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Abstract

Recent advances in real-world applications of reinforcement learning (RL) have relied on the
ability to accurately simulate systems at scale. However, domains such as fluid dynamical
systems exhibit complex dynamic phenomena that are hard to simulate at high integration
rates, limiting the direct application of modern deep RL algorithms to often expensive
or safety critical hardware. In this work, we introduce "Box o’ Flows", a novel benchtop
experimental control system for systematically evaluating RL algorithms in dynamic real-
world scenarios. We describe the key components of the Box o’ Flows, and through a series
of experiments demonstrate how state-of-the-art model-free RL algorithms can synthesize a
variety of complex behaviors via simple reward specifications. Furthermore, we explore the
role of offline RL in data-efficient hypothesis testing by reusing past experiences. We believe
that the insights gained from this preliminary study and the availability of systems like the
Box o’ Flows support the way forward for developing systematic RL algorithms that can be
generally applied to complex, dynamical systems. Supplementary material and videos of
experiments are available at https://sites.google.com/view/box-o-flows/home.
Keywords: Fluid dynamics, reinforcement learning, dynamical systems

1. Introduction

Reinforcement learning promises to deliver a principled, general-purpose framework for
generating control policies for complex dynamical systems directly from experiential data,
without the need for domain expertise (Sutton and Barto, 2018). Indeed, modern deep RL
approaches that leverage expressive neural networks for function approximation have led to
breakthroughs in a variety of domains, such as game-playing (Mnih et al., 2013; Schrittwieser
et al., 2020; Mnih et al., 2015), protein folding (Jumper et al., 2021), control of tokamak
plasmas in nuclear fusion reactors (Degrave et al., 2022), and real-world robotics (Tan et al.,
2018; Handa et al., 2022).

However, a key ingredient in the success of these applications has been the ability to
accurately simulate these systems at scale, and constructing such simulation environments
themselves requires significant human effort and knowledge, thus forgoing the original promise
of removing the need for domain expertise. For instance, leading approaches for learning-
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based locomotion and dexterous manipulation (Tan et al., 2018; Kumar et al., 2021; Fu et al.,
2021; Handa et al., 2022; Pinto et al., 2017) rely on a sim-to-real paradigm to learn robust
policies in simulation that can be directly transferred to the real world. Even when policies
are learned directly on real hardware, practitioners often rely on simulation to gain intuition
about the problem domain, and make critical design decisions such as the choice of algorithm,
reward functions and other hyperparameters (Lee et al., 2022; Schwab et al., 2019).

In addition to human expertise involved in simulation design, the high sample complexity
of current RL algorithms necessitates fast simulations to achieve reasonable wall clock
times for training. While this is possible for domains such as video games and rigid-body
systems (Todorov et al., 2012; Liang et al., 2018), for several real-world problems satisfying
this need becomes increasingly expensive or outright impossible. Examples include systems
involving non-steady fluid dynamics and/or continuum mechanics (e.g. flying, swimming,
soft matter based mechatronic systems), and multi-scale problems that occur in biological
systems or digital twins of large industrial systems. How can we scale RL to such systems?

This work focuses on one such domain - the control of coupled mechanical-fluid dynamic
systems. Here, the fact that one can not assume steady state dynamics hugely increases the
complexity of simulations. For example, consider an Unmanned Aerial Vehicle operating in off-
nominal regimes such as high angle of attack or ground/obstacle effects. Here, the turbulent
air flows that are generated can be difficult to model, and create instabilities that nominal
controllers are incapable of handling. While there is a growing literature on learning control
policies in the presence of non-steady fluid flows that utilize simulation (Verma et al., 2018),
and the dynamics are known in principle, simulating them requires supercomputers which
is beyond the resources of most practitioners. The study of such systems raises interesting
questions that have several implications for real-world deployment of reinforcement learning.

1. How do we design experiments to characterize the capabilities of a system that is hard
to simulate at scale?

2. How do we ensure sample efficient learning given limited data collection rates?

3. How can we efficiently re-use prior experience to test different hypotheses, and aid the
learning of new behaviors?

To investigate these questions, we have developed a novel fluid-dynamic control system
dubbed "Box o’ Flows". This system consists of 9 upward facing nozzles arranged in parallel
with a proportional pneumatic valve per nozzle regulating the airflow. The valves can be
controlled programmatically to create complex pressure fields between two parallel panels
forming a box. The airflow can be used to control the state of rigid objects, such as colored
balls, that are placed inside. The setup is also equipped with an RGB camera capturing the
box and objects inside it (Fig. 1 provides a detailed overview). The system is intentionally
designed to be impossible to simulate accurately at the high integration rates required by deep
RL algorithms, and exhibits complex non-steady fluid dynamics which makes (unknowingly)
injecting prior human knowledge, or hand-designing control policies hard in practice. In
Fig. 2 we demonstrate fluid patterns generated by the air flowing through the nozzles.

