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Abstract

We consider a multi-task learning problem, where an agent is presented a number of N reinforce-
ment learning tasks. To solve this problem, we are interested in studying the gradient approach,
which iteratively updates an estimate of the optimal policy using the gradients of the value func-
tions. The classic policy gradient method, however, may be expensive to implement in the multi-
task settings as it requires access to the gradients of all the tasks at every iteration. To circumvent
this issue, in this paper we propose to study an incremental policy gradient method, where the agent
only uses the gradient of only one task at each iteration. Our main contribution is to provide theo-
retical results to characterize the performance of the proposed method. In particular, we show that
incremental policy gradient methods converge to the optimal value of the multi-task reinforcement
learning objectives at a sublinear rate O(1/v/k), where k is the number of iterations. To illustrate
its performance, we apply the proposed method to solve a simple multi-task variant of GridWorld
problems, where an agent seeks to find an policy to navigate effectively in different environments.
Keywords: Multi-Task Reinforcement Learning, Markov Decision Processes, Incremental Policy
Gradient Methods

1 Introduction

Reinforcement learning (RL), a data-driven control approach for optimal decision making, has
achieved remarkable accomplishments in tackling challenging problems in various applications,
such as playing games Mnih et al. (2015); Silver et al. (2017), robotics Gu et al. (2017), and au-
tonomous driving Kiran et al. (2021). While RL provides a powerful learning framework, it suffers
a fundamental challenge in its data efficiency. The existing RL methods are known to require a sig-
nificant amount of data and computational resources in their training. In addition, policies learned
in one task might not be applicable to solve other tasks; performing well in a new task requires to
restart the expensive training process. This challenge has limited the wide applicability of RL in
solving real-world problems.

The limitation of RL has motivated the study of multi-task RL (MTRL) framework, where an
agent aims to learn multiple tasks simultaneously. If the tasks are related in some ways, then learn-
ing them jointly should be more efficient than learning individually. Indeed, MTRL aims to improve
generalization and efficiency by exploiting the inherent relationships between multiple tasks Caru-
ana (1997); Khetarpal et al. (2020). Motivated by recent studies on policy gradient methods in
single-task RL settings, in this paper we propose to study an incremental policy gradient method
to solve MTRL problems. Unlike the classic policy gradient approach where the agent is required
to access the gradients of all the task functions at every iteration, the proposed method uses the
gradient of only one task per iteration in its update. Thus, the proposed incremental policy gradient
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method can be implemented efficiently when agent cannot access which task it is perform or agent
have difficulty to accessing all the tasks at every step is challenging. For example, consider a mod-
ern smart power grid, the system must balance electricity supply and demand in real-time, managing
a variety of tasks such as distributing power from renewable sources, responding to fluctuating con-
sumer demand, and maintaining grid stability. The specific tasks and challenges faced by the grid
management system change dynamically throughout the day due to factors like weather conditions,
unexpected outages, and varying usage patterns. The system cannot always access detailed infor-
mation about every task or situation it will encounter at each moment, and the complexity of the
grid makes it challenging to have a comprehensive overview of all tasks at all times.
Contribution: This paper proposes to study an incremental policy mirror descent (IPMD)
method for solving MTRL problems. Our main contribution is to provide theoretical results to char-
acterize the performance of the proposed method. In particular, we show that incremental policy
gradient methods converge to the optimal value of the multi-task reinforcement learning objectives
at a sublinear rate O(1/ \/E), where k is the number of iterations. To illustrate its performance, we
apply the proposed method to solve a simple multi-task variant of GridWorld problems, where an
agent seeks to find a policy to navigate effectively in different environments.
1.1 Related Works

The focus of this paper is to study an incremental variant of policy gradient methods for solving
MTRL problems. Theoretical results of policy gradient methods are well understood, most policy
gradient methods converge sublinearly Agarwal et al. (2021), Cen et al. (2022), Even-Dar et al.
(2009), Mei et al. (2020), and Wang et al. (2019). These results were improved in Bhandari and
Russo (2020), and Cen et al. (2022) where the authors use the contraction of the Bellman equation
show policy gradient methods converge linearly. While Bhandari and Russo (2020) requires an
exact line search in their algorithm, the result in Cen et al. (2022) is derived for entropy regularized
problems. In Lan (2023), the author provides a new analysis to achieve linear convergence rate
for general MDP problems. One can apply policy gradient methods to solve MTRL problems,
however, they require access to the gradients of all the tasks at each iteration. This can be expensive
to implement as the number of tasks can be very large. Our focus in this paper is to study an
incremental policy gradient approach, where each iteration requires the gradient of only one task to
update the underlying policy variable.

