=
1

2
tr

(
p∑

i=1

X⊤X(Ip −W ):,i(Ω
−1)ii(Ip −W )⊤:,i

)

=
1

2
tr

(
X⊤X

(
p∑

i=1

(Ip −W ):,i(Ω
−1)ii(Ip −W )⊤:,i

))
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=
1

2
tr
(
X⊤X(Ip −W )Ω−1(Ip −W )⊤

)
=
n

2
tr(Θ̂−1Θ).

Assume Wij is nonzero for (i, j) ∈ E, i.e., ∥W∥0 = |E|. Then, we obtain

L̃(X;W,Ω)

= min
W,Ω

{
−n
2
log detΘ +

n

2
tr(Θ̂−1Θ)

}
+

log n

2
|E|

= n

(
min
W,Ω

{
−1

2
log detΘ +

1

2
tr(Θ̂−1Θ) +

1

2
log det Θ̂− p

2

}
+

log n

2n
|E|
)
+
n

2
(p− log det Θ̂)

= nLµ(E, Θ̂) +
n

2
(p− log det Θ̂).

D DEFERRED PROOFS OF THEOREMS 3.2 AND 3.4

In this appendix, we prove Theorems 3.2 and 3.4 under Assumptions 3.1 and 3.3. To assist understanding, we recall relevant
definition, assumptions, and theorems:

Definition 2.1 (λ-edge-faithfulness). Consider a linear SEM with its underlying graph G = (V,E). We say the linear SEM
is λ-edge-faithful to G if |Corr(Xi, Xj |XV \{i,j})| > λ holds for all (i, j) ∈ E.

Assumption 3.3. Consider the ground truth distribution N (0,Θ−1) of p variables, where each of them corresponds to
V = {1, . . . , p}. Let ϵp be a constant dependent on p. We assume there exists a set of edges E that minimizes Lµ(E,Θ)
while ensuring the corresponding linear SEM being ϵp-edge-faithful to the graph (V,E).

Assumption 3.1 (Bounded eigenvalues). Consider the ground truth distributionN (0,Θ−1) of p variables. Let Mp > 0 be a
constant dependent on p. Then, we assume

1/Mp ≤ λmin(Θ) ≤ λmax(Θ) ≤Mp,

where λmin(Θ) and λmax(Θ) are the minimum and maximum eigenvalue of Θ, respectively.

Theorem 3.2. Consider a Gaussian distribution of p variables as in (2) satisfying Assumption 3.1. Let ψij and ψ̂ij be as in
(5). Then, for a sufficiently large n, |ψ̂ij − ψij | ≤ Cpn

−1/4 holds with probability at least 1− 2 exp(−cpn1/2) for all i, j,
where c > 0 is an absolute constant and Cp > 0 depends only on p.

Theorem 3.4. Consider a Gaussian distribution N (0,Θ−1) of p variables, satisfying Assumptions 3.1 and 3.3. Let ψ̂ij be
as in (5). Then, there exists a set of edges E that minimizes Lµ(E,Θ) and satisfies the following property:

For a sufficiently large n, E ⊆ {(i, j) | |ψ̂ij | > Cpn
−1/4} holds with probability at least 1 − 2 exp(−cpn1/2),

where c > 0 is an absolute constant and Cp > 0 depends only on p.

Since Θ is positive definite, and the diagonal entries of a positive definite matrix cannot be smaller than any of its eigenvalues,
we have

Θii ≥ λmin(Θ) ≥ 1/Mp. (16)

Furthermore, Assumption 3.1 gives bounds to ∥Θ∥2 and ∥Θ−1∥2 as follows:

Lemma D.1. Assume a linear SEM with p variables equipped with the precision matrix Θ ∈ Rp×p satisfies Assumption 3.1.
Then, ∥Θ∥2 ≤ √pMp and ∥Θ−1∥2 ≤ √pMp.

Proof to Lemma D.1. Let λ1 ≥ · · · ≥ λp be eigenvalues of Θ. Let Θ = UΛU⊤ be an eigenvalue decomposition of Θ,
where Λ = Diag(λ1, . . . , λp) and U⊤U = UU⊤ = Ip. Then, we have

∥Θ∥22 = tr(Θ2) = tr(UΛ2U⊤) = tr(Λ2U⊤U) = tr(Λ2) =

p∑
i=1

λ2i ≤ pM2
p ,

thus, ∥Θ∥2 ≤ √pMp. Similarly, we have ∥Θ−1∥2 ≤ √pMp.
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We now prove Theorem 3.2.