This work serves as a preliminary investigation of how model-free RL can be used to
learn a variety of dynamic control tasks on the Box o’ Flows directly in the real world, as well
as characterize hardware capabilities. We limit the algorithms tested to the state-of-the-art
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Figure 1: An overview of the different components of bench-top Box o’ Flows system.

Figure 2: Smoke visualizes the complex flow field that emerges from a single valve with
constant flow. This illustrates the complex relationship between actuator and the flow field
and ultimately its effects on the balls. This relationship is further complicated when several
actuators are acting simultaneously.

Maximum A-posteriori Policy Optimization (MPO) (Abdolmaleki et al., 2018b), with fixed
hyperparameters across different experiments. Desired behaviors are described via minimally
specified rewards functions, which gives the RL agent the freedom to find interesting control
strategies. Furthermore, we test how offline RL can be used as a means for hypotheses testing
by training new policies on logged data from past experiments, and intermittently evaluating
them on the real system. Our framework can generate diverse dynamic behaviors to control
the state of multiple rigid objects (table tennis balls) such as hovering, rearrangement,
stacking and goal-reaching (detailed in Sec. 4). In summary, our main contributions are:

e We present a novel benchtop fluid-dynamic control system geared towards real-world RL
research.

e We demonstrate the application of sample-efficient, model-free RL to learning dynamic
behaviors and analyzing hardware capabilities.

e We explore how offline RL with past data can be used to test various hypotheses when
simulation is not available.

2. Box o’ Flows - System Overview

In this section we describe the Box o’ Flows system as shown in Fig. 1. The system
comprises of a 70cmX70cm square aluminum frame on which a black opaque back panel
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Figure 3: Reinforcement learning applied to the task of maximizing the height of orange ball
in presence of distractors (purple and green). The non-steady fluid dynamics of interacting
objects and complex actuator coupling makes it hard to hand-design controllers. (a) Reward
curve (b) Heatmap visualization of states visited by learned policy (averaged over 100
episodes) (c) Filmstrip of an episode (More details in Sec. 4)

and a transparent front panel are mounted, creating a shallow box of roughly 60mm depth.
Mounted at the bottom edge of this box is a blade consisting of 9 proportional flow control
valves (SMC PVQ 30), each attached to a nozzle facing upwards. An LED strip is mounted
on the remaining three sides to evenly illuminate the interior of the box. Objects, such as
the colored table tennis balls used in this work, can be placed within the space inside the
box, so that their state can be controlled via the airflow.

All valves share a common air supply that is hooked up to an air pump and fed via the
proportional control valves at 6 bar. By connecting all the nozzles to a single pump, the
supply pressure and consequently the flow across the nozzles drops when multiple valves
are opened simultaneously. This cross coupling has been added intentionally, to increase
the complexity of the system behaviour. Further, the system can only measure the overall
supply pressure and not the pressure or flow at each valve.

Communication with the valves and sensors is realized through EtherCAT, a realtime
ethernet protocol providing synchronization between the individual nozzles. The control
system runs on an intel-i7 based Beckhoff industrial PC running Linux and the EtherLab
EtherCAT master (Ingenieurgemeinschaft IgH GmbH, 2024). A machine vision camera
(BASLER Ace acA1920-40gc) is attached via GigE Ethernet and captures RGB images of
the interior of the box. While the underlying Ethercat bus runs at higher rates, for the
experiments described here a control rate of 20 Hz has been used ! .

1. Further details of system design can be found at https://sites.google.com/view/box-o-flows/home.
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2.1. What Makes Box o’ Flows a Hard Problem?

The Box o’ Flows brings to light several key challenges in controlling real-world systems with
complex dynamics. As a motivating example, consider a simple setting with three colored
balls placed inside the box, and one must design a control policy to maximize the height of
one of the balls, with the others being distractors, i.e their motion is not constrained. (For
reference, Fig. 3(c) shows behavior learned by our framework). While intuitively it may seem
straightforward to hand-design a controller (eg. maximally open all valves), the nature of
the Box o’ Flows makes it hard in practice.

