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Abstract
We address the conflicting requirements of a multi-agent assignment problem through constrained
reinforcement learning, emphasizing the inadequacy of standard regularization techniques for this
purpose. Instead, we recur to a state augmentation approach in which the oscillation of dual vari-
ables is exploited by agents to alternate between tasks. In addition, we coordinate the actions of the
multiple agents acting on their local states through these multipliers, which are gossiped through
a communication network, eliminating the need to access other agent states. By these means, we
propose a distributed multi-agent assignment protocol with theoretical feasibility guarantees that
we corroborate in a monitoring numerical experiment.
Keywords: Constrained reinforcement learning, multi-agent assignment, monitoring problem.

1. Introduction

Reinforcement Learning (RL) has experienced growing interest as a methodology for designing
optimal controllers in cases where system dynamics are intractable or unknown Kahn et al. (2017).
It has attained remarkable achievements in recent years, with agents capable of playing Go Silver
et al. (2016) and Poker Brown and Sandholm (2019), applications in robotics Kober et al. (2013),
and in training recommendation systems and natural language models Christiano et al. (2017).

Incorporating constraints into the RL problem offers extra capabilities, such as ensuring safety
in robot navigation Miryoosefi et al. (2019); Paternain et al. (2022), imposing physical conditions
Li et al. (2019); Gao et al. (2020); Porteiro et al. (2024), satisfy natural language rules Ouyang
et al. (2022), or in general, setting problem specifications. Constrained RL is commonly addressed
through regularization to balance conflicting requirements, weighting the rewards to create a multi-
objective RL problem Kahn et al. (2017). In this approach, selecting the appropriate regularization
weights via duality Paternain et al. (2019), Bayesian rules Hutter (2002), or simply heuristics is
crucial for achieving good performance Tessler et al. (2018).

However popular, there are problems for which regularization approaches are insufficient to
ensure feasibility Calvo-Fullana et al. (2023). In this paper, we focus on one such family of prob-
lems, assignment problems Bertsekas (1981); Mills-Tettey et al. (2007); Chopra et al. (2017), in a
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dynamic multi-agent setup in which several tasks are assigned to a team of agents. We will argue
that regularized formulations of these multi-agent assignment RL problems fail to produce policies
satisfying the conflicting constraints, lacking convergence. To overcome this challenge, we leverage
a recent state augmentation approach, where the Lagrangian weights are reinterpreted as states of
an augmented Markov Decision Process (MDP) Calvo-Fullana et al. (2023). Under this model, the
multipliers are not driven to convergence to a dual optimum. Instead, they are allowed to oscillate
to induce alternating policies that satisfy the conflicting tasks sequentially.

We further demonstrate that these multipliers can be used for coordinating multiple agents,
especially when many conflicting tasks cannot be achieved by a single agent or several ones act-
ing independently, a state-of-the-art challenge in multi-agent reinforcement learning Zhang et al.
(2021). In this context, we propose an assignment protocol to coordinate a team of agents running
pre-trained distributed policies, where each agent might have only local information about the state
of the system. For a fully distributed algorithm, we use the gossiping framework Aysal et al. (2009)
to share the multipliers across a communication network established by the agents, and we prove
consensus in finite time, taking advantage of the binary nature of the assignment variables.

Our state augmentation and multi-agent assignment protocol come with theoretical guarantees
of almost sure feasibility, which we corroborate with numerical experiments involving a team of
robots that must patrol an area of interest alternating between different zones.

2. Problem formulation

Consider N agents interacting with an environment that is modeled as an MDP with transition
probabilities P (St+1 | St, At). For each time index t = 0, 1, 2, . . ., variables St = (St1, . . . , StN )
and At = (At1, . . . , AtN ) collect the states Stn ∈ S and actions Atn ∈ A for all agents. The
team receives M rewards rm(At, St) associated with M different tasks that need to be satisfied
collectively. We consider a family of assignment problems in which rewards are given by

rm(St, At) = max
n=1,...,N

1[Stn ∈ Sm] =

{
1 if ∃n ∈ {1, . . . , N} : Stn ∈ Sm
0 otherwise

, (1)

defined in terms of M regions Sm ⊂ S of the state space. Then, we set the requirements as M
thresholds (c1, . . . , cM ) ∈ [0, 1]M on the average rewards and formulate a constrained Markov
decision problem with constraints Vm(π) = limT→∞