Proof to Theorem 3.2. Let Σ and Θ = Σ−1 be the covariance and precision matrix of the SEM, respectively. We refer to
(Vershynin, 2010, Remark 5.40.); setting t = p1/2n1/4 (where n, N are defined as in (Vershynin, 2010, Remark 5.40.))
renders ∥∥∥∥ 1nX⊤X − Σ

∥∥∥∥
2

≤ max(δ, δ2)∥Σ∥2

holds with probability at least 1− 2 exp(−cpn1/2) where δ = (1+Dn−1/4)p1/2n−1/4 (D and c are constants independent
of n and p).

Now, take n sufficiently large to satisfy

pM2
p max(δ, δ2) ≤ 1

2
,

to obtain
∥Σ∥2∥Σ−1∥2 max(δ, δ2) = ∥Θ∥2∥Θ−1∥2 max(δ, δ2) ≤ (

√
pMp)

2 max(δ, δ2) ≤ 1

2
,

using Lemma D.1 and the bound Mp introduced in Assumption 3.1. Denote Θ̂ = ( 1nX
⊤X)−1. Using a machinery similar

to that in the proof of Lemma 29 of (Loh and Bühlmann, 2014), we have

∥Θ̂−Θ∥2 =

∥∥∥∥∥
(
1

n
X⊤X

)−1

− Σ−1

∥∥∥∥∥
2

≤ 2∥Σ−1∥22∥Σ∥2 max(δ, δ2)

= 2∥Θ∥22∥Θ−1∥2 max(δ, δ2)

≤ 2p3/2M3
p max(δ, δ2).

(17)

with probability at least 1− 2 exp(−cpn1/2).
Now assume this event is the case. Take n to be sufficiently large to satisfy

∥Θ̂−Θ∥2 ≤ 2p3/2M3
p max(δ, δ2) < min

(
1

2Mp
,
√
pMp

)
,

so that invoking (16) gives

Θ̂ii ≥ Θii − ∥Θ̂−Θ∥2 ≥
1

Mp
− ∥Θ̂−Θ∥2 >

1

2Mp
(18)

for all i and (17) gives
|Θ̂ij | ≤ ∥Θ̂∥2 ≤ ∥Θ∥2 + ∥Θ̂−Θ∥2 < 2

√
pMp (19)

for any i, j. Now, see for an example i = 1 and j = 2,

ψ̂12 − ψ12 =
Θ12√
Θ11Θ22

− Θ̂12√
Θ̂11Θ̂22

=
Θ̂12√
Θ̂11

 1√
Θ22

− 1√
Θ̂22


︸ ︷︷ ︸

(1)

+
Θ̂12√
Θ22

 1√
Θ11

− 1√
Θ̂11


︸ ︷︷ ︸

(2)

+
1√

Θ11Θ22

(Θ12 − Θ̂12)︸ ︷︷ ︸
(3)

.

We exploit (16), (18), and (19) to bound each term. For (1),

∣∣∣∣∣∣ Θ̂12√
Θ̂11

 1√
Θ22

− 1√
Θ̂22

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
Θ̂12√
Θ̂11

 Θ̂22 −Θ22√
Θ̂22Θ22

(√
Θ̂22 +

√
Θ22

)

∣∣∣∣∣∣∣∣

≤ 4
√
pM3

p∥Θ̂−Θ∥2.
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and similar for (2), ∣∣∣∣∣∣ Θ̂12√
Θ22

 1√
Θ11

− 1√
Θ̂11

∣∣∣∣∣∣ ≤ 4
√
pM3

p∥Θ̂−Θ∥2.

Finally, for (3), ∣∣∣∣ 1√
Θ11Θ22

(Θ12 − Θ̂12)

∣∣∣∣ ≤Mp∥Θ̂−Θ∥2.

Putting it all together, we have

|ψ̂12 − ψ12| ≤
(
8
√
pM3

p +Mp

)
∥Θ̂−Θ∥2

≤ 2p3/2
(
8
√
pM2

p + 1
)
M4

p max(δ, δ2).

This holds simultaneously for pairs other than i = 1 and j = 2, as long as the event (17) holds with probability at least
1− 2 exp(−cpn1/2). By taking n sufficiently large, we have the desired result.

Now we prove Theorem 3.4 to conclude this section.