Another approach to solve MTRL problems is to use distributed policy gradient methods Zeng
et al. (2021), Lan et al. (2023). This approach often has a network of agents, each performs one
task. The agents are then collaborate either directly or indirectly through a centralized coordi-
nator to aggregate their local solutions. Prior study in distributed policy gradient methods have
investigated convergence rates under various scenarios. For instance, research by Lan et al. (2023)
demonstrated O(1/k) convergence rates for their specific algorithm FedNPG-ADMM. Similarly,
Zeng et al. (2021) explored the convergence behavior of their decentralized entropy regularized
policy gradient methods, revealing O(1/+/k) convergence rates for certain architectures and loss
functions. On the other hand, we study a different setting where there is an agent that aims to learn
a number of tasks. Therefore, the theoretical results in the distributed methods are not applicable to
our setting in this paper.

Incremental gradient methods have been well studied in the optimization literature, in both
convex and nonconvex settings Bertsekas et al. (2011); Reddi et al. (2016). These methods are
known to perform well in large-scale problems, e.g., when the number of tasks is large. In this
paper, we are interested in applying this approach to solve multi-task RL problems. It is known
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that RL objectives are nonconvex Agarwal et al. (2020). Thus, one can apply the existing results of
incremental methods for nonconvex problems to the RL setting. However, this approach will mostly
result in a convergence to stationary points. Although RL objectives are nonconvex, they satisfy the
so-called gradient domination, implying every stationary point is a global optimal. Indeed, recent
theoretical guarantees for the convergence of policy gradient methods to the global optimal solution
in the single-task RL setting are based on this property. Our focus in this paper is to exploit the
gradient domination condition to study the convergence of the incremental policy gradient methods
in the multi-task RL setting.

2 Multi-Task Reinforcement Learning

We consider a multi-task reinforcement learning problem, where an agent is presented [V tasks,
each is modeled by a discounted Markov decision process (MDP). In particular, the MDP M? is
a collection of 5-tuples, M’ = (S, A,P,R%, ) where S and A are the finite sets of states and
actions. The transition probability kernel PP specifies the distribution of the next state s’ given the
current state and action, i.e., s ~ P(- | s,a). In addition, R? : & x A — [0,1] is the reward
function for task ¢ and v € (0, 1) is a discount factor. Here, without loss of generality, we consider
the reward between (0, 1), but it can be extended to any bounded interval. A policy 7(-,s) is a
probability distribution over the action space A for each different state s € S. Each choice of policy
in task ¢ induces a long-term expected discounted reward
Vi(s)=E

™

(0.9}
Z'YtRZ(Staat) | so=s,at ~7( | 8t),8¢41 ~ P(| Staat)] )
t=0

and the state-action value function ()

Qf‘r(s: a) =E

[e.9]
Z’YtRi(St,at) | s0 = 8,00 = a, 5041 ~ P(- | 8¢,a¢), a1 ~ 7(- | St)] .
t=0

Thus, V() = Eqr(1s)[Q% (s, a)]. Since R* € (0,1) we have |Q% (s, a)] < 1/(1 —~) forall s, a.
In addition, it is known that Q' (s, a) satisfies the Bellman equation

Qh(s,a) =R'(s,a) +7 > P(s' | s,a)Vi(s).
s'eS
The goal of MTRL is to find a policy that simultaneously optimizes the aggregate of the value
functions of the tasks at every state, i.e., the agent aims to find 7* such that Y, V%, (s) is maximized
for every state s € S. It is known that for the finite MDP setting there exists such an optimal policy
7* Bellman and Dreyfus (1959). Finding 7* is essentially equivalent to solve

N
max f(m) = Zfi(w). (1)
i=1

where f'(m) = Eg.p«()[V,i(s)] and p* is the stationary distribution corresponding to the optimal
policy 7*. Note that the knowledge of p* is not required to the implementation of the proposed
algorithm studied in the next section.