1
T ESt,At∼π

[∑T−1
t=0 rm(St, At)

]
≥ cm, m =

1, . . . ,M . The average is taken over the transition probabilities and the probability distribution
defining the control policy π(At | St) of the actions of all agents given their states. To avoid the
exponential growth of the policy with the number of agents, we impose a separate design π(At |
St) =

∏N
n=1 πn(Atn | Stn), in which each agent decides its action taking only into account its local

state and not the state of other agents. It is important to remark that even if the policies are local,
the agents are still coupled by their dynamics and joint rewards.

Example 1 As a practical example of the assignment problem described by (1), consider a team
of N robots that are required to monitor M > N areas, visiting each area Sm a fraction of time
cm. These conflicting requirements may not be achievable by a single agent, particularly when∑M

m=1 cm > 1, and not even by multiple agents acting independently following the same optimal
single-agent policy. Therefore, coordination is essential to solve this problem successfully.
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A task reward r0(St, At) can be added, together with its corresponding optimization objective
V0(π) = limT→∞

1
T ESt,At∼π

[∑T−1
t=0 r0(St, At)

]
. This would be useful, for instance, to set a

secondary goal, such as spending the least amount of energy on the multi-robot surveillance task
in Example 1. However, in the following, we will focus on the primary goal of satisfying the
specifications, setting V0(π) = r0 = 0. Specifically, the feasibility problem we aim to solve is

P ? = max
π1,...,πN

0, subject to lim
T→∞

1

T
ESt,At∼π

[
T−1∑
t=0

rm(St, At)

]
≥ cm, m = 1, . . . ,M, (2)

with rm(St, At) as in (1) and separate policy structure π(At | St) =
∏N
n=1 πn(Atn | Stn).

3. State augmented Markov decision process

We start this section by defining the Lagrangian associated with problem (2).

L(π, λ) = lim
T→∞

1

T
ESt,At∼π

[
T−1∑
t=0

M∑
m=1

λm (rm(St, At)− cm)

]
, (3)

where in the previous expression λ ∈ RM+ are the dual variables. The previous expression can be
simplified by defining the following reward parameterized by λ

rλ(St, At) :=
M∑
m=1

λm(rm(St, At)− cm). (4)

Under the reward structure of (1), standard regularized methodologies are unable to produce feasible
policies (Calvo-Fullana et al., 2023, Proposition 1). Hence, we aim to solve problem (2) by a two-
step process. First, in an offline training stage, we will learn the family of policies parameterized by
λ that solve the regularized version of (2), i.e.,

Π(λ) = argmax
π1,...,πN

lim
T→∞

1

T
ESt,At∼π

[
T−1∑
t=0

rλ(St, At)

]
. (5)

Then, in the deployment stage, each agent will sample from policies Π(λ), with λ following dual
gradient descent. To be formal, let us define the dual function as d(λ) := maxπ L(π(λ), λ), where
π(λ) ∈ Π(λ). For the optimal multipliers, we minimize d(λ) over λm ≥ 0. By Danskin’s Theorem
Danskin (1966), we substitute the constraints evaluated at the optimal policy for the gradient of d(λ)
to obtain the dual update λk+1 =

[
λk − η

(
V (π(λk)− c

)]
+
, where [·]+ denotes the projection on

the non-negative orthant and c = (c1, . . . , cM )T . Section 5 will incorporate a truncated stochastic
version of these dual dynamics into an augmented MDP with state (St, λ

k) in two timescales.

4. Offline training

In this section, we parameterize the policy of each agent by a vector θn ∈ Rpn to deal with the
continuous augmented state-space S × RM+ . Hence, each agent’s action is drawn from a distribu-
tion πθn(Atn | Stn, λ). As in Section 2, the joint probability distribution is

∏N
n=1 πθn(Atn | Stn, λ).
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Thus, the policy gradient gradient Theorem Sutton et al. (2000) takes a form that allows for dis-
tributed estimation (see Proposition 1). Before stating this result, we define some key concepts.

