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Abstract
Safety filters have been proposed as a modular technique in response to safety concerns associated
with learning-based algorithms. Generally, these filters heavily rely on the system’s model, which
is contradictory if they are intended to enhance data-driven or end-to-end learning solutions. This
paper extends our previous work, a purely Data-Driven Safety Filter (DDSF) based on Willems’
lemma, to extremely short-sighted and non-conservative settings. Specifically, we propose online
and offline sample-based methods to expand the safe set of DDSF and reduce its conservatism.
Since this method is defined in an input-output framework, it can systematically handle unknown
time-delay LTI systems using only one batch of data. The proposed method is applied to a time-
delay system under various settings to evaluate its performance. The simulation results validate
the effectiveness of the set expansion algorithm in generating a notably large input-output safe set,
resulting in safety filters that are not conservative, even with an extremely short prediction horizon.
Keywords: Data-Driven Safety Filter, Learning-based Control, Behavioural System Theory, Time-
Delay Systems, Reinforcement Learning.

1. Introduction

Nowadays, learning-based and data-driven approaches outperform traditional controllers in terms
of superior performance without the assistance of expert knowledge, especially in addressing hard-
to-model problems (Brunke et al., 2022). Despite these advancements, integrating such methods
poses challenges in ensuring real-world safety during the learning process (Hewing et al., 2020).
Generally, the safety criteria are defined by input-output constraints, such as restricted torque and a
pre-specified workspace in a robot manipulator (Wabersich and Zeilinger, 2021) or the load factor
in flight envelope for an aircraft (Hsu et al., 2023). To respect these constraints during the learning
process, safety filters have been proposed within the control community as a modular technique to
ensure safety irrespective of the learning method, whether provided by a human or a reinforcement
learning agent (Wabersich and Zeilinger, 2018). The main idea behind these safety filters is the
mapping of potentially unsafe learning inputs to the nearest safe learning inputs while satisfying
specific criteria, such as ensuring the system’s safety, i.e., forcing the system’s trajectory to live in
some invariant sets, over a finite or infinite time horizon.

Currently, there are three main streams to designing safety filters (Wabersich et al., 2023), which
all rely on accurate and explicit models. Using Control Barrier Functions (CBFs) allows for creating
safety filters capable of gently adjusting a specified input control signal as the system approaches
the boundary of a control invariant set (Ames et al., 2019). Despite CBFs’ proven effectiveness in
applications requiring swift responses (Wang et al., 2018), a notable challenge arises in formulating
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barrier functions or ensuring the feasibility of QP-based CBFs in the presence of input constraints
(Molnar and Ames, 2023). Hamilton-Jacobi (HJ) reachability analysis is a tool for ensuring system
safety by defining reachable sets in the state space. These sets represent areas where specific goals
can be achieved, or safety conditions are satisfied (Bansal et al., 2017). However, a major drawback
is its computational complexity, especially for higher-dimensional systems (Herbert et al., 2021).
Model Predictive Safety Filters (MPSFs) use an explicit predictive model to evaluate the safety of
incoming learning inputs and then map them to the closest safe actions by constructing the backup
trajectories (Tearle et al., 2021). The primary challenges associated with this approach are the
substantial computational requirements for online processing and the inherent complexity of robust
design. For a comprehensive examination of their advantages and disadvantages and data-driven
approaches for the modeling component, see the recent survey (Wabersich et al., 2023).

It is critical to underscore that these methods depend on explicit models represented in state
space, constituting a drawback for describing the uncertainty of the (multi-step) prediction (Köhler
et al., 2022), as determining non-conservative bounds for state-space predictions is challenging.
Furthermore, if these safety methods are intended to guarantee the safety of end-to-end learning
algorithms, they should bypass the system identification process; otherwise, it is counterproductive
to adopt an online learning algorithm to learn the system for which an accurate explicit model is
available. In the indirect approach (system identification & control), uncertainty from the data must
be transmitted through the system identification process, potentially causing mismatches with pre-
ferred uncertainty quantification for control design. In contrast, direct approaches (directly from
data to control) seamlessly integrate uncertainty into control design, eliminating the need for com-
plex uncertainty propagation and offering a transparent and effective strategy in data-driven control
(Dörfler, 2023).

