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Abstract
Explainable AI Planning (XAIP), a subfield of xAI, offers a variety of methods to interpret the
behavior of autonomous systems. A recent “pointwise-in-time” explanation method, called Rule
Status Assessment (RSA), characterizes an agent’s behavior at individual time steps in a trajectory
using linear temporal logic (LTL) rules. In this work, RSA is applied for the first time in a rein-
forcement learning (RL) context. We first demonstrate RSA diagnostics as a substantial supplement
to the basic RL reward curve, tracking whether and when specified subtasks are accomplished. We
then introduce a novel “Interactive RSA” which provides the user with detailed diagnostic infor-
mation automatically at any desired point in a trajectory. We apply RSA to an advanced agent at
runtime and show that RSA and its novel interactive variant constitute a promising step towards
explainable RL.
Keywords: Explainable AI Planning, Explainable Reinforcement Learning, Linear Temporal Logic,
Markov Decision Processes

1. Introduction

While reinforcement learning (RL) agents have proven invaluable for automation, complex agent
behavior often defies human understanding, causing difficulties during agent training and inference
(Heuillet et al. (2021)). To remedy this, a recent subfield of Explainable Artificial Intelligence,
Explainable Reinforcement Learning (XRL), has proposed many approaches to explain RL agent
behavior (Wells and Bednarz (2021)). Milani et al. (2022) organize XRL into three major areas:
feature importance (FP), which determines the influence of input state features on agent actions;
learning process and MDP (LPM), which identifies past events that led to the current state; and
policy level (PL), which describes overall agent behavior. Here, FP and LPM methods rely on
the internal model of the agent and environment to provide the human with success probabilities
(Cruz et al. (2019)), reward decomposition (Juozapaitis et al.), or important junctures in training
(Gottesman et al. (2020)). Other methods learn an “explanatory” model to replace the complex
agent, finding causal links between variables and actions (Madumal et al. (2020b,a)), reworking
complex policies to fit “interpretability” criteria (Hein et al. (2018)), and describing plans in terms
of abstract human-interpretable states (Sreedharan et al. (2020)).
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While these methods are promising, none compare the agent behavior explicitly to a desired
behavior, such as known tasks to be completed or rules to be followed; this is a concern in Explain-
able AI Planning (XAIP), which focuses on autonomous trajectory-planning systems from drones
to deep-space robots (Sakai and Nagai (2022); Barkouki et al. (2023); Sreedharan et al. (2022)).
We specifically consider the XAIP approach to rule-based explanation, where time- and order-
dependent tasks are often expressed in Linear Temporal Logic (LTL), a syntax appearing in formal
methods (Baier and Katoen (2008)) and niche controls contexts (Bemporad and Morari (1999)). In
XAIP, LTL inference has been applied to describe and compare agent behavior by searching for
a set of LTL “rules” which are true on agent trajectories, answering the question “what does the
agent always, or usually, do?” (Kim et al. (2019); Camacho and McIlraith (2019); Roy et al. (2023);
Chou et al. (2020)). Recently, a “pointwise-in-time” framework was proposed to bring analysis to
a more local level; here, a set of rules gathered from inference or expert knowledge can be tracked
at individual time steps in an agent trajectory, answering the question “what progress has the agent
made at time t?” (Brindise and Langbort (2023)).

In this work, we apply this framework, called rule status assessment (RSA), for the first time
in RL with the help of our novel explanatory algorithm, Interactive RSA. During training, we
show how the notion of LTL formula and subformula “status” illuminates the learning progress of
an agent on tasks and subtasks. During inference, we introduce Interactive RSA to automatically
explain a deployed agent’s behavior at moments of interest. We use Gymnasium-based Griddly
(Bamford (2021)) for training demonstrations and a Video Pre-Training agent (Baker et al. (2022))
on the MineRL environment (MinerlLabs (2022)) to demonstrate benefits of Interactive RSA for
developers and users of RL at runtime.