For fixed multipliers and parameters θ ∈ Rp, where p =
∑N

n=1 pn, we define the following
occupancy measure for the joint state and actions of all agents, ρθ,λ(s, a) = limt→∞ P(St = s,At =
a). Likewise, Qπθλ (s, a) =

∑∞
t=0 ESt,At∼πθ

[
rλ(St, At)− L(πθ, λ)

∣∣S0 = s,A0 = a
]
, defines the

state-action value function, where rλ(s, a) and L(θ, λ) are the functions defined in (4) and (3)
respectively. Notice that we omitted the dependency of πθ on the multipliers λ to simplify the
notation. We further define the state-action value function for agent n as

Qπθn,λ(s, a) = E(St,At) ∼ρθ,λ
[
Qπθλ (St, At) | Stn = s,Atn = a

]
. (6)

From the perspective of agent n, this quantity is the average of the expected return, assuming that
all other agents are following policy πθ. From this perspective, Qπθn,λ(s, a) is estimated per agent
by averaging the global rewards that result from their local states and actions, or modeled as a
parametric function of these local entries. We are now in conditions of providing the specific form
that the policy gradient Theorem takes under the conditions described in this section.

Proposition 1 Assume that the policy of each agent is parameterized by a vector θn ∈ Rn and that
An ∼ πθn(· | Sn, λ). Let L(πθ, λ) and Qπθn,λ(Sn, An) be the functions defined in (3) and (6) respec-

tively. Then, it follows that∇θnL(πθ, λ) = ESn,An∼ρθ,λ
[
∇θn log πθn(An | Sn, λ)Qπθn,λ(Sn, An)

]
.

Leveraging on the local gradients in Proposition 1, we optimize a parametric version of (5)

(πθ1 , . . . , πθN ) = argmax
πθ

ESt,At∼πθ

[
1

T0

T0−1∑
t=0

rλ(St, At)

]
. (7)

were the optimization variable was written as πθ = (πθ1 , . . . , πθN ) to reduce notation. Notice
that, in addition to the parametric expansion of the policies, we introduced a second theoretical
variation by removing the limit and adhering to a finite time horizon. This modification is key
for the practical implementation of the algorithm. For convergence analysis, we still link it to our
original formulation in (2) using the following assumption.

Assumption 1 Estimation consistency. The truncating error in (8) satisfies limT0→∞ ‖eT0‖ = 0.

E

 1

T0

(k+1)T0∑
t=kT0

(r(St, At)− c)

 = E

[
lim
T→∞

1

T

T−1∑
t=0

(r(St, At)− c)

]
+ eT0 . (8)

Remark Training for (7) requires that all agents interact to learn from rewards (4) that are jointly
activated via (1). This training phase is designed to run offline, with multiple agents and a common λ
drawn randomly at the start of an episode and fixed until the end of it. Once each policy πθn(Atn, |
Stn, λ) in (7) has been trained, its online execution depends only on the local state Stn of the
agent, and a common vector λ which varies as agents enter and exit the zones. Thus, the online
coordination between agents depends on sharing the multipliers λ only, as described next.
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Sm
agent n agent i

link εni
Figure 1: Gossip protocol between two agents n and i communicating through the link εni. Both agents

aim to know if the shaded zone Sm is occupied at time τ = 0, as defined by max{1[Sτi ∈
Sm],1[Sτn ∈ Sm]}. Since agent n is in Sm at time t = 0, it knows the actual reward. Hence
R̂1,τ,m,t = 1 for all t ≥ 0. Instead, agent i is outside Sm at t = 0 so thatRi,τ,m,0 = 0 is incorrect,
but is corrected at time t = 1 by gossiping from agent n, so that Ri,τ,m,t = 1 for all t ≥ 1.

5. Distributed online execution

Aiming for a practical online implementation of a feasible policy for (2), we introduced a parametric
training strategy in (7) and truncated the episode. There are still two practical issues to be addressed
before running the policies (7) in the execution phase. These are computing the expectation over
the transition dynamics in the dual update, and assuming that all agents can see the same λk.