First, the cross coupling between actuators due to shared air supply means that maximally
opening all valves will not work for this task since the pressure per valve will drop. This
relation is also hard to model and changes unpredictably over time due to practical issues
such as oil accumulation. Second, in the Box o’ Flows there is a less direct relationship
from the actuator space to the state space than a standard robotic system. The non-steady
dynamics of the emerging flow given an actuation input is highly complex and stochastic,
especially as the objects interact with each other, and the controller must account for this.
Moreover, current methods for accurately simulating non-steady flows require large amounts
of compute which precludes techniques like sim-to-real RL that rely on cheap simulated data.

Third, the system is highly under-observed as we can not directly measure the flow field
inside the box, but only the supply pressure. One can only attempt to recover this information
from a history of images of object motion from the camera stream. Finally, real-world data
collection is a limiting factor. The current setup can collect approximately 1M environment
steps per day, thus, experiments must be designed carefully for efficient data use.

From the above, it is clear that hand-designing controllers is non-trivial even in simple
settings, and model-based techniques that rely on accurate system identification or simulation
can be prohibitively expensive. It is therefore more promising to consider efficient data-driven
approaches that can overcome these constraints.

3. Methods

We focus on sample-efficient, model-free RL algorithms that can facilitate learning control
policies from limited real-world experience, both via online interactions and offline datasets.
To this end, we leverage a high performance off policy actor-critic algorithm, Maximum
Aposteriori Policy Optimization (MPO) (Abdolmaleki et al., 2018a,b). At iteration k, MPO

updates the parameters ¢ and 0 of the critic ng and policy 775(|5) respectively by optimizing
. k-1 _ !
min (Tt +9Q%  (St41,at41 ~ ) — Q% (st Cbt)) (1)

A+ = argminE,, [K L(g(als)||mo((als)))] (2)

where ¢(als) x exp(Q];(s, a)u/B)) is a non-parametric estimate of the optimal policy given
a temperature 3, and KL (q(+|s)||7w(-|s)) is the KL divergence, and p is the distribution of
states stored in a replay buffer. The efficient off-policy updates enable MPO to demonstrate
sample-efficient learning in high dimensional continuous control tasks. We refer the reader
to Abdolmaleki et al. (2018a) for a detailed derivation of the update rules.
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Offline RL: Since Box o’ Flows is distinct from existing robotic setups, it can be a priori
unknown what reward functions can lead to desired behaviors with online RL. This problem
is aggravated by the lack of simulation and constrained data collection rates. Thus, it is
vital to be able to to re-use prior experience to test hypotheses about new rewards. To
this end, we focus on the offline RL paradigm that enables learning effective policies from
logged datasets without further exploration (Levine et al., 2020). To deal with limited data
coverage, modern offline RL algorithms (Kumar et al., 2020; Cheng et al., 2022) rely on a
concept of pessimism under uncertainty by optimizing performance lower bounds, such that
the agent is penalized for choosing actions outside the data support.

The actor update of MPO can be easily adapted to the offline setting. Given a dataset
of transitions D = {(s;, a;r;, si+1)}f\;1 collected by a behavior policy up, we can modify the
distribution of states in Eq. 2 from u to pup (state distribution in D) and non-parametric
optimal policy to g(a|s) o exp(Q];(s, a)up/pB). The actor update thus encourages reward
maximization while staying close to up. This is a special case of Critic Regularized Re-
gression (CRR) (Wang et al., 2020), a state-of-the-art offline RL algorithm, and can be
implemented it in a common framework with MPO. In our setting, we re-label data from
prior online RL experiments with new rewards (in line with (Davchev et al., 2021; Yarats
et al., 2022; Lambert et al., 2022; Tirumala et al., 2023)), and train a CRR agent offline that
is tested intermittently on the real system to validate policy performance. The minimal use
of hardware enables us to test multiple policies instead of just one that continuously trains
online. We now present our main empirical results.

4. Experiments

We use a suite of dynamic control tasks to test the efficacy of our RL framework and study
the physical capabilities of the Box o’ Flows system.