2. Problem Formulation

We consider a setting in which a human user wishes to assess the progress of an RL agent at indi-
vidual moments in a trajectory, where progress is measured in terms of tasks that the agent should
accomplish or rules it should follow. Here, we suppose that these “rules” are expressible in LTL
and acquired a priori, e.g. through expert knowledge or LTL inference. In particular, we seek an
adaptation of the RSA framework which tracks pointwise-in-time diagnostics for RL training and
inference. During training, these diagnostics should provide trajectory time step(s) when each task
or requirement begins and is completed to assess the agent’s policy development; during inference,
the diagnostics should describe a status of each task at any time step of interest to the human ob-
server. Intuitively, suppose an agent should collect a key to open a door. Our RL diagnostics should
then track the key was first collected (if it was) and when the door was opened; they should also
allow us to select any time step and ask the question “what is the status of the key-door task?”.

To formalize our context, we begin by introducing Reinforcement Learning, which refers to
a branch of machine learning where an agent improves its behavior (learns) by continuously in-
teracting with an environment and receiving feedback in the form of rewards or penalties. This
agent-environment dynamic can be systematically represented using the framework of a Markov
Decision Process (MDP). In the context of RL, a policy π is a strategy that the agent employs over
the MDP to decide what actions to take in a given state. Specifically, a policy is a mapping from
states to actions, where for each state s, π(a | s) gives the probability distribution over the set of
available actions a. A primary objective in many RL scenarios is to identify the best policy to max-
imize the expected cumulative reward over time. Thus, the objective of most algorithms is to learn
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a policy π∗, or equivalently, its associated optimal state-value function V ∗ or action-value function
Q∗. Various algorithms, including Q-learning, proximal policy optimization (PPO) (Schulman et al.
(2017a)), and MuZero (Schrittwieser et al. (2020)), have been developed to attain this objective. For
our diagnostic goal, we are interested in how and when the trajectories produced by a policy comply
or compare with our desired behaviors.

Now, given an RL agent, we must represent the agent’s behavior and our requirements (tasks,
etc.) such that we may evaluate the former subject to the latter. This is possible by extending the
agent MDP with a labeling function, resulting in a labeled Markov decision process (LMDP).

Definition 1 (Labeled Markov Decision Process) A labeled MDP is a tupleM = ⟨S,A, T,R, P,L⟩,
where S is a finite set of discrete states, A is a finite set of actions, T : S × A → (S → R) is a
stochastic transition function, and R : S × A → R is a reward function. P is a finite set of atomic
propositions, or labels, and L : S → 2P is the labeling function.

The labels produced by L may represent any states or conditions that are relevant to our tasks; for
example, reaching the key may be represented with the label key. We briefly note that the set of
labels P may be acquired in multiple ways. For an RL agent in a basic simulated environment,
labels may be simply be a known list of possible state features or object types. In more complicated
state spaces, such as a self-driving car with image observations, labels may be inferred for example
via a state abstraction process (Behl et al. (2020)).

As the agent progresses, an LMDP produces a sequence of labels called a trace, which may be
shortened into segments:

Definition 2 (Trace) For any state st ∈ S, T0 ≤ t ≤ Tf , let L(st) = Lt, where Lt is a set of
labels. A trace is the sequence ρ = (LT0 , ..., LTf

) produced by system trajectory (sT0 , ..., sTf
) from

time step T0 to Tf .

Definition 3 (Trace Segment) The trace segment ρt... = (Lt, ..., LTf
) is the part of the full trace ρ

beginning at t and ending at Tf (T0 ≤ t ≤ Tf ).

Now we discuss our rules, introducing Linear Temporal Logic (LTL), a formal language in-
corporating both logical and temporal operators which is well suited for expression of time- and
process-dependent tasks (Pnueli (1977)). To connect the LMDP to our specifications, we require
that our rules depend solely on labels in P :

Definition 4 (Linear Temporal Logic Formula) For the set of LTL formulas φ over a finite set P
of propositions,
• if α ∈ P , then α is itself an LTL formula
• if φ1 and φ2 are LTL formulas, then ¬φ1, φ1 ∨ φ2, Xφ1, and φ1Uφ2 are LTL formulas.