We resort to a stochastic approximation of the gradient to address the first issue. As introduced
in Section 3, a dual gradient descent update over the Lagrange multipliers for problem (2) amounts
to λk+1

m =
[
λkm − η limT→∞

1
T ESt,At∼π

[∑T−1
t=0 (rm(St, At)− cm)

]]
+
. For a data-driven imple-

mentation, we run stochastic gradient descent Dvoretsky (1955), dropping the expectation and re-
placing it with reward samples. As we did for training, we also set a finite horizon T0,

λ̂k+1
m =

λ̂km − η

T0

(k+1)T0−1∑
t=kT0

(rm(St, At)− cm)


+

. (9)

The trade-off for choosing the roll-out horizon T0 entails keeping the induced error in (8) sufficiently
small while ensuring that the multipliers are updated sufficiently often.

We propose a gossiping protocol to solve the second issue. Notice that agents must know
the global rewards rm(St, At) to compute the update in (9). The following analysis aims for a
distributed implementation of (9) in which each agent updates a local copy of λ(k) using their
own views of the global rewards, which are agreed with the team through local exchanges with
neighboring agents over a communication network. To formalize these ideas, consider agents
n ∈ V = {1, . . . , N} as nodes of a connected graph G(V, E) with communication links E such
that en,i ∈ E if agents n and i are within direct communication range. Define the neighborhood
Nn = {i ∈ V : en,i ∈ E} of agents communicating with n, the distance d?n,i as the mini-
mum number of hops required to communicate two remote nodes n and i, and the graph diameter
d(G) := maxn,m∈V d

?
n,m as the maximum distance between nodes across the graph.

The global occupation of zone Sm at time τ takes a binary value rm(Sτ , Aτ ) ∈ {0, 1}. Agent
n computes a sequence of local estimates of rm(Sτ , Aτ ) for times t ≥ τ . As shown in Fig. 1, these
estimates R̂m,τ,n,t are initialized by agent n at time t = τ using its local occupancy index; i.e.,
R̂m,τ,n,τ = 1[Sτn ∈ Sm], and then agreed with the neighbor agents i ∈ Nn including n itself via
R̂m,τ,n,t = maxi∈Nn∪{n} R̂m,τ,n,t−1 at each subsequent time t > τ . Through this gossip algorithm,
binary data 1[Stn ∈ Sm] percolates across the network via local exchanges, reaching consensus
within a time interval no longer the network diameter, as shown next

Lemma 2 The gossip estimate R̂m,τ,n,t underestimates rm(Sτ , Aτ ); i.e., R̂m,τ,n,t ≤ rm(Sτ , Aτ )
with equality if the gossiping time t is large enough so that remote data arrive through local ex-
changes across the network; i.e., R̂m,τ,n,t = rm(Sτ , Aτ ), for all n ∈ V and t ≥ τ + d(G).

5
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Algorithm 1 Distributed multi-agent dual update and policy execution
for k = 0, 1, . . . do

Set local policy πn = πθ(λ
k
n) as in (7) pre-trained offline using local gradients.

for t = kT0 : (k + 1)T0 − 1 do
Take action, transition, collect local rewards 1{Stn ∈ Sm}
Network gossiping: Update R̂m,τ,n,t according to (10)

end
Compute the stochastic dual gradients

gnmk =
1

T0

kT0−1∑
τ=(k−1)T0

(
R̂m,τ,n,(k+1)T0 − cm

)
, gnm(k+1) =

η

T0

(k+1)T0−1∑
τ=kT0

(
R̂m,τ,n,(k+1)T0 − cm

)
Update the multipliers λkm,n =

[
λk−1m,n − ηgnmk

]
+
, λk+1

m,n =
[
λkm,n − ηgnm(k+1)

]
+

end

This lemma is to be used for convergence analysis, but also for algorithm construction, since it
confirms that the estimates R̂m,τ,n,t do not need to be updated beyond t ≥ τ +d, where d ≥ d(G) is
any overestimate of the network diameter. Thus, putting t = τ , t ∈ {τ +1, τ +d−1} and t > τ +d
together, we update the distributed reward estimates as