Setup: To delineate the interplay between hardware capabilities and algorithm performance,
we keep our RL agent (Sec. 3) fixed across all tasks. We use a distributed learning framework
akin to Hoffman et al. (2020), and select hyperparameters using a candidate task where
optimal behavior is qualitatively known (see below). The actor and critic are represented by
feedforward neural networks, and object state by a history of pixel xy coordinates measured
from the vision system via a blob detector. The 9-dim action space represents degree of
valve opening in the range [0, 1]. Object locations are reset using random air bursts at the
beginning of every episode (1000 steps long at 20Hz). We describe desired behaviors via
simple rewards based on desired object configurations, which gives the RL agent the freedom
to find interesting control strategies. Next, we describe the tasks in detail.?

4.1. Learning Dynamic Behaviors with Online RL

Hovering with Distractors: We first consider the task of maximizing the height of a
target ball (orange) in the presence of distractors (purple and green), and use it to select
relevant hyperparameters. Intuitively, a near-optimal strategy is to place the distractors
near a bottom corner and use other valves to hover the target ball. However, as described in

2. A complete description of rewards and hyperparameters can be found in the supplementary material at
https://sites.google.com/view/box-o-flows/home
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Figure 4: Task: Orange in right, purple in left (a) Reward curve and (b) Heatmap visualization
of states visited by learned policy (averaged over 100 episodes) (c¢) Filmstrip of an episode.

Sec. 2.1, complex actuator coupling and non-steady flow patterns make it hard to hand-design
such a controller. We test whether our MPO agent can recover this intuitive policy, by
training it using a reward proportional to the pixel y coordinate of only the target ball,
normalized to [0.0,1.0] (based on maximum and minimum coordinate values). Fig. 3(a)
presents the reward obtained over environment steps during training that shows the agent
is able to obtain near-optimal reward in about 1M steps. In Fig. 3(b), we visualize the
learned behavior via coarsely discretized heatmaps of ball locations over the last 100 training
episodes, which show that the agent successfully learns the intuitive policy of maintaining
the target ball near the top while pushing the distactors near the bottom left.

Object Rearrangement: Next, we consider a harder task where the agent must place two
target balls (orange and purple) anywhere in the right and left halves of the box respectively,
with the green ball being a distractor. Here, it is hard to even intuitively reason about
optimal behavior as it depends on the initial object locations which are randomized. We
provide our agent a sparse reward equal to the product of the horizontal distances from the
respective goal regions, which forces it to accomplish both tasks. As shown in Fig. 4, we
observe that this task is much easier for RL, and our agent is able to achieve near-optimal
reward within approximately 200k environment steps. Interestingly, the agent also learns a
stable strategy of switching off controls once the balls are in the target halves as can be seen
in the heatmap visualizations in Fig. 4(b) and filmstrip Fig. 4(c).

Stacking: To test if our agent can exploit the airflow at a finer level, we consider a more
challenging task of stacking two balls on top of each other. We again provide the agent a
product of two simple rewards: keep the y-coordinate of the orange over purple by a fixed
value and align x-coordinates. We observe that the agent not only learns to successfully stack
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Figure 5: Task: Stack orange ball over purple (a) Reward curve. (b) Heatmap visualization
of states visited by learned policy (averaged over 100 episodes). (c¢) Filmstrip of an episode.

Reward

the balls Fig. 5(a), but also discovers an interesting strategy to always align them against
the left wall of box as it is easier to control airflow near the walls (Fig. 5(b)).

4.2. Learning Goal-conditioned Policies to Analyze Reachability

We wish to characterize what parts of the Box o’ Flows are reachable given the actuator
configuration and limits. Since, it is not possible analytically, we leverage our RL agent by
designing a goal reaching task where the agent must position a ball to randomly chosen pixel
targets. We add the goal location to the observation, and train MPO for 1.2M environment
steps (1200 episodes). We visually analyze reachability by plotting a coarsely discretized
heatmap of reaching errors for different target regions (Fig. 6). The intensity of each bin is
proportional to the cumulative reaching error for every training episode during which the
target was in that bin (normalized such that black is minimum error and red is maximum).
This accounts for noise due to policy training and exploration, target height and inherent
system stochasticity. The analysis clearly shows that target locations closer to the bottom
and center are easier to reach in general. Also, targets near the bottom right are harder than
bottom-left and bottom-center, which reveals an imbalance in the airflow through different
nozzles. Interestingly, targets closer to the walls are also easily reachable since the agent can
better exploit the airflow. These findings also align with the behavior learned in the stacking
task. The hardest regions to reach are at the top, especially top-left and top-right corners.