This paper proposes an entirely data-driven approach to determine safe terminal sets in the
input-output framework. Combined with the recently introduced data-driven safety filter (DDSF)
(Bajelani and van Heusden, 2023), this work achieves a non-conservative, short-sighted safety filter
law directly from raw data. It should be noted that if an explicit model is available, terminal safe sets
can be calculated. However, results for computation of terminal sets in the data-driven framework
are limited to (trivial) solutions like an equilibrium point (Berberich et al., 2020a,c) or knowledge of
the system’s lag (Berberich et al., 2021). Motivated by (Rosolia and Borrelli, 2017a,b), we extend
the set expansion defined in the state-space framework to the input-output framework. By solving an
offline optimization problem, the proposed method results in an input-output safe set, requiring only
a single batch of data. For readability, noise-free measurements are used to develop the methods
described in this paper. While the extension to data-driven predictive control that considers noise
can be applied directly to the DDSF, the impact of noise or unmodeled dynamics on terminal sets has
received little attention. The proposed data-driven set expansion offers a direct connection between
noise and computed sets, extending the data-driven framework’s transparency to terminal sets.

The remaining sections of the paper are structured as follows: Section 2 covers preliminary
material for the data-driven predictive safety filter based on Willems’ Lemma. Moving to Section
3, the formulation of DDSF with a sampled safe set is presented, demonstrating how the final set
can be expanded using the input-output trajectories of the system or backup trajectories calculated
by the DDSF. Section 4 provides simulation results for various settings, focusing on a second-order
system with an unknown time delay by online and offline set expansion algorithms. Lastly, Section
5 comprises the discussion, concluding remarks, and potential avenues for future exploration.
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2. Background

Consider a discrete-time LTI system as follows:

x(t+ 1) = Ax(t) +Bu(t− τd), y(t) = Cx(t) +Du(t− τd), (1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m are unknown matrices. The input, state, and
output vectors are respectively denoted by u(t) ∈ Rm, x(t) ∈ Rn, y(t) ∈ Rp at time t ∈ Z≥0. Note
that in addition to the matrices, the order of the system and the time delay τd ∈ Z≥0 are unknown. It
is also assumed that the pair of (A,B) and (A,C) are controllable and observable. The time-delay
system (1) can be represented as an augmented delay-free system (2) with additional internal states
d(t) ∈ R(kd×m)×1 as follows,

xa(t+ 1) = Aaxa(t) +Bau(t), y(t) = Caxa(t) +Du(t), (2a)

xa(t) :=

[
x(t)
d(t)

]
, d(t) :=


u(t− τd)

u(t− τd + 1)
...

u(t− 1)

 , (2b)

Aa :=

 An×n Bn×m 0n(kd−1)×m

0m(kd−1)×(n+m) Im(kd−1)×m(kd−1)

0m×(n+m+kd)

 , (2c)

Ba :=

[
0m×m(kd−1)

Im×m

]
, Ca :=

[
Cp×n

0m×kd

]
. (2d)

In addition, the input-output admissible set is represented by a set of polytopes in the form of

u(t) ∈ U := {u ∈ Rm | Auu < bu, Au ∈ Rnu×m, bu ∈ Rnu}, (3a)

y(t) ∈ Y := {y ∈ Rp | Ayy < by, Ay ∈ Rnp×p, by ∈ Rnp}, (3b)

for all t ∈ Z≥0. The primary objective of a safety filter is to modify any (potentially) unsafe learning
inputs, ul ∈ Rm, as minimally as possible while ensuring that the system (1) remains within the
defined bounds (U ,Y) defined in (3) for infinite time. Throughout this paper, it is assumed that a
single noise-free input-output measured trajectory of the system (1) in the form of (4) is available,
which is sufficiently exciting in the sense of Definition 3.

ud[0,N0−1] = [u0
⊤, . . . , uN0−1

⊤]⊤, yd[0,N0−1] = [y0
⊤, . . . , yN0−1

⊤]⊤. (4)

To build an implicit model from the pre-recorded trajectory (4), we reshape these two sequences into
the form of Hankel matrices shown by (5). These matrices provide an implicit model to represent
the input-output behavior of the system (1).

HL(u) =


u0 u1 . . . uN0−L

u1 u2 · · · uN0−L+1
...

...
. . .

...
uL−1 uL . . . uN0−1

 , HL(y) =


y0 y1 . . . yN0−L

y1 y2 · · · yN0−L+1
...