R̂m,τ,n,t =


R̂m,τ,n,t−1, τ = (k − 1)T0, . . . , t− d− 1

maxp∈Nn∪{n} R̂m,τ,p,t−1, τ = t− d, . . . , t− 1

1{Snt ∈ Sm}, τ = t

(10)

We can substitute them into the dual update (9) to obtain a distributed algorithm for the multipliers.
Algorithm 1 not only indicates how to update the local estimates λm,n via network gossiping of
the rewards but also gives each agent the procedure to run its fully distributed policy πθ(λkn) in the
execution phase. The reason to keep two copies of λm,n by Algorithm 1 is to wait until agents reach
consensus on the rewards via Lemma 2; see the proof of Proposition 3 for more details. In the proof
of Lemma 2 is shown that λ̂km,n,t reaches steady state and can be discarded once t ≥ tk+1 since,
according to (12), it is not needed for recalculating λ̂k+1

m,n any more.
Next, we show that running the gossiping and distributed policies ensures that the constraints in

(2) are satisfied almost surely. Building up to this main result, we first characterize the multipliers
mismatch, and then add two working assumptions.

Proposition 3 Let Tk+1 := T0(k+ 1) the time at the end of rollout k+ 1. Assume that T0 ≥ d(G).
Then, the error on the multipliers is bounded by λk+1

m − λk+1
m,n ≤

η
T0
d(G)

Assumption 2 No repelling forces The underlying Markov decision process is such that, given m,
there exists a feasible policy πn satisfying rm(St, At) = 1 for all t.

The previous assumption implies that an agent can be stationed at a particular zone Snt ∈ Sm.
This will be used in the proof of Lemma 6.

6
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Assumption 3 Representation capacity The policy parameterization is dense enough; i.e., ∃β > 0,
such that for each π(λ) ∈ Π(λ) there is a πθ(λ) satisfying

∣∣∣∑M
m=1 λ

T (Vm(π(λ))− Vm(πθ(λ)))
∣∣∣ ≤

β‖λ‖, where Vm(π(λ)) and Vm(πθ(λ)) are the values resulting from π(λ) and πθ(λ), respectively.

Theorem 4 Let Assumptions 1–3 hold. Consider specifications cmax = maxm=1,...,M cm < 1, and∑M
m=1 cm ≤ N − 1 so that δc = (1 − cmax)/

√
M > 0. If β + M

T0
d(G)η + εT0 + η/2 < δC , the

trajectories generated by Algorithm 1 are feasible with probability one, i.e., for all m = 1, . . . ,M

lim inf
T→∞

1

T

T−1∑
t=0

rm(St, At) = cm, a.s. (11)

The condition in Theorem 4 can be satisfied by designing a sufficiently powerful parameteriza-
tion or neural network, a sufficiently long time horizon, and then choosing a small step-size.

6. Convergence analysis

Define ĝk = 1
T0

∑kT0−1
τ=(k−1)T0 (r(Sτ , Aτ )− c) . This vector contains the average constraint violation

during execution between two updates of the Lagrange multipliers λk. In the following lemma, we
establish that ĝk is in expectation similar to the gradient of the dual function.

Lemma 5 With Fk being the filtration for the process ĝk, assumptions 1–3 ensure that for every
εT0 > 0, there exists a T0 such that (λk)T

(
∇λd(λk)− Eπθ

[
ĝk|Fk

])
≤ ‖λk‖

(
β + M

T0
d(G)η + εT0

)
.