All LTL formulas can be constructed from atomic propositions (the labels of our LMDP); standard
logical operators ∨ (or), ∧ (and), → (implication); and temporal operators X, U. The temporal
operators are given in Table 1, with additional common operators defined for convenience.

Given an LTL formula, a trace may now be checked for rule satisfaction, defined below; note
that we assume finite agent trajectories, employing the finite version of LTL (LTLf ).
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Operator Meaning
Gφ1 Global: φ1 is always true.
Fφ1 Eventual: φ1 eventually occurs.
Xφ1 Next: φ1 must occur at the next time step.
φ1Uφ2 Until: φ1 remains true until φ2 occurs (and φ2 must occur)
φ1Rφ2 Release: φ1 remains true (1) until and including the step

when φ2 occurs or (2) forever

Table 1: LTL operators, where φ denotes an LTL formula. “Occurence” of φi at tmeans ρt... |= φi.

Definition 5 (LTL Formula Satisfaction) LTL formula φ is satisfied by trace ρ, denoted ρ |= φ,
in the following cases:
• ρ |= α where α ∈ P iff α ∈ L0

• ρ |= ¬φ iff ρ ̸|= φ
• ρ |= φ1 ∨ φ2 iff ρ |= φ1 or ρ |= φ2

and for the temporal operators Next X and Until U,
• ρ |= Xφ iff ρ1... |= φ
• ρ |= φ1Uφ2 iff ∃i ≥ 0 s.t. ρi... |= φ2 and ρk... |= φ1 for all 0 ≤ k < i

Recalling our original agent progress-tracking motive, we will show that the stages of a task can
be represented within an LTL formula by the formula’s arguments:

Definition 6 (Arguments of an LTL formula) Consider the LTL order of operations: (1) group-
ing symbols; (2) ¬,X, and other unary operators; (3) U and other temporal binary operators; and
(4) ∨,∧,→. For a given LTL formula φ, the one or more φj bound by the weakest operator are the
arguments of φ.

The formula φ = Gα1 ∨ α2, for instance, has arguments φ1 = Gα1, φ2 = α2. For practical
purposes, we treat the argument of “atomic” formulas φ = α as the formula itself. Establishing
such a system, we may formalize our problem statement.

Problem Statement. Consider an RL agent following policy π and its LMDP representation,
which produces a trace ρ of labels from a vocabulary P for each trajectory of the agent. Define also
a list of LTL rules φ0, φ1... which describes desired or expected behavior for the agent. For this
setting, we seek an RSA-based diagnostic system which

(1) uses times of rule status changes on ρ to track learning progress, and
(2) automatically selects explanatory data based on the status of φ and its arguments (“interac-

tive RSA”) given a trace ρ and any selected time step t∗.
In this work, we will outline such a system and demonstrate its use in both a training and an

inference context.

3. Methods

To produce diagnostics for LTL rules at individual time steps in a trajectory, we begin with the RSA
framework as defined by Brindise and Langbort (2023), with Figure 1 depicting the explanatory

4



POINTWISE-IN-TIME DIAGNOSTICS FOR RL

context. As shown, rules may stem from knowledge of the agent or an inference process, both of
which would rely on a known set of labels. Formally, L(·) must be defined on S such that all labels
α ∈ Lt are in P for the LTL rules; thus, if labels are generated through an abstraction process,
we assume that the abstractions are sufficiently expressive to formulate meaningful rules. Within
the explanatory context, this present work specifically seeks useful “query heuristics” to extract
RL-relevant diagnostics from RSA.

We begin by examining the existing framework. To formalize notions of task progress, RSA
proposes that any LTL rule may be classified as active, satisfied, inactive, or violated at individual
time steps in a trace. These notions depend on additional notions of arbitrariness and preconditions:

Definition 7 (Arbitrariness of suffix) For LTL formula φ, its argument(s) φj , trace ρT0..., and
associated segment ρt0... where T0 ≤ t0 ≤ Tf , we say that ρt... is arbitrary with respect to φ if
ρt0... |= φ regardless of the truth of ρt... |= φj for all t where t0 ≤ t ≤ Tf .