We conclude this section by introducing a few notation that will facilitate our algorithmic de-

velopment in the next section. Given a policy 7, we denote by d2 (") the discounted state visitation

di(s) = (1= V" Prlse=5"|s0=s),
=0
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which represents the amount of time that the agent visits state s’ when it starts from s. Given two
policies 7, y, let D% be the Bregman’s distance defined as

Di(s) = w(u(- | 5)) —w(w(- [ 8)) = (Vaw(n(-[ 8),u(- | 8) = 7(- | 5)), Vs€S,
where w is a strongly convex function. In this paper, we will consider w as an entropy function

win(-]s)) = m(a|s)log(n(a]s)).

acA

Under this choice, DY can be simpliﬁed to

pla | s)
=) plals 10g(‘),

acA
which by using the Pinsker’s inequality we obtain
(- [ 5) =7(- 1913 < Ml [ ) = (- | )T < 2D(s), )

where the first inequality is due to the fact that || - |2 < || - ||1
3 Incremental Policy Mirror Descent

To solve problem (1), one can apply the policy gradient approach, for example, the policy mirror
descent method studied in Lan (2023). This method iteratively updates 7, an estimate of 7*,
starting from an arbitrary policy g as

T (- | 5) = argman, jgyca  {on( D2 @ (5 ). 9) = DA (5)}:

To implement this update, one needs to estimate the lstate—value function @Q° for every task i at any
iteration k, which is equivalent to solving N policy evaluation problems. This can be expensive in
practice as the number of tasks can be large.

In this paper, we are interested in studying an incremental variant of the policy mirror descent
methods, where the agent can only have access to the state-value function of one task at a time. Our
algorithm is formally stated in Algorithm 1. At any iteration k, the agent chooses a task 7 to compute
the state-value function Qﬁrk using the current policy 7. The agent then implements a policy mirror
descent step to update 7y, as in (3). The main challenge of this setting is due to the appearance of the
task is random, this result in a noise between the true gradient and the average gradient computed.

In Algorithm 1, we allow the agent to choose the task index ¢ at any iteration arbitrarily. For
example, the agent can apply the cyclic rule (i.e., choosing the task in increasing order) or random
rule (i.e., randomly picking the task index). However, we do enforce that each task is chosen
infinitely often to guarantee that the agent will perform all the tasks. One way to have this condition
is to consider the following assumption.

Assumption 1 Given a positive integer 1 > N, eachi € {1,..., N} in Step 1 of Algorithm I will
be drawn at least one time within every interval [k — 1, k) for every k > T.

One can view that 7 represents an upper bound on the delay in computing the value of the state-
action function @° at time k. We denote Tk' as the last time that task ¢ is drawn at time k. If ¢ is not
selected at time & then QZ ; 1s the most recent QQ value of task ¢ using policy o . If 7 = N, then
Algorithm 1 reduces to the classic incremental gradient method with cyclic rules

Finally, we present below some preliminary results that will be useful in deriving our main
result studied in the next section. First, we consider the so-called three-point lemma, which is used
to characterize the updates of mirror descent. Its proof can be found in Lan (2023).

4
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Algorithm 1 Incremental Policy Mirror Descent (IPMD)
Input: o, step sizes {oy } x>0

fork=0,1,.... K —1do

[11Draw i € {1,--- ,N}

[2] Compute Q! = ;k using the policy 7,

[3] Update 7 for all s € S as

T (-] 8) = argmax,, e (0r(Q(s. ), ul)) — DI, (). )

end

Lemma 1 For any policy p, the sequence {y.} generated by Algorithm 1 satisfies for all s € S
ak (Qpy (- | 8) = M1 (| 8)) < Dh (s) — DE, ,, (s) — Dy (s)-

Next, we present the popular performance difference lemma in reinforcement learning Kakade and
Langford (2002).

Lemma 2 For any two policies s and 7', we have

Va(s) = — Z d (s)Q5 (8) 7' ( | 8) = (- | ).

SGS

Finally, the following two lemmas are to characterize the properties of the sequence {7} generated
by Algorithm 1. Their analysis is presented in Appendix 6.1 and 6.2, respectively.