Proof Write (λk)T
(
∇λd(λk)− Eπθ

[
ĝk|Fk

])
= (λk)T (V − VN + VN − VT0 + VT0 − Vθ) start-

ing from V = V (π1(λ
k), . . . , πN (λk))) = ∇λd(λk) with policies in (5), then adding and subtract-

ing VN = V (π1(λ
k
1), . . . , πN (λkN ))) such that the agents optimize using distributed local copies

of λk, and VT0 where additionally the objective is finite horizon. The value Vθ = Eπθ
[
ĝk|Fk

]
=

V (πθ1(λk1), . . . , πθN (λkN )) on the right involves the algorithmic policies such that the agents opti-
mize parametric policies over a finite horizon with distributed copies of λk. The proof follows from
the bounds in Assumption 3, Proposition 3, and Assumption 1. For the difference (λk)T (V − VN )
we need to accumulate the bounds in Proposition 3 per zone, and then use Lipschitz continuity with
respect to the multipliers, with unit constant. The continuity can be argued as in the proof of Lemma
6 using Assumption 2 and noticing that when the multipliers change their order the assignment is
altered, and the difference in the weighted value is equal to the difference of the multipliers.

Lemma 6 Assumption 2 with δC as in Theorem 4 results in
∑M

i=1 λm(Vm − cm) ≥ δc‖λ‖.

Proof Without loss of generality, let us sort the multipliers λ1 ≥ λ2 ≥ . . . ≥ λM . Then, one policy
that optimizes the Lagrangian would sit one agent at each zone m = 1 . . . , N . Therefore Vm = 1
for m ≤ N and Vm = 0 for m > N . Hence

∑M
m=1 λm(Vm − cm) = λ1(1− c1) +

∑N
m=2 λm(1−

cm) +
∑M

m=N+1 λm(0 − cm) ≥ (1 − cmax)λ1 +
∑M

m=2 λn(1 − cm) +
∑M

m=N+1 λn(0 − cm)

= (1− cmax)‖λ‖∞ +
(
N − 1−

∑M
m=2 cm

)
λn ≥ (1− cmax)‖λ‖∞ ≥ (1− cmax) ‖λ‖√

M
.

With this result, we establish conditions in the following lemma that the norm of the multipliers
is a supermartingale. This will be instrumental in proving that the multipliers are bounded, and from
there, that the constraints are satisfied.

7
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Lemma 7 If β + M
T0
d(G)η + εT0 + η/2 < δC and

∥∥λk∥∥ ≥ 1, then
∥∥λk∥∥2 is a supermartingale.

Proof Using the update of the multipliers given in (9) and using the non-expansiveness of the
projection, it follows that Λk+1 ≤ ‖λk‖2 − 2η(λk)T ĝk + η2‖ĝk‖2 ≤ Λk − 2η(λk)T ĝk + η2.

where we defined Λk = ‖λk‖2 and used
∥∥ĝk∥∥2 ≤ 1. Therefore, to ensure that the process

Λk is a super-martingale, we need to prove that E
[(
λk
)T
ĝk|Fk

]
=
(
λk
)T E

[
ĝk|Fk

]
> η/2,

where the expectation is taken with respect to the distributed policy (7) being executed. To this
end, consider

(
λk
)T E

[
ĝk|Fk

]
=
(
λk
)T (∇d(λk) + E

[
ĝk|Fk

]
−∇d(λk)

)
≥
(
λk
)T ∇d(λk) −(

β + M
T0
d(G)η + εT0

)∥∥λk∥∥ , where the inequality follows from the Cauchy-Shwartz inequality
and the bound in Lemma 5. Combining the previous inequality along with the result of Lemma
5 , and the hypothesis of this lemma, i.e., β + M

T0
d(G)η + εT0 + η/2 < δc, it follows for all λk(

λk
)T Eπ?

[
ĝk|Fk

]
≥ η/2

∥∥λk∥∥ ≥ η/2, where we use the hypothesis
∥∥λk∥∥ ≥ 1.

Proof [of Theorem 4] Due to space limitations we provide a sketch of the proof. Since Λk =
∥∥λk∥∥2

is a supermartingale, which is a generalization of a non-increased sequence, the multipliers must be
bounded. More formally, the sequence p(λk | λ0) is tight. That is, for any δ > 0, it exists a compact
set Kδ such that for every k ≥ 0, P(λk ∈ Kδ) > 1− δ. For simplicity in the sketch of this proof, we
will consider bounded multipliers instead of tight ones and show how this implies feasibility. For a
similar argument on how Λk being a supermartingale implies tightness and feasibility see Lemma
4 and Proposition 3 in Calvo-Fullana et al. (2023). Following the case of bounded multipliers,
recall the dual descent update in (9) λ̂k+1

m =
[
λ̂km −

η
T0

∑(k+1)T0
t=kT0

(rm(St, At)− cm)
]
+
≥ λ̂km −

η
T0

∑(k+1)T0
t=kT0

(rm(St, At)− cm) . Applying this inequality recursively, it follows that λ̂k+1
m ≥ λ̂0m−