Definition 8 (Precondition) The precondition of an LTL formula φ is defined as (1) φ1 if φ has
the form φ1 → φ2 and (2) ⊤ otherwise.

Definition 9 (Status of LTL formula) We define the following statuses for an LTL formulaφ given
a trace ρT0... and times t0, t ∈ {T0, ..., Tf}, t0 ≤ t:
• φ is active (a) at t iff (1) ρt0... |= φ, (2) ρt0... |= ψ for precondition ψ of φ, and (3) ρt... is not

arbitrary.
• φ is satisfied (s) at t iff (1) φ active at t and (2) t = Tf or φ not active at t+ 1.
• φ is inactive (i) at t iff (1) ρt0... |= φ and (2) φ is neither active nor satisfied at t.
• φ is violated (v) at t iff ρt0... ̸|= φ.

Finally, we store the status information for each node in timesets τ , where

τ q = {t ∈ {t0, ..., Tf} | t has status q}. (1)

Example 1 provides a basic system structure to which RSA could be applied. For a demonstration
of specific notions of status, we refer the reader to the examples in Brindise and Langbort (2023).

Example 1 (Autonomous Collection Drone) Consider an autonomous drone which must com-
plete tasks while adhering to the following safety and operational constraints.

(1) First collect a sample from location Q1, Q2, or Q3 and then deposit it at location D1.
(2) If battery is low, visit the charging station C1 before any collection or deposit location.
(3) If an obstacle is detected, reroute to avoid the obstacle.
The system state low battery has label lb, obstacle detected has ob, and performing reroute

has rr. Similarly, Q1 corresponds to label q1, Q2 to q2, and so on, forming the vocabulary P =
{q1, q2, q3, d1, c1,lb,ob,rr}.

In LTL syntax, our three requirements can be written
• φ1 = F((q1 ∨ q2 ∨ q3) ∧ Fd1)
• φ2 = G(lb→ (Fc1 ∧ (¬(q1 ∨ q2 ∨ q3 ∨ d1)Uc1))
• φ3 = G(ob→ Xrr)
On this system, RSA would determine which rules are “in progress” at specific time steps within

a trace, e.g. ρ = L0, L1, L2, L3 → At t = 2, φ1 is active on ρ0...; φ2, φ3 are not. Moreover,
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Figure 1: Proposed use of LTL rule status assess-
ment for RL agent diagnostics. Figure 2: Formula tree for φ3.

RSA can provide status for each argument of any φ; these arguments may be treated as nodes in
a formula “tree,” a common decomposition where each node φ has its arguments as children (see
Figure 2). Notably, the status of a parent formula depends solely on the truth values of its children;
for instance, a formula φ = φ1Uφ2 changes from active to satisfied at t when φ2 true on ρt....
However, the selection of “intuitively helpful” segments ρt0... to query for each φk node is non-
trivial; this selection process and its applications are the main concern of this work.

Finally we note that, as RSA assesses status at all t0 ∈ {T0, ..., Tf}, t ≥ t0 for all nodes of a
given formula tree, the upper bound on complexity is O((2|ρ|)L−1), where L is tree depth.

RSA for Training: the Global Trigger Heuristic. We first propose the use of status changes
to track learning progress. One simple method is our novel global trigger heuristic, which de-
termines when a task is “triggered” and when it is “done” using status notions from RSA. For
formulas of format φ = G(φ0 → φ1), where ρ |= φ, the heuristic identifies a trigger time at
ttt = argmint≥t0{t | ρ

t... |= φ0}. Intuitively, the rule is triggered when its precondition is true for
the first time and done at td = argmint≥ttt{t | φ1 satisfied or inactive at t} with status evaluated
on suffix ρttt.... This heuristic is demonstrated in Section 4.

RSA for Inference: Interactive RSA. Our problem statement also calls for relevant diagnostic
information given a time step of interest t∗. To this end, we introduce Interactive RSA. For a given
t∗, this novel algorithm returns one status assessment and accompanying description for each rule
argument, continuing to a prespecified depth in the rule tree. Interactive RSA, detailed in Algorithm
1, is demonstrated in Section 4.2 on an agent which has been trained to play a game of Minecraft.