Proof to Theorem 3.4. Let c and Cp be as in Theorem 3.2, so we have

|ψ̂ij − ψij | ≤ Cpn
−1/4

with probability at least 1−2 exp(−cpn1/2). Now, letE be a set of edges that satisfies Assumption 3.3. Taking n sufficiently
large to have ϵp > 2Cpn

−1/4 leads to

(i, j) ∈ E ⇒ |ψij | > ϵp > 2Cpn
−1/4

⇒ |ψ̂ij | > Cpn
−1/4.

E EXPERIMENTAL DETAILS FOR SECTION 5.3

We have used functional MRI dataset, publicly available at https://github.com/shahpreya/MTLnet (Shah et al., 2018),
We have confirmed that the GitHub repository containing is licensed under the GNU General Public License v3.0. However,
despite our best efforts, we were unable to ascertain licensing terms that specifically apply to the dataset. If there are any
concerns or inquiries related to this matter, we will make every effort to address them to the best of our abilities.

The MTL dataset consists of the resting state fMRI data of 24 healthy adults. As we do not have a deep understanding of this
domain, we basically followed a similar procedure taken in (Shah et al., 2018) regarding data selection. Each hemisphere
were segemented into 10 subregions (CA1, CA2, DG, CA3, TAIL, SUB, ERC, BA35, BA36, PHC). We refer the readers to
(Shah et al., 2018) for more accurate and detailed information.

We applied FRP separately for the left and right hemispheres for each subject. Then, we calculated the occurrence of
connection, i.e., the existence of any edges between two nodes for each pair of nodes. The result is depicted in Figure 5.

Additionally, we sorted 10 regions by the total number of connections across all subjects. The results for the left hemisphere
are as follows, in descending order: DG, CA1, SUB, ERC, TAIL, CA3, BA35, CA2, PHC, and BA36. For the right
hemisphere, the order is ERC, SUB, DG, CA1, BA36, BA35, TAIL, CA2, PHC, CA3. Remarkably, we emphasize that
ERC, SUB, CA1, and DG are the top four regions with the highest number of connections in both hemispheres. This finding
aligns with Shah et al. (2018), which reported that CA1, DG, and SUB serve as functional hubs.

https://github.com/shahpreya/MTLnet
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Figure 5: For the functional MRI data from 24 subjects, we applied FRP separately to the left and right hemispheres to
discover connections within the brain regions.

F DETAILS FOR SOLVING OPTIMIZATION PROBLEMS

Random Initialization Approach Since the optimization problems we are solving (including (11) and (7)) are non-convex
problems, we used a random initialization approach to solve them similar to approaches employed by Ghassami et al.
(2020). For each problem, we ran L-BFGS-B at maximum max_iters = 50 times, with each component of initial points
independently sampled from the standard normal distribution. If the function value at the end of each run does not get
smaller than the best function value obtained so far minus tol = 10−6 for patience = 10 consecutive runs, we stopped
the optimization process.

A Regularization Term in the Rank Stage For solving the problem stated as (11), we utilized the SCAD penalty (Fan
and Li, 2001), precisely defined as

reg(Q) =
∑

1≤i̸=j≤p

SCAD(Qij ;λ, γ),

where SCAD is defined as

SCAD(x;λ, γ) =



λ|x| if |x| ≤ λ,

2γλ|x| − x2 − λ2
2(γ − 1)

if λ < |x| ≤ γλ,

(γ + 1)λ2

2
if |x| > γλ,

where λ > 0 and γ > 2 are hyperparameters. We set λ = µ, where µ is a penalty term for an edge regarding (9), and
γ = 3.7 as introduced in Fan and Li (2001) for all experiments. For implementation, we used optimize.minimize of
SciPy (Harris et al., 2020) based on NumPy (Virtanen et al., 2020).

G DETAILED EXPERIMENTAL SETTINGS

Calculating Sparsity of Precision Matrix by Number of Edges Assume we create an Erdős-Rényi graph with p nodes and
e edges. That is, we randomly select e edges among all possible p(p− 1) directed edges. Let W and Ω = diag(σ2

1 , . . . , σ
2
p)

denote the weighted adjacency matrix and the covariance matrix of the exogenous noise of the determined linear Gaussian
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SEM, respectively. Then, the precision matrix Θ of the SEM is given by

Θij = −σ−2
i Wji − σ−2

j Wij +
∑
k ̸=i,j

σ−2
k WikWjk

for all i ̸= j. Given that σ−2
i > 0 for all i and Wij are sampled from the uniform distribution, we obtain an event