η
T0

∑(k+1)T0
t=0 (rm(St, At)− cm) . Taking the limsup in both sides of the previous inequality, and

using that the multipliers are bounded it implies that lim supk→∞−
∑(k+1)T0

t=0 (rm(St, At)− cm)
= L <∞. Defining T = (k + 1)T0 the previous limit is equivalent to the desired (11).

7. Numerical experiments

We consider a simulated experiment with N = 2 agents monitoring the M = 4 circular zones in
Fig. 2(e). The position Stn of each agent evolves as S(t+1)n = Stn + TsAtn with Ts = 0.5 within
the area S = [0, 10] × [0, 10] measured in squared meters. At time t, a reward rm(St, At) = 1 is
obtained by the team if there is an agent inside the m-th region and rm(St, At) = 0 otherwise. By
specification, each region must be visited at least 30% of the time. As the requirements add up to
more than 100% of the time, a single agent cannot satisfy them by acting alone. The agent policies
are parameterized as linear combinations of Gaussian kernels and trained offline, running 150, 000
episodes of Actor-Critic updates using the local gradients in Proposition 1. Then, in the execution
phase, the agents gossip their rewards within a communication range of 2.5 meters, coordinating
via Algorithm 1 during 200,000 time steps, and updating the multipliers every T0 = 1,000 steps.

In this first experiment, we weaken the assumption of a connected graph, allowing for stochastic
links. The agents asymptotically satisfy the requirements for all regions (Fig. 2(c)), despite being
within communication range only 30% of the time (Fig. 2(d)). Coordination is achieved via the dual
variables, which differ for each agent, alternating as they incorporate the rewards collected directly

8
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(e) Policies and example trajectories

Figure 2: Simulation results obtained after executing for 200,000 iterations, a two-agent policy trained to
monitor the regions shown in (e), with requirements c = [0.3, 0.3, 0.3, 0.3]. Colors in (a)–(c)
correspond to the matching colored region in (e). A subset policy for λ = [5, 2.5, 0, 5] and 100
steps of the runtime trajectory corresponding to k = (128,00, 128,100) are shown in (e), where
the communication range of agents is shown by dashed lines.

or via gossiping. Fig. 2(e) shows the policies of the two agents as a function of the spatial variable
for a fixed λ = [5, 2.5, 0, 5]. Both red and orange regions produce the same weighted rewards (λ1 =
λ4 = 5), yet the agents are directed to different regions, acquiring both rewards simultaneously.
The trajectories of the agents are also shown between iterations k = (128,000, 128,100). Here, the
red agent moves from the right region to the center region, while the blue agent moves from the
left region to the right region. As this movement occurs, the agents enter the communication range,
exchanging their stored rewards and updating their local dual variables (Fig. 2(a)–2(b)). This update
causes the blue agent to avoid the middle region (occupied now by the red agent) and to continue to
the region on the right, thus acquiring a higher reward as a team.

Next, we include two additional simulations as steps towards our future work, which aims to
implement Algorithm 1 in a real-life environment with autonomous vehicles. In the first experiment,
shown in Fig. 3(a), we tested the policy trained for the experiment in Fig. 2(e) in a Gazebo world,
under simulated dynamics of two TurtleBot robots, including collision-avoidance. For that purpose,
we coded the distributed Algorithm 1 as a ROS2 node communicating with the TurtleBot navigator.
The second experiment in Fig. 3(b) shows the trajectories of two agents that use our multi-agent
Algorithm 1 in an environment describing an actual floorplan, with an L-shaped corridor connecting
three offices and three labs. In this case, the agents had to address more complex dynamics and
obstacles to reach the marked areas in this floorplan. But part of these dynamics is handled by a
low-level SLAM and navigation controller capable of guiding each robot to a desired destination,
avoiding collisions on the way. Thus, our policies only need to assign the M = 3 zones to the
N = 2 agents via actions in a finite space Atn ∈ {1, . . . ,M}. The next state observed by the policy
is the position reached by the agent after navigating Ts = 1s towards the goal. At this moment,
the assignment may be changed by the policy, directing the car to an alternate zone. Fig. 3(c)
shows how constraints c = [0.25, 0.25, 0.25, 0.25] and c = [0.5, 0.4, 0.3], which are unattainable by
a single agent, can still be satisfied by our multi-agent assignment policies in these more realistic
cases, reaching the specified time requirements for all the zones.