4. Numerical Experiments

We present two experiments on RL agents, the first of which is a training scenario on a tabular
Griddly environment (Bamford (2021)) based on OpenAI Gym (Brockman et al. (2016)) and trained
using PPO (Schulman et al. (2017b)) via RLLib (Liang et al. (2018)). The second is an inference
scenario on a MineRL environment (Guss et al. (2019)) with a Video Pre-Training agent (Baker
et al. (2022)). Both simulations were run in Python 3.9 on an AMD Ryzen 5 4600H. We refer the
reader to https://github.com/n-brindise/live_expl.
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Input : time of interest t∗, explanation depth D
Output: status and text explanation for φ as generated below
Data: Full trace ρT0... and rules φk

Initialize nodeList← {φ0, ...φK}; nodeDict[φk][t0]← T0 for all k; d← 0
while d ≤ D do

for φx ∈ nodeList do
t0 ←nodeDict[φx][t0]; childNodeList← {}
τa, τs, τi, τv ← getTaus(φx, ρt0)
if φx active at ρt0 , t∗ then

for φx.y of φx do
append φx.y to childNodeList
nodeDict[φx.y][t0]← t∗

end
print “φx is active at ρt0 , t∗”

else if φx satisfied at ρt0 , t∗ then
for... // same φx.y loop as active case
print “φx is satisfied at ρt0 , t∗”

else if φx inactive at ρt0 , t∗ and φx satisfied at some t′ < t∗ then
for... // φx.y loop, store t′ in nodeDict[φx.y][t0]
print “φx is inactive at ρt0 , t∗; previously satisfied at t′”

else if φx inactive at ρt0 , t∗ then
for... // φx.y loop, store t∗ in nodeDict[φx.y][t0]
print “φx inactive on all ρt0”

else
for... // φx.y loop, store t0 in nodeDict[φx.y][t0]
print “φx violated on all ρt0”

end
end
d← d+ 1; nodeList← nodeChildList

end
Algorithm 1: Interactive Rule Status Assessment.

4.1. Training: Treasure Hunt Environment

The “Treasure Hunt” is shown in Figure 3. Here, the agent is rewarded for collecting a key (R(at) =
+50), opening a door (R(at) = +50), and going to the treasure chest (R(at) = +100). During
training, we store a model checkpoint at each iteration; to produce traces for diagnostic analysis, we
then perform inference 100 times for each model. An example reward curve is shown in Figure 5,
with notable improvements at iterations 20 and 45 to be investigated further. We begin with a basic
RSA status diagnostic checking satisfaction times which requires no additional heuristics.

Average Satisfaction Times. We set V to contain all variables in R and establish LTL rules:
• φ0 = Fkey (eventually go to key)
• φ1 = Fopen door (eventually open door)
• φ2 = Ftreasure chest (eventually go to treasure chest)
We use RSA to plot average rule satisfaction times for each iteration (Figure 4). At iteration

20, the agent begins to satisfy Fopen door, becoming more consistent through iteration 40. The
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Figure 3: Treasure Hunt tabular
environment.
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Figure 6: Trigger plot for Iteration 32.

Ftreasure chest behavior also appears at Iteration 24 and grows in frequency after 35, further
explaining the increase in the reward curve.

Global Trigger. Now we consider the more complex subtask key-then-open door: φ3 =
G(key→ Fopen door). From Figure 4, we identify 3 checkpoints of interest.

Iteration 20: The Fopen door behavior first appears. We analyze 25 traces at this iteration in
Figure 7. The majority show triggering of φ3 (agent reaches the key); however, all but one of these
instances ends in rule violation (the red ‘x’). Traces 7, 8, 15, and 19 fail to trigger at all, and 17 is
the only instance to successfully complete the key-door subtask by opening the door at time step 24.

