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Abstract

A robust Model Predictive Control algorithm is proposed for learning-based control with model
represented by an affine combination of basis functions. The online optimization is formulated as
a sequence of convex programming problems derived by linearizing concave components of the
dynamic model. A tube-based approach ensures satisfaction of constraints on control variables
and model states while avoiding conservative bounds on linearization errors. The linear depen-
dence of the model on unknown parameters is exploited to allow safe online parameter adaptation.
The resulting algorithm is recursively feasible and provides closed loop stability and performance
guarantees. Numerical examples are provided to illustrate the approach.
Keywords: Nonlinear predictive control, convex programming, adaptive control, learning control.

1. Introduction

Model Predictive Control (MPC) is an optimal control strategy with well-established theoretical
properties and a wide range of applications (Kouvaritakis and Cannon, 2016). The main idea is to
solve an open-loop optimal control problem repeatedly online with the current state as the initial
condition at a given time. Although the structure of the controlled system model may be known, it
is often unavoidable that parametric model uncertainty and disturbances act on the system during
closed-loop operation. Therefore a major focus of the literature, both in the context of linear and
nonlinear systems, has been to ensure robustness of MPC strategies. Recently, much attention has
been given to combinations of learning-based and robust MPC approaches (Hewing et al., 2020).
Similarly to robust adaptive MPC algorithms, these methods inherit the main advantages of robust
MPC, but use information on the controlled system that is gathered while a control task is performed
to improve the quality of the system model and closed-loop control performance.

While several approaches for linear robust adaptive MPC have been proposed (Lorenzen et al.,
2019; Lu et al., 2021), the general case of nonlinear system models has received relatively little
attention (Köhler et al., 2021; Adetola et al., 2009). Although the approaches of Köhler et al. (2021)
and Adetola et al. (2009) have strong system-theoretical properties such as recursive feasibility, they
are necessarily conservative, for example because of the fixed ellipsoidal tubes that are used, and
computationally intensive because they rely on the global solution of a nonconvex program online.

This paper considers an alternative adaptive MPC approach based on sequential convex approxi-
mation (Cannon et al., 2011; Doff-Sotta and Cannon, 2022). Methods based on linearizing dynamics
around previously predicted trajectories have the important advantage that the optimization can be
split into convex subproblems (often as variants of linear MPC), which are therefore efficiently solv-
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able and benefit from the stability properties and robustness of linear MPC. To ensure stability and
convergence, the perturbations around state and control linearization points are limited to regions
within which the model approximation is meaningful and the effect of the approximation error is
bounded by constructing tubes containing the predicted trajectories. However, choosing the set of
allowable perturbations is based on heuristics and can become conservative (Cannon et al., 2011).
In Doff-Sotta and Cannon (2022) a successive convex approximation MPC method is proposed that
does not require heuristic bounds on the allowable perturbation step size, thus overcoming a major
drawback of Cannon et al. (2011). The approach is extended to systems with unknown additive
disturbances in Lishkova and Cannon (2024), where a worst-case linearization approach around
updated seed tubes is used to obtain bounds on the predicted successor states.

In this paper we extend the theory of Doff-Sotta and Cannon (2022) and Lishkova and Cannon
(2024) to the context of nonlinear systems with additive and parametric uncertainty, and we derive a
robust adaptive nonlinear model predictive control algorithm using set-based parameter estimation
(Lorenzen et al., 2019). The resulting MPC law is obtained by sequential convex optimization with
efficiently solvable subproblems. Furthermore, the approach does not require heuristic prior bounds
on the allowable perturbations in each convex subproblem. The method is recursively feasible and
ensures a closed loop performance bound. Finally, the approach offers many potential applications
and extensions for variants of model-learning within MPC.