4.3. Re-using Past Experience via Offline RL

As discussed in Sec. 3, we perform a preliminary experiment to study how offline RL from
logged datasets obtained from online RL experiments can be used to test new reward
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Figure 6: (a) Pixel intensity is proportional to cumulative error for episodes when the target

was in that pixel’s bin. Error is the average distance between the ball and target in the last
200 episode steps. (b) Filmstrip of an episode.
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Figure 7: Task: Maximize the height of orange ball while aligning along the vertical center
line in presence of distractors (a) Reward curve and (b) Heatmap visualization of states
visited by learned policy (averaged over 100 episodes)(c) Filmstrip of an episode.
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functions. If the logged data has sufficient coverage (i.e the target task is close enough) one
can expect the learned policy from offline RL to be representative of what we can obtain by
running online RL from scratch. Specifically, we use data from the task of hovering with
distractors and re-label the rewards to additionally constrain the ball to remain close to the
vertical center line. We then train CRR (Sec. 3) and evaluate the current learner’s policy
intermittently on the real system. We show the learning curve in Fig. 7(a) and a heatmap of
the states visited by the learned policy in Fig 7(b). A stark difference is observed compared
to the heatmap in Fig. 3(b) as the states concentrate entirely near the center as desired,
while distractors are at different bottom corners. This experiment provides a promising first
result for applying offline RL to study complex dynamical systems like Box o’ Flows.
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5. Related Work

Deep RL for Complex Physical Systems: In addition to real-world robotics discussed
in Sec. 1, RL is also applied to control other complex systems, such as data center cooling
systems (Lazic et al., 2018). Degrave et al. (2022) apply deep RL to control Tokamak plasmas
in nuclear fusion reactors. This is a high dimensional dynamic control problem, however, they
rely on simulation in a constrained regime to learn policies that transfer to the real system.

Machine Learning for Fluid Dynamics: Machine learning and deep RL are being
extensively used for the modelling and control of fluid dynamical systems. We provide an
overview here and refer the reader to the review papers by Brunton et al. (2020) and Larcher
and Hachem (2022) for a comprehensive treatment:

e Flow Modelling & Control: Machine learning is leveraged to accelerate high-fidelity
numerical simulations of fluid dynamics (Kochkov et al., 2021) and automatic turbulence
modelling (Novati et al., 2021). Deep RL is also applied to active flow control (Fan et al., 2020;
Bieker et al., 2020) and deformable object manipulation (Xu et al., 2022). The work by Ma
et al. (2018) on rigid body manipulation via directed fluid flow is the closest to ours, however,
they are limited to simulation with several approximations for computational efficiency.

e Modelling Biological Systems: Deep RL can aid the understanding of physical
mechanisms and decision-making processes underlying animal behavior. Verma et al. (2018)
combine RL with high-fidelity fluid simulation to study how schooling helps fish reduce
energy expenditure. However, running such simulations requires computational resources
which are prohibitive for most practitioners. The flight behavior of birds is also studied to
design agile UAVs. Tedrake et al. design a glider that demonstrates perching under high
angle of attack and Reddy et al. (2016) learn energy efficient soaring behaviors by creating
numerical models of turbulent thermal convective flows based on bird flight.

Offline RL: Offline RL aims to learn competitive policies using logged data without further
exploration, and consists of both model-free (Kumar et al., 2020; Cheng et al., 2022; Kostrikov
et al., 2021), and model-based (Yu et al., 2021; Bhardwaj et al., 2023; Kidambi et al., 2020)
variants. A key challenge is offline policy evaluation under limited data coverage (Levine
et al., 2020) which is generally solved by importance sampling based approaches (Precup,
2000). We tackle this via intermittent evaluations of the learner’s policy on the real system.

6. Discussion

We presented Box o’ Flows, a novel benchtop fluid-dynamic control system geared towards
real-world RL research. We empirically demonstrated how model-free RL can be used to learn
diverse dynamic behaviors directly on hardware, and the applicability of offline RL for efficient
re-use of past experience. However, the capabilities of the learning agent can be further
enhanced. First, model-based RL methods can be utilized to enhance the understanding of
system dynamics and share data among tasks. Second, while our preliminary experiment
with offline RL offers promising results, we expect we can improve performance by leveraging
methods such as Cheng et al. (2022) that provide robust policy improvement guarantees.
Last but not least, there are many variants of such table top systems that can be realized
fairly straightforwardly to vary the difficulty and scope of the experiment.

10
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