...
. . .

...
yL−1 yL . . . yN0−1

 , (5)

where HL(u) ∈ R(mL)×(N0−L+1) and HL(y) ∈ R(pL)×(N0−L+1). The raw data stored in the
stacked Hankel matrices in (8) is used to directly parameterize any input-output trajectory of the
system (1) using the fundamental Lemma proposed by Jan Willems in (Willems et al., 2005).
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Definition 1 (System’s Lag) l = l(A,C) + kd denotes the lag of the system (1), in which l(A, C)
is the smallest integer that can make the observability matrix full rank.

l(A,C) :=
(
C,CA, . . . , CAl−1

)
. (6)

Definition 2 (Extended State (Berberich et al., 2021)) For some integers Tini ≥ l , the extended
state ξt at time t is defined as follows

ξt :=

[
u[t−Tini,t−1]

y[t−Tini,t−1]

]
∈ R(m+p)Tini×1. (7)

where u[t−Tini,t−1] and y[t−Tini,t−1] denote the last Tini input and output measurements, respectively.

Utilizing sufficiently long past input-output measurements, known as the extended state, enables
the determination of the internal state of the underlying and unknown system (Coulson et al., 2019).
The minimally required length of the extended state is dependent on the system’s lag (Definition 1).

Definition 3 (Persistently Excitation (Berberich et al., 2020a)) Let the Hankel matrix’s rank be
rank(HL(u)) = mL, then u ∈ Rm represents a persistently exciting signal of order L.

Behavioral system theory views dynamical systems differently than classical system theory. It fo-
cuses on systems as input-output trajectories defined in the signal subspaces (Markovsky et al.,
2006). It has been demonstrated that if a finite-time trajectory of an LTI system is available and
the input is persistently exciting, all the trajectories can be parameterized linearly by combining the
columns of the Hankel matrix. This concept is known as the fundamental lemma introduced by Jan
Willems (Willems et al., 2005). It also enables us to predict input-output trajectories of the true
system (1) directly from raw data without requiring an explicit model. Using the implicit model
derived from the fundamental lemma, we avoid the inevitable under- or over-modeling associated
with explicit methods. For a recent overview of implicit vs explicit perspectives, see (Dörfler, 2023;
Markovsky and Dörfler, 2021).

Theorem 4 (Fundamental Lemma (Berberich et al., 2020b)) Let ud be persistently exciting of
order L + n, and {udk, ydk}

k=N0−1

k=0 a trajectory of system G. Then, {ūk, ȳk}k=N0−1
k=0 is a trajectory

of system G if and only if there exists α ∈ RN0−L+1 such that[
HL

(
ud

)
HL

(
yd
) ]

α =

[
ū
ȳ

]
. (8)

Remark 1 The application of model-based safety filters poses challenges for systems with unknown
time delays. The input-output framework in behavioral system theory inherently addresses this,
emphasizing essential input-output measurements and an overestimation of the system’s lag (6).
Given the equivalent augmented system representation that treats the delayed inputs as internal
states, denoted by d(t) in (2), the input-output behavior of the implicit model provided in Theorem
(4) and systems (1-2) are equivalent.

Definition 5 (Invariant Set) A set Ξ ⊆ RmTini+pTini is said to be a control invariant set for the
system (1) subjected to constraints in (3) from the input-output perspective, if

ξ(t) ∈ Ξ ⇒ ∃u(t) ∈ U such that ξ(t+ 1) ∈ Ξ, ∀t ∈ Z≥t.
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Definition 6 (Input-output Equilibrium Point) The extended state ξs is an input-output equilib-
rium point of system (1) if it is defined by the sequence {uk, yk}k=Tini−1

k=0 with a constant value
(uk, yk) = (us, ys).

Note that the equilibrium point in Definition 6 represents a special case of an invariant set
as defined in Definition 5. In essence, if the system’s input and output can be maintained at the
equilibrium point for more than Tini steps, all underlying states of the system (1) are fixed at their
equilibrium values. The next section uses backup trajectories and sampled extended states to con-
struct the final safe set. The backup trajectories are generated by the optimization problem (12) that
steers the system to a final safe set, and sampled extended states are input-output measurements.