2. Problem statement

This paper considers nonlinear systems subject to bounded disturbances with parameters to be
learned online. The model state xt 2 X has the discrete-time dynamics

xt+1 = f(xt, ut, ✓) + wt. (1)

where ut 2 U is the control input, ✓ 2 ⇥0 is a vector of unknown parameters, wt 2 W is an
unknown disturbance, and t denotes the discrete time index. We assume compact polytopic sets
X := {x 2 R

n : Ex  1}, U := {u 2 R
m : Fu  1}, ⇥0 := {✓ 2 R

p : H⇥✓  h0} =
Co{✓v, v = 1, . . . , n⇥} and W := {w 2 R

nx : Gww  1} = Co{w(ja), ja 2 [1, . . . , nw]}. The
function f(xt, ut, ✓) is an affine combination of convex basis functions {fi(xt, ut), i = 0, . . . , p}

f(xt, ut, ✓) = f0(xt, ut) +
pX

i=1

✓ifi(xt, ut). (2)

We consider the problem of minimizing a quadratic cost, with weighting matrices R � 0 and Q ⌫ 0,
1X

t=0

(kxtk2Q + kutk2R). (3)

The parameter vector ✓ is assumed unknown but contained in a known polytope at time t = 0, i.e.
✓ 2 ⇥0. The proposed approach can be used in combination with any parameter learning algorithm
that generates at time t a polytopic parameter set ⇥t satisfying, forall t > 0, ✓ 2 ⇥t ✓ ⇥t�1.

3. Recursively feasible tube construction and linearization for convex systems

To simplify explanation, in the following all parameters are assumed positive (✓i � 0), and each
component of fi(x, u) is assumed convex. We highlight extensions to the case of sign-indefinite
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parameters in specific remarks in each section. We apply a successive linearization approach to
the MPC optimization problem and incorporate online model learning via parameter adaptation.
By exploiting convexity properties of the system description, this provides a sequence of convex
subproblems that address the combined effects of parametric uncertainty and unknown disturbances.

To ensure recursive feasibility, we construct a feasible control law at the start of each iteration
based on the control perturbation sequence c0 = {c00, . . . , c0N�1} determined at the previous iter-
ation. Similar to Lishkova and Cannon (2024) we successively construct the state tube sequence
X0 = {X0

0 , . . . , X
0
N} where each tube element is a hyperrectangular set1 defined by:

X
0
k = {x 2 R

nx : xk  x  xk} = Co{xjk, j = 1, . . . , vx}.

The vertices {xjk, j = 1, . . . , vx} can be conveniently obtained from the bounds xk, xk defining
X

0
k , and upper bounds on the components of the successor state can be found by computing

[xk+1]r = max
j2[1,...,vx],v2[1,...,n⇥]

[f(xjk,Kx
j
k + c

0
k, ✓

v)]r + [w]r, (4)

where the maximum occurs on the vertices of Xk (due to convexity) and the vertices of ⇥ (due
to the linear dependence on the parameter ✓). Here [x]r represents the rth component of a vector
x, and [w]r = maxw2W [w]r. Lower bounds on the state components can be constructed, once
more exploiting convexity, by linearizing each component of the function f defining the model.
A conventional linearization around a nominal trajectory could be used, with a backtracking line
search (Nocedal and Wright, 2006) to ensure recursive feasibility. However we describe here an
alternative method of ensuring feasibility by defining the linearization point for the rth component of
fi as the value of x 2 X

0
k at which [fi(x,Kx+c

0
k)]r attains its minimum. The linear system obtained

by linearizing at these points defines a lower bound on the nonlinear system because f(x,Kx+ c
0
k)

is convex, and this lower bound property holds for arbitrary perturbations relative to the linearization
points. The linearization points are thus obtained for each basis function i = 0, . . . , p and for each
element of the state r = 1, . . . , nx by solving a convex optimization problem:

x
0
k,i,r = arg min

{x2X0
k}
[fi(x,Kx+ c

0
k)]r (5)

These points are collected (for k = 0, . . . , N � 1) to define the linearization point sequence x0
i,r =

{x00,i,r, . . . , x0N�1,i,r}. Based on the individual linearization points for each basis function and the
vertices of ⇥, the overall lower bound can be defined as

[xk+1]r = [f0(x
0
k,i,r,Kx

0
k,i,r + c

0
0)]r + min

v2[1,...,n⇥]

pX

i=1

✓
v
i [fi(x

0
k,i,r,Kx

0
k,i,r + c

0
k)]r + [w]r. (6)

The forward simulation procedure at the start of an iteration for constructing an initial state tube
(called a seed tube) and the linearization points is summarized in Algorithm 1 (with the linearization
matrix sequences Ai = {A0,i, . . . , AN�1,i}, Bi = {B0,i, . . . , BN�1,i} for i = 0, . . . , p).