Lemma 3 Forany s € S, the sequence {71'7_]2 } generated by Algorithm 1 satisfies forall s € S

i 4 i - 1 7TTi WTi +1
Vi 1s) = Vi () < (@i sy (1 8) = my (1)) < — [Dah | (s) + D" (s)],

Q. k

Lemma 4 The sequence {m} generated by Algorithm I satisfies for all s € S

1741 (| 8) = m(- [ 8)lly < llmhsa(- | 8) = mel- [ 9)l) <

4 Main Results

In this section, we will present the main result of this paper, where we will study the convergence
rate of Algorithm 1. In particular, we show that under Assumption 1, Algorithm 1 can return an
optimal policy of problem (1) at a sublinear rate. The following theorem is to present this result.

Theorem 5 Suppose that Assumption 1 holds. Let {my} >0 be generated by Algorithm 1 and step
sizes be chosen as o, = ——2—. Then we have

VE+T+1

o _ 2(f(7*) = f(m0)] + NEq ey [DE, ()]
R C Y e

Nyy/T+ N +9)7(1+In(k + 7))
(1—y)*(VEk+7+2-V7+3)

“)
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Remark 6 It can be seen from Eq. (4) that the IPMD finds the optimal value of problem (1) at a rate
O(1/V'k). This rate is much weaker than the result of centralized policy mirror descent studied in
Lan (2023); Xiao (2022), where the rate is exponential using constant step sizes. However, we note
that the existing analysis requires access to the full gradient of the objective in (1), i.e., ), Qﬁk,
every iteration. On the other hand, the implementation of IPMD requires the Q function of only one
task per iteration. Indeed, IPMD can be viewed as a stochastic variant of the existing policy mirror
descent. In this setting, one needs to use decaying step sizes to guarantee an exact convergence
to the optimal solution. On the other hand, to achieve an exponential convergence rate of the
stochastic counterpart, the work in Lan (2023) assumes that the variance of the gradient samples
decay exponentially fast. This assumption obviously does not hold in the context of IPMD. One can
potentially apply the variance reduction techniques in Defazio et al. (2014); Johnson and Zhang
(2013) to achieve this condition. This approach, however, is nontrivial since the analysis in Lan
(2023) is not applicable due to the heterogeneity of the value functions of the tasks. Finally, our
theoretical result also shows that the rate scales linearly with the number of tasks, quadratically on
the delay interval T, and cubically on the problem horizon 1/(1 — 7). The convergence of policy
mirror descent, however, only scales linearly with 1/(1 — ~) Lan (2023); Xiao (2022). Addressing
this theoretical gap will be an interesting topic, which we leave for our future studies.

Proof Recall that 7} is the last time that task i is selected in the time interval [k — 7, k]. Using
Lemma 1 with 4 = 7* we obtain forall s € S

D (8) = DT, (5) = Dt ,(5) = g (@5, 7 | 9) = w1 9)
= (@5, )7 (1 8) = 7 (- 18)) + gy (QE (5,0, w1 8) = o (1))
> g (Ql (5,7 8) = g (1)) + g (Vi(s) = Vi (9)) )

where the last inequality used Lemma 3. We next consider the first term on the right-hand side of
the preceding relation. By Lemma 2 and choose 7’ = 7*, m = 7, we have

(=) (Vi) = V() = B, (0 [{@L (8) 7" (1) = (-15)]

which by using the fact that E, p*(.)ESINds o =E gives

s~p*(+)

(L= Vo) Vi) = V()] = Bapey [(QU 5.7 C L 8) = m (1 9)] . ©)

Take expectation w.r.t. s ~ p*(-) on both sides of Eq. (5) and using Eq. (6) we obtain

T i

Bevpe() | DE, ()= DE,, (5= DI, )
> (1= )ty Bympr() | Vi () = Vi ()] 4 0By Vi (5) = Vi1 (9)]
= 0B () [ «(s) — Vf (s )} =y Be pe [ «(s) = Vl( )]
= B () [Vie(8) = Vi, (9)] = 90 Bapr) [Vi(5) = Vi (5)]
+ 0y B e [v,:kﬂ( )= Vi (s )] ~ Y B [V,fk(s) - V:é(s)} .
Reorganizing both sides of the preceding equation gives
OB |Vin(s) = Vi, (5)]
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<90 By [V (9) = VA (6)] + Euvpiy | DT, ()= D, (5= DI, )