3. Data-Driven Safety Filter with Sampled Terminal Sets

This section introduces an extended version of DDSF based on behavioral system theory, as pro-
posed in (Bajelani and van Heusden, 2023). More specifically, the prior method assumed that the
terminal safe set should align with the system’s equilibrium point, resulting in an excessively conser-
vative system, particularly when dealing with a short prediction horizon. Consequently, the safety
filter prevents learning by over-correcting the learning input. To tackle this challenge, this paper
proposes two sample-based approaches motivated by (Rosolia and Borrelli, 2017b; Wabersich and
Zeilinger, 2018). The first approach is designed for online implementation, which only needs new
experiment data. In contrast, the second one allows the offline calculation of data-driven safe sets
using a single dataset. The sampled safe sets are represented in (9a) for the online approach at time
t and (9b) for the offline approach at iteration K, respectively.

Ξ̄t
f = Conv(

t−1⋃
t=0

ξt), (9a)

Ξ̄K
f = Conv(

K−1⋃
l=0

N−1⋃
j=0

ξ̄lj). (9b)

where Conv(·) is the convex hull, ξt is the extended state containing past input-output measurements
at time t, ξ̄lj is the extended state provided by the lth element of backup trajectory at iteration j, K is
the number of iteration, and N is the prediction horizon. Using the definition of the convex hull, the
terminal sets (9a-9b) can be written in the form of (10a-10b) for the online and offline approaches.

Ξ̄t
f =

{ t−1∑
t=0

αtξt : αt ≥ 0,

t−1∑
t=0

αt = 1}, (10a)

Ξ̄K
f =

{K−1∑
l=0

N−1∑
j=0

αl
j ξ̄

l
j : α

l
j ≥ 0,

N−1∑
j=0

αl
j = 1}. (10b)

For linear systems, if the input-output constraints (U ,Y) are polytopes, then the safe set is
convex. Therefore, the safe set can be reconstructed by sampling any safe trajectories and their
convex hull. It should be noted that a safe trajectory can be sampled by actual measurements or
backup trajectories, leading to algorithms 1 and 2, respectively.
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Algorithm 1 Set Expansion (Online)
Input: HL(u

d), HL(y
d), Np, Tini, t∗, and Ξt=0

Output: Ξf

initialization while true do
Solve problem (12) for ul(t)
Apply the safe input to the system (1) and
update the initial condition
Expand the safe set Ξt using (9a)
if Ξt−1 ≈ Ξt& t ≥ t∗ then

break the while loop
end
t ⇒ t+ 1

end

a. t∗ is the minimum number of time steps.

Algorithm 2 Set Expansion (Offline)
Input: HL(u

d), HL(y
d), Np, Tini, l∗, and Ξl=0.

Output: Ξf

initialization while true do
Solve problem (12) for ul(l)

Choose an element of backup trajectory as
the initial condition
Expand the safe set Ξl using (9b)
if Ξl−1 ≈ Ξl & l ≥ l∗ then

break the while loop
end
l ⇒ l + 1

end

b. l∗ is the minimum number of iterations.

If more measurements or backup trajectories are collected, the final set Ξf can be extended
(9a-9b). Hence, the size of the sampled safe set does not decrease with the addition of more data,
indicating that if the first safe set is not empty, then the subsequent ones are also not empty, as
described as follows,

Ξ̄t−1
f ⊆ Ξ̄t

f , (11a)

Ξ̄K−1
f ⊆ Ξ̄K

f . (11b)

A visualization of the evolution of these sets for the online approach is shown in Figure (1). By
comparing Figures (1A) and (1B), it can be seen that when the final safe set is expanded, conser-
vatism is reduced and performance is improved. This allows the learning algorithm to explore the
space more, and the learning inputs are less altered by the safety filter. A significant advantage of
the online approach (1) is the possibility of collecting a sample safe set after each time step with-
out collecting a complete iteration as proposed in (Rosolia and Borrelli, 2017a). Furthermore, the
offline approach enables us to expand the safe set by using only one batch of data without running
any experiments. The formulation of DDSF with the sampled safe set, defined by (10a-10b), is as
follows:

min
α(t),ū(t),ȳ(t)

∥ū0(t)− ul(t)∥2R (12a)

s.t.
[
ū(t)
ȳ(t)

]
=

[
HL(u

d)
HL(y

d)

]
α(t), (12b)[

ū[−Tini,−1](t)

ȳ[−Tini,−1](t)