Iteration 40: From Figure 4, both Fkey and Fopen door are satisfied much more consis-
tently. Indeed, the trigger plot in Figure 8 shows that 11 of 25 traces successfully complete the
key-door subtask; of these successes, 7 take ≤ 10 timesteps from trigger to finish, suggesting a
relatively direct path to the door following key acquisition.

Iteration 32: Figure 4 reveals that the average satisfaction time for Ftreasure chest is
lower than that of Fopen door. This is perhaps unexpected, since the treasure is not reachable
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Figure 8: Trigger plot for Iteration 40.

until after the door is open. We produce Figure 6 on 100 traces, overlaying satisfaction times for
Ftreasure chest. We observe that the vast majority of traces triggering φ3 do not finish until
time step 25 or significantly later; meanwhile, treasure chest is reached in only two traces,
but it does this comparatively early (around step 26), explaining the discrepancy in the two averages.

Using our enhanced RSA-based analysis, we are able to see changes in consistency and sat-
isfaction time of subtasks as RL training progresses, as well as individual trajectory behaviors
contributing to our statistics.

4.2. Inference: Minecraft Environment and Interactive RSA

Rule status assessment also shows promise for explanation of complex agents during inference, such
as a Video Pre-Training MineRL agent (Baker et al. (2022)). Figure 9 demonstrates the application
of Interactive RSA to an agent trajectory of length |ρ| = 3400 on the MineRL environment subject
to five rules:
• φ0 = ¬(wooden pickaxe ∨ stone pickaxe) R crafting table

• φ1 = ¬wooden pickaxeU (oak planks ∨ spruce planks...)

• φ2 = ¬cobblestoneU wooden pickaxe

• φ3 = ¬stone pickaxeU (cobblestone ∧ stick)
• φ4 = F (iron ore ∨ coal)
Here, rules 0-3 correspond to gameplay mechanics, which determine how tools are crafted and

materials are mined. Rule 4 is a goal: we wish to eventually collect either iron ore or coal.
Interactive RSA was run with explanation depth 3 at 5 individual time steps selected during an

episode of gameplay, with average runtime 2.45s per query. Selected results are shown in Figure 9.
We find that Interactive RSA generates diagnostics which are interpretable in intuitive terms. For
instance, at time step t∗ = 600, we have rules 0-2 inactive, meaning that the agent has already sat-
isfied these requirements. In this case, this implies that a crafting table, oak planks, and
a wooden pickaxe have all been acquired. The first arguments of 2 are highlighted, informing
the user that the pickaxe was first acquired at t = 592 (“satisfied on ρ592...”). We further examine
rule 3, which remains active; here, we see that argument cobblestone ∧ stick is violated, in
particular because cobblestone is missing.
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Figure 9: Interactive RSA diagnostics on a MineRL trace.

We note here that, in contrast to the examples in Brindise and Langbort (2023), Interactive RSA
requires only a depth specification and a single time of interest to automatically identify a small,
relevant set of status information. This makes Interactive RSA very well suited for users observing
an agent at runtime, as a user who is familiar with the LTL specifications can quickly query and
interpret the progress of each rule at any time step. In this way, RSA provides a precise human-
defined proxy for understanding behavior in settings where the length of traces or the dimensionality
of the state complicates a straightforward diagnosis.

5. Conclusion

In this work, we extend rule status assessment (RSA) diagnostics to reinforcement learning agents
for the first time, developing heuristics which automatically analyze agent behavior with respect to
predefined tasks and rules. In experiments, RSA explanation provides diagnostics which supplement
the training reward curve, tracking the agent’s progress in performing specific tasks as training
progresses. Moreover, our novel Interactive RSA automatically provides relevant context to a user
at any desired time step, as demonstrated on a long trajectory of a complex agent.

Limitations of the RSA analysis include its dependence on full agent trajectories; future work
may adapt the framework to handle uncertainty, extending the use case to live agent performance
where trajectories are incomplete. Additional study is also necessary to determine the practical
utility for users.

Altogether, our results suggest that RSA-based diagnostics are an illuminating supplement to
current explainable RL methods, providing a novel contextualization of agent behavior within the
desired tasks and rules it should follow.
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