[Θij = 0] is equivalent to [Wij = Wji = 0] ∩ [WikWjk = 0 for all k ̸= i, j] except a probability zero event. Note
that P(Wij = 0) = 1 − e

p(p−1) , the probability of (i, j) not being an edge in the graph. Since all events [Wij = 0] are
independent from each other, we have

P(Wij =Wji = 0) =

(
1− e

p(p− 1)

)2

, P(WikWjk = 0) = 1−
(

e

p(p− 1)

)2

for any distinct i, j, and k. Therefore, we can calculate the expected number of zero entries in Θ as follows:

E

∑
i̸=j

1(Θij = 0)

 =
∑
i ̸=j

P(Θij = 0)

=
∑
i ̸=j

P(Wij =Wji = 0)P(WikWjk = 0 for all k ̸= i, j)

=
∑
i ̸=j

P(Wij =Wji = 0)
∏
k ̸=i,j

P(WikWjk = 0)

= p(p− 1)

(
1− e

p(p− 1)

)2
(
1−

(
e

p(p− 1)

)2
)p−2

.

From this, if the expected number of zero entries in the precision matrix is given, then the number of edges e can be
computed.

Experimental Settings of Section 5.1 Regarding DGLEARN, we followed the default choice hyperparameters
by Ghassami et al. (2020) as introduced in examples uploaded at https://github.com/syanga/dglearn. We set
tabu_length = tabu_patience = 4 for the tabu_search stage, and max_path_len = 6 for the virtual_refine
stage. Timeouts of the tabu_search, hill_climbing, and reduce_support steps of DGLEARN are set to be 1800, 900,
900 seconds, respectively. For GOLEM, we set the ℓ1 regularizer to log(n)/2n to ensure it minimizes the score having a
similar scale to FRP and DGLEARN. For NODAGS-Flow, we follow the default hyperparameter choice provided in the
implementation by Sethuraman et al. (2023), while increasing epoch from 10 to 500.

https://github.com/syanga/dglearn
https://github.com/syanga/dglearn
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H DETAILED EXPERIMENTAL RESULTS

Table 1: Comparison between rates with which the λ-edge-faithfulness / λ-strong-faithfulness holds. The assumptions
are checked for 1000 ground truths generated following the procedure in (12), and λ = 0.01. Success rate of the strong-
faithfulness are upper bounded by checking d-separation for two nodes with given a set of zero, one, or two nodes. In every
case, λ-strong-faithfulness holds with a lower rate than λ-edge-faithfulness.

p e λ-edge-faithfulness λ-strong-faithfulness

10 9 0.972 ≤ 0.774
10 33 0.591 0.0
20 31 0.888 0.0
20 105 0.078 0.0

Table 2: BIC scores for FRP (ours), DGLEARN (Ghassami et al., 2020), GOLEM (Ng et al., 2020), NODAGS-Flow
(Sethuraman et al., 2023), and NOTEARS (Zheng et al., 2018). Boldface indicates the best score for each case. FRP
outperforms the baselines in all cases except for (p, e) = (10, 9).

FRP GOLEM DGLEARN NODAGS-Flow NOTEARS
p e mean(std) mean(std) mean(std) mean(std) mean(std)

10 9 0.035(0.005) 0.102(0.069) 0.032(0.002) 0.193(0.044) 0.036(0.006)
17 0.075(0.010) 0.111(0.013) 0.085(0.013) 0.221(0.053) 0.080(0.020)
26 0.106(0.009) 0.133(0.012) 0.112(0.013) 0.264(0.042) 0.124(0.017)
33 0.124(0.010) 0.136(0.006) 0.125(0.006) 0.238(0.039) 0.136(0.014)

15 19 0.076(0.013) 0.160(0.040) 0.082(0.010) 0.340(0.092) 0.083(0.021)
34 0.183(0.026) 0.277(0.027) 0.204(0.023) 0.461(0.132) 0.207(0.035)
52 0.275(0.017) 0.314(0.014) 0.287(0.030) 0.569(0.115) 0.326(0.095)
66 0.292(0.011) 0.333(0.036) 0.413(0.195) 0.568(0.089) 0.317(0.017)

20 31 0.143(0.015) 0.368(0.034) 0.178(0.044) 0.564(0.086) 0.227(0.203)
55 0.360(0.040) 0.529(0.045) 0.640(0.348) 0.864(0.208) 0.600(0.520)
83 0.480(0.024) 0.561(0.027) 0.790(0.450) 0.775(0.178) 0.564(0.116)
105 0.515(0.020) 0.559(0.014) 0.898(0.573) 0.790(0.176) 0.567(0.034)
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Table 3: Execution times for FRP (ours), DGLEARN (Ghassami et al., 2020), GOLEM (Ng et al., 2020), NODAGS-Flow
(Sethuraman et al., 2023), and NOTEARS (Zheng et al., 2018). Boldface indicates the best case for each case.