]
=

[
u[t−Tini,t−1]

y[t−Tini,t−1]

]
, (12c)

ξ̄N−1 ∈ Ξf , (12d)

ūk(t) ∈ U , ȳk(t) ∈ Y, k ∈ {0, . . . , N − 1}. (12e)
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Realized trajetory Equilibrium point

Backup trajetory

Backup trajetory

Realized trajetory

Sampled terminal sets

Figure 1: A visualization of the final set is shown. The solid black line shows the realized system
trajectory. The dashed lines are the system’s backup trajectories at time t. The blue
polytopes show the convex hulls provided by extended states’ realized trajectory. (A)
The final set is the system’s equilibrium point as proposed in (Bajelani and van Heusden,
2023). (B) The terminal set is expanded by the algorithm (1) at times t− 2, t− 1, and t.

By minimizing the cost function (12a), the first input u0(t) becomes the nearest safe input to
the potentially unsafe input ul while adhering to constraints (12b-12e). The implicit model for
prediction, driven by measured raw data (4), adheres to (12b) based on Theorem 4. Considering
past input-output measurements, the optimization problem’s initial condition is fixed using (12c).
Ξf in (12d) is defined as the terminal set for recursive feasibility and building backup trajectories,
representing the sampled safe set calculated by the algorithm (1) at time t as Ξt−1

f or the algorithm
(2) at iteration K as ΞK

f . For t = 1 or l = 1, Ξ0
f is assumed to be a known equilibrium point for

the system (1). Additionally, we consider that input-output constraints are defined by (12e). The
following assumptions proposed in (Bajelani and van Heusden, 2023) are also adopted.

Assumption 1 (Prediction Horizon Length) The prediction horizon N is greater than Tini ≥ l.

Assumption 2 (Persistent Excitation) The stacked Hankel matrix defined in Definition 8 is PE of
order L = N + 2Tini in the sense of Definition 3.

Assumption 3 (Terminal Safe Set) The equilibrium point of the system (1) defined in Definition 6
is known, belongs to admissible sets (U ,Y), and used as the initial safe set of algorithms (1-2).

Theorem 7 (Recursive Feasibility of DDSF with sampled safe set - online algorithm) Let assump-
tions (1-3) hold, Tini ≥ l, Ξt0

f be a non-empty set. Then, the DDSF optimization problem (12) is
feasible for all t > t0, if it is feasible at t = t0.

Proof. At t = t0 the solution of optimization problem (12) gives an input-output trajectory from
the initial condition ξt=t0 to the terminal set Ξt=t0−1

f , as it is assumed the problem (12) is feasible at
t = t0. At t = t0+1, a new backup trajectory is calculated and the terminal set is expanded to Ξt=t0

f

by measuring ξt=t0 . Based on (11), the terminal safe set is expanded implying Ξt=t0−1 ⊆ Ξt=t0 .
Because the feasible set of the system (1) is a convex set, it follows that the convex hull of all
the realized extended states (or backup trajectories) is a subset of this set. Suppose a system’s
trajectory enters this set. In that case, it will remain there permanently under the policy of (12), thus
demonstrating that all sampled safe sets are invariant and a subset of the feasible set. Therefore, by
relying on induction, we can conclude that the problem (12) remains feasible for all t > t0.
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Remark 2 An under-approximation of the safe set may be necessary to expedite the optimization
problem (12) for high-order systems. Specifically, when the system’s lag is overestimated, the solu-
tion yields extremely high-dimensional polytopes, as the number of constraints depends on estimat-
ing the system’s lag.

4. Simulation Example

To demonstrate the effectiveness of the proposed method, a time-delay second-order system is con-
sidered, as presented in (13). This system allows us to visualize the sampled terminal sets.

x(t+ 1) =

[
1 −0.1
0 1

]
x(t) +

[
0
0.1

]
u(t− τd), y(t) =

[
1 0

]
x(t). (13)

where the input-output constraints are assumed as follows,

u(t) ∈ U := {u ∈ R | −1 ≤ u ≤ +1}, (14a)

y(t) ∈ Y := {y ∈ R | −1 ≤ y ≤ +1}. (14b)

To show the effect of the sampled safe set by the online and offline set expansion algorithms (1-2)
and the overestimation of the system’s lag, two case studies are investigated. The impact of the
sampled terminal set on the performance of a DDSF is demonstrated in section (4.1) for three safe
sets, equilibrium point, and safe sets provided by online and offline algorithms when the system is
subjected to delayed input. In section (4.2), it is assumed that there is no delayed input, but the
effect of overestimating the system’s lag is illustrated. Note that DDSFs are designed to keep input-
output trajectories safe regardless of the control input; hence, we utilized unsafe control inputs to
destabilize the system in this section. The oscillatory behavior of the output in the safe set, shown
in light green, results from the sinusoidal learning inputs and the correction provided by the DDSF.