'r2 —+1
90 B () Vi (5) = Vi ()] + By Vi1 (9) = Vi, (9)] )
We next analyze each term on the right-hand side of the preceding equation. First, by Lemma 2

7 % 1 )
Vi () = Vi )‘ = ’ﬁEs’wtiw(-)K i (85 ) s mp (1) =mg (1S) >H

1 .
T Bty 0| Qg ()| (1) = (1)

1
=1 —7)2E8 ~dy, Ol (1) =7 (1)

IN

!

1
= T, 2 e (1) =m (1) |
t=ri+1
1 k
S oo, 0 2 e (1) =me (1],
t:’r;é—t—l

where the first inequality is due to the Holder’s inequality while we use the fact that |Q§r (s, a)‘ <
ﬁ for all (s, a) in the second inequality. Using Lemma 4 and oy, < Qi < ay_ for all T]i €
(k — 7, k], we have from the relation above

k

Vs (8) = Vi ()] £ om0 Yo mea (1) =me (1),
t=k— T+1
1 Tozk ,
< ——3Ean < ; 8
= (1 _7) dﬂ'k«kl _ ;4_1 Oét 7)3 ( )

where the last inequality is due to the property of discounted state dlstrlbutlon. Using the same
argument as above we can have

‘ < % )
Substituting Egs. (8) and (9) into Eq. (7) and use the fact that i i < ap_, we obtain
i i (1 + 7) (ak 7)2
B () [Vin(5) = Vi (8)] S 90 By [Vie(s) = Vi, (9)] + —— 10k
(I=7)
B |DE, ()= DF, ()= D0
which yields
i i i (1+y)7(op—r)?
ak+1ESNp*(-) [Vw ( ) Vwk+1( )} < 'YakEswp*(-) [Vw* (5) - Vwk (S)] + (1 _ 7)3
+Eqopr() [D:;Z ()~ D', _(s)~ Dt | <s>] 0yt — )y [Vi(5) = Vi (5)]
Tk Tk k

(1+9)7(ag_r)?
(1 Ik
2y

B |DE, ()= D, 6= D7, 0)] + 12 (o — )

<y pr (o [Vie (s) = Vi, (9)] +

3
Bl
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Taking the average of the preceding relation over i € [1, N] we obtain

Oé 2
Qf+1 [f(ﬂ'*) - f(7Tk+1)] < voy, [f( 7Tk _|_ Z 1 + 7 k ’T)

N N 2y
+ 3B [%m DY, () =Dk, ]+21_7 o).

Divide both 51deT)y VQhp1 [f(m*) — (wk+1)] gives
(1 =Yagp [F(7") = f(7T 1)] <y (arlf (@) = f(m)] = awa[f (77) = f(mrga)])
N +y)r ak ) . 2N~y
# M0ED +ZEM 2,907, )] + P s — )
Summing up both 51des of the precedlng inequality over Tk k—714+1,... k gives

(1 = y)Tage [f (%) = f(mrg1)] < 47 (orlf(nm *) f(Trk;)} —Oék+1[f(7r*) — f(mrq1)])

+ 1_3(0%_7——0%)‘1‘ ( (1’7_ i T +Z Z ESNp() |:D771E7_1( ) D;rr (S) ’
=1 T b—fe—741 k

which when summlng up both sides over k yields
Z apr [f(7%) = f(me1)] < a7 (o[ f(77) — f(m0)] — apa [f(7*) — f(mr41)])
leTN'y klNl—l—y (g )?
Z 1— at T + )
t=0 v =0
k

21N
<m0l () = f(mo)] + 3 T (01— a0) + NTE, (s [ DT (5)]
t=0
N N+ ) )’
+2 T-—7° (10)
t=0
Next, using o = for £ > 0 and let o, = o for k < 0 we have
k_\/1k+ T+1
Qg1 > + dt > 4Vk +7+2—4V1 +3.
rar SRR /1 m
k)—]. 7—1 k’*l
)2 < 2 ———dt<4+4In(k :
(7)< Y (ap)” + ()* + A L +4In(k +7)
t=0 t=0
k—1 T—1 k—7—1 k—1