FRP GOLEM DGLEARN NODAGS-Flow NOTEARS
p e mean(std) mean(std) mean(std) mean(std) mean(std)

10 9 4.080(2.425) 235.718(21.784) 2.441(2.215) 300.620(11.658) 0.740(0.391)
17 25.452(22.152) 246.797(13.409) 48.423(44.516) 285.956(22.957) 3.820(2.814)
26 56.521(38.110) 229.183(18.110) 229.297(189.930) 279.808(7.663) 6.316(5.275)
33 46.259(27.379) 231.528(18.211) 172.567(199.396) 136.662(84.006) 1.801(1.880)

15 19 62.225(45.000) 89.369(3.748) 35.498(58.764) 110.855(13.949) 1.890(1.255)
34 241.533(130.406) 95.752(3.598) 946.452(548.439) 135.051(20.481) 3.791(2.674)
52 267.319(115.728) 95.142(5.135) 2026.537(935.796) 105.219(0.122) 7.353(4.930)
66 281.527(117.877) 109.579(36.123) 2248.411(808.805) 105.241(0.325) 6.691(4.222)

20 31 172.274(83.908) 240.816(18.407) 303.569(274.758) 131.622(0.077) 7.830(9.267)
55 775.805(400.416) 231.985(23.899) 2632.588(388.483) 131.606(0.080) 17.495(11.540)
83 575.942(399.972) 237.677(30.874) 2763.594(111.471) 177.985(97.752) 8.119(8.956)
105 580.293(374.534) 235.148(16.390) 2688.290(471.796) 410.854(93.712) 9.945(8.215)

Table 4: The BIC scores of FRP with and without the Filter stage.

With Filter stage Without Filter stage
p e mean(std) mean(std)

10 9 0.035(0.005) 0.054(0.01)
17 0.075(0.01) 0.094(0.015)
26 0.106(0.009) 0.121(0.007)
33 0.124(0.01) 0.133(0.009)

15 19 0.076(0.013) 0.121(0.02)
34 0.183(0.026) 0.245(0.024)
52 0.275(0.017) 0.292(0.013)
66 0.292(0.011) 0.309(0.01)

20 31 0.143(0.015) 0.221(0.05)
55 0.36(0.04) 0.473(0.032)
83 0.48(0.024) 0.523(0.013)
105 0.515(0.02) 0.54(0.016)
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Table 5: The BIC scores of FRP with and without the Rank stage.

With Rank stage Without Rank stage
p e mean(std) mean(std)

10 9 0.035(0.005) 0.035(0.005)
17 0.075(0.01) 0.075(0.014)
26 0.106(0.009) 0.107(0.011)
33 0.124(0.01) 0.124(0.007)

15 19 0.076(0.013) 0.079(0.012)
34 0.183(0.026) 0.197(0.038)
52 0.275(0.017) 0.294(0.023)
66 0.292(0.011) 0.306(0.011)

20 31 0.143(0.015) 0.136(0.008)
55 0.36(0.04) 0.4(0.058)
83 0.48(0.024) 0.523(0.033)
105 0.515(0.02) 0.554(0.035)

Table 6: The BIC scores of FRP with and without the single-edge removal phase.

With the single-edge removal Without the single-edge removal
p e mean(std) mean(std)

10 9 0.035(0.005) 0.036(0.007)
17 0.075(0.01) 0.076(0.011)
26 0.106(0.009) 0.108(0.009)
33 0.124(0.01) 0.125(0.011)

15 19 0.076(0.013) 0.088(0.019)
34 0.183(0.026) 0.201(0.023)
52 0.275(0.017) 0.28(0.016)
66 0.292(0.011) 0.296(0.012)

20 31 0.143(0.015) 0.175(0.025)
55 0.36(0.04) 0.39(0.034)
83 0.48(0.024) 0.503(0.02)
105 0.515(0.02) 0.525(0.023)
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