9
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(c) Constraint satisfaction

Figure 3: (a) ROS2 Implementation of the multi-agent assignment Algorithm 1 in a Gazebo TurtleBot en-
vironment; (b) floorplan patrol with low-level navigation control; (c) constraint satisfaction as a
function of the time step (in thousands) for the floorplan (top) and the TurtleBot (bottom).

8. Conclusion

We showcased the efficacy of constrained RL in handling conflicting requirements via a state-
augmented approach with oscillating dual variables. By introducing a multi-agent system that
coordinates through gossiped binary variables, we offer a solution for multi-agent assignment es-
tablishing almost sure feasibility guarantees in Theorem 4, corroborated in a monitoring numerical
experiment involving communication intermittence and realistic robot navigation dynamics.

Appendix

Proof [Proposition 1] The structure πθ(At | St) =
∏N
n=1 πθn(Atn | Stn) yields∇θn log πθ(St, At) =

∇θn log πθn (Atn | Stn) . Substituted in the policy gradient Sutton et al. (2000) yields∇θnL(πθ, λ) =
E(St,At) ∼ρθ,λ

[
∇θn log πθn(Atn | Stn)Qπθλ (St, At)

]
. By the law of total expectation on Stn,Atn,

∇θnL(πθ, λ) = E(Stn,Atn)

[
E(St,At) ∼ρθ,λ

[
∇θn log πθn(Atn | Stn)Qπθλ (St, At) | Stn, Atn

]]
= EStn,Atn

[
∇θn log πθn(Atn | Stn)E(St,At) ∼ρθ,λ

[
Qπθλ (S,A) | Stn, Atn

]]
and substitute (6).

Proof [Lemma 2] If no Snτ ∈ Sm at time τ then R̂m,τ,n,τ = 0 for all n ∈ V and thus R̂m,τ,n,τ =
rm,τ = 0 for all t ≥ τ and for all n ∈ V . Otherwise, if it exists n ∈ V such that Sn,τ ∈ Sm, then
R̂m,τ,n,τ = rm,τ = 1 for all t ≥ τ . Hence R̂m,τ,i,τ+1 = rm,τ = 1 for all i ∈ Nn, and by induction
R̂m,τ,i,τ+h = rm,τ = 1 for all h-hop neighbors of n, from which the consensus follows.

Proof [Proposition 3] Consider λ̂k+1
m,n,t =

[
λ̂km,n,t −

η
T0

∑(k+1)T0
τ=kT0

(
R̂m,τ,n,t − cm

)]
+

as in Algo-

rithm 1. Although this algorithm indicates updating the whole set of multipliers for all k at each
time step t, a simplification can be done using Lemma 2. Indeed, the result in Lemma 2 ensures that
the rewards R̂m,τ,n,t reach its steady state value rm,τ when t ≥ τ + d(G), so that λ̂km,n,t = λ̂km for
all t ≥ tk+1 := kT0 + d(G). Thus, the dual update can be simplified to

λ̂k+1
m,n,t =


[
λ̂km,n,t −

η
T0

∑(k+1)T0
τ=kT0

(
R̂m,τ,n,t − cm

)]
+
, for t = kT0, . . . , tk+1 − 1

λ̂k+1
m,n,tk+1

= λ̂k+1
m for t ≥ tk+1

(12)

With tk+1 − kT0 = d(G) binary Rm,τ,n,t in (12), the error in λ̂k+1
m,n,t is η d(G)T0

at most.
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