To extend the theory to the general case we consider some ✓i⇤  0 and convex fi⇤(xt, ut) which
results in concave ✓i⇤fi⇤(xt, ut). The linearization point for i⇤ is still defined by (5), since fi⇤(xt, ut)
is convex. However, this point maximizes the concave function ✓

v
i⇤fi⇤(xt, ut). From (6) we there-

fore move the term ✓
v
i⇤ [fi⇤(x

0
k,i⇤,r,Kx

0
k,i⇤,r+c

0
k)]r to (4) and likewise move ✓vi⇤ [fi⇤(xk,i⇤,r,Kxk,i⇤,r+

1. The approach can be extended to polytopic tubes of the form X
0
k = {x : Hkx  hk} for fixed Hk and variable hk.
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c
0
k)]r from (4) to (6). For a parameter with unknown sign we can split the contribution of the ba-

sis function by considering its convex and concave contributions ✓i⇤fi⇤(xt, ut) = ✓i⇤1
fi⇤(xt, ut) +

✓i⇤2
fi⇤(xt, ut) with ✓i⇤1

� 0 and ✓i⇤2
 0. Therefore this case can be treated analogously. Finally,

we note that the expansion (2) over convex basis functions fi(x, u) is equivalent to a difference of
convex functions (DC) representation of f(x, u, ✓) (Horst and Thoai, 1999; Hartman, 1959).

Algorithm 1: Forward Simulation: Linearization and Seed Tube Construction
Input : Seed control c0, feedback gain K and initial state x

p. Disturbance set W and parameter set ⇥t.
Output: Seed tube sequence X0, linearization matrix sequences Ai, Bi and linearization point sequences x0

i,r

for i = 0, . . . , p and for r = 1, . . . , nx

Set X0
0 = {xp

t }.
for k = 0, . . . , N � 1 do

for r = 1, . . . , nx do

for i = 0, . . . , p do

Solve Problem (5) for x0
k,i,r and define u

0
k,i,r = Kx

0
k,i,r + c

0
k.

Compute [Ak,i]r = rx[fi]r(x
0
k,i,r, u

0
k,i,r) and [Bk,i]r = ru[fi]r(x

0
k,i,r, u

0
k,i,r) .

Compute the tube bounds [xk+1]r , [xk+1]r for the successor stage k + 1 via (4) and (6).
end

end

Define X
0
k+1  {x 2 R

nx : xk+1  x  xk+1}.
end

4. Sequential convex programming

This section defines the subproblem for each iteration of the successive linearization MPC method.
The subproblem is defined in such a way that it is robust against parameter variations of ✓, distur-
bances w, and any introduced approximations of model (1). As already discussed in Section 3, the
convexity of (1) can be exploited in the definition of upper and lower bounds on the successor state
(defining a predicted state tube) in the convex optimization subproblem during successive lineariza-
tion updates. First we exploit the fact that the upper bound of a convex function f(x) over a bounded
polytope Xk occurs on the vertices of Xk, and thus upper bounds can be conveniently defined us-
ing convex constraints on the corresponding optimization variables. Secondly, we construct a tight
lower bound using the Jacobian linearization around the minimum point (5) of [f(x,Kx + c

0
k)]r,

namely the rth component of the convex state transition function f(x,Kx+ c
0
k), over the bounded

polytope x 2 Xk. The Jacobian linearization constructed around this minimum point necessarily
provides a lower bound on [f(x,Kx+ c

0
k+ c)]r for all x 2 Xk and all c such that Kx+ c

0
k+ c 2 U .

The feedback law is parameterized by uk = Kxk + c
0
k + ck and we consider a worst-case

quadratic predicted cost in the sense that it forms an upper bound on the cost (3)

J(c0, c,X) =
N�1X

k=0

max
xk2Xk

(kxkk2Q + kKxk + c
0
k + ckk2R) + max

xN2XN

kxNk2P (7)

We consider the perturbation