Z(Oét T_at)_za0+ Z Oét—ZOétEQ\E-

Using these relatlons into Eq. (f] 0) we have
41 —~)r (\/k +T7+2—VT+3) tmlaxk [f(7) — f(mp)]

T 2 n T
< yraolf (") = Fro) + 7By [ D55 (0)] + Y ¢ i)

which by dividing both side by 4(1 —v)7(vVk + 7 +2— /T + 3) and using v < 1 we immediately
obtain (4). |
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5 Simulation

In this section, we will illustrate the convergence of IPMD in Algorithm 1 in solving a multi-task
GridWorld problem. The goal of this simulation is to investigate the performance of IPMD.

GridWorld Environments. We create six GridWorld environments, each has size 10 x 10. Each
environment has the same initial starting point (the blue square in the top left corner) and the goal
(the yellow square in the bottom right corner). The goal of the agent is to find a policy that can help
it navigate from the starting point to the target while avoiding all the obstacles (the red square). The
obstacles in each environment are located in different positions in the grid. The first three figures in
Figure 1 presents some example of GridWorld environments, while the last figure in Figure 1 shows
the obstacles at all the environments put together. There is an optimal path that can solve the task
simultaneously (e.g., light green path in the last figure), while there are multiple different solutions
for each task (e.g., light green paths in the first three figures). To solve this multi-task problem,
the agent seeks to find the light green path in the last figure. For our MTRL setting, we assign
the reward being +1 at the target while the agent gets a —1 if it runs into the obstacles. For our

a b ¢ d e f g h i | a b ¢ d e f g h i |j a b ¢ d e f g h i | a b ¢ d e f g h i j

I []

”u]HHIH

GridWorld 0 GridWorld 1 GridWorld 2 Total GridWorld
Figure 1: GridWorlds
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simulation, we implement Algorithm 1 with a cyclic rule and decreasing step-size as in Theorem 5,
where the environments are chosen in increasing order. In addition, since the transition probability
matrices of these environments are known, we can easily compute the state-action value function
@ at each iteration, e.g., by solving the Bellman equation. The results of our simulation are shown
in Figure 2, where we show the error (the difference between these rewards and the optimal value)

on the left and the log plot of it compare with M\fﬂm)

. We can see that the proposed algorithm
returns an optimal policy that can solve the multi-task GridWorld problem, which agrees with our
theoretical results in Theorem 5. In this simulation, the rate of convergence seems to be faster than
1/ vk, which implies that the current analysis might not be tight. We note that the convergence rate
of PMD for solving problem (1) is linear. Thus, one might need a new approach to study the best

theoretical results on the performance of IPMD.
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Figure 2: Performance of IPMD Methods

6 Appendix
6.1 Proof of Lemma 3
First, using Lemma 1 with p = 7, we have
. 1 i +1
(@ (1) 1) = w1 < = [0 0+ D7 0)] <0

Next, using Lemma 2 with 7/ = Torig1 andm =7 i and the relation above gives

V) = Vi) = 1 3 (1@ (5) g 1) = 1)
sES
1
sl_waM@( Do 18) = T a1 )

IN

(@ (5,), 7 (] 8) =i 41 (| 9))

1 Wri +1
-—PMHQ+Dk ()],

IN

g

where in the second inequality we use the fact that d’; +1( s)>1—x
6.2 Proof of Lemma 4

Without loss of generality, let task 7 be chosen at time ¢ € [k — 7, k]. Thus, using Lemma 1 with
= m; we have

2
ar (Qk,(s,),m(- | ) = w1 (- | 8)) < —=DJt (s) = DIt (s) < — ||lmppa (- | ) — m(- | 8)7
where the last inequality is due to (2). Since ’Qﬁrt(s, a)’ < ﬁ for all (s,a) € S x A, multiply
both side by —1 and use the Holder’s inequality the preceding relation gives
5 ,
Imesn (1 8) = me( | )l < o llmeqa (- [5) = mel- [ 8)ly [| @, (5, )] o

Qi
— 7 (- | s) = e | s)lly -

-1
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