4.1. First study: Sampled safe sets vs Equilibrium point safe set

For this study, a short prediction horizon Np = 6, dead-time τd = 1, and the corresponding known
system’s lag Tini = 3 are selected. The learning input is also assumed to be a sinusoidal signal
bounded in [−1,+1]. The equilibrium point (us, ys) = (0, 0) is used as the initial terminal safe
set, and algorithms (1-2) are implemented using the CasADi toolbox (Andersson et al., 2019). The
learning and safe inputs, along with the system’s response for terminal sets, are illustrated in Figure
(2). It is evident that employing the sampled safe set as the terminal condition of (12) reduces the
conservatism of DDSF. Furthermore, it can be seen that at time t = 50 [s], the online approach
can reach the boundary of the defined safe set. However, the convergence of the algorithms must
be determined by the convergence of the safe set. The final safe sets for the online (1) and offline
(2) algorithms are illustrated in Figure (3) at different times and iterations. It must be noted that
the final learned safe set provided by algorithms (1) and (2) are the same. In other words, both the
online (1) and offline (2) algorithms yield the same safety filters after expanding the safe set.

4.2. Second study: Overestimation of system’s lag

In this part, it is assumed that τd = 0, the algorithm (2) is employed for Tini ∈ {2, 3} and the
learning input is a PRBS signal. The input-output behavior is depicted in Figure (4). It is clear that
by overestimating the system’s lag, the safety and performance of DDSF have not been affected, as
the input-output behavior is the same.
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Figure 2: First case study: Input-output trajectories of system (13) under the policy of (12) for three
different safe sets: the system’s equilibrium point, subplots (A) and (D), the sampled safe
set computed by the online algorithm (1), subplots (B) and (E), and the sampled safe set
computed by the offline algorithm (2), subplots (C) and (F).

5. Conclusion

This paper introduced online and offline set expansion algorithms based on sampled data to allevi-
ate the potential conservatism associated with the Data-Driven Safety Filter (DDSF) if implemented
using short prediction horizons. Specifically, we demonstrated that input-output data can be used
to compute safe sets through extended state and backup trajectories. With these contributions, all
stages of the design of a data-driven safety filter, from the raw data to the safety filter and safe sets,
are purely data-driven, with no explicit modeling requirement. Importantly, the proposed input-
output framework can handle unknown time delays by simply overestimating the system’s lag. In
contrast, time delays are rarely considered in model-based safety filters in the state-space frame-
work, for which the exact delay would need to be known.

We showed that safe sets can be computed offline using an implicit model derived from lim-
ited measured data. If the exact model is known, computing these sets is straightforward using
backward-reachable sets. Otherwise, characterizing the impact of parametric or unmodeled uncer-
tainty on the size and shape of the safe set is challenging. Due to the multi-step prediction property
of the data-driven method proposed here, the effect of measurement noise on the computed safe
set is direct. Furthermore, with the proposed method, no unmodeled dynamics exist as long as a
sufficiently exciting dataset is available and sufficiently long past input-output measurements are
considered. A potential avenue for future research involves exploring the impact of noise-polluted
measurements and disturbances on the estimation of safe sets and the prediction of backup trajecto-
ries. Furthermore, applying this methodology to controllers could be investigated, wherein backup
trajectories and expanded terminal sets could be employed to design the terminal component of a
data-driven predictive controller.
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Figure 3: First case study: The sampled terminal safe set at four different times t = 0[s], t = 20[s],
t = 50[s], t = 200[s] computed by the online algorithm (1), and the sampled terminal
safe set (1) at four different iterations k = 0, k = 200, k = 500, k = 1000 computed by
the offline algorithm (2).
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Figure 4: Second case study: Input-output trajectories of system (13) under the policy of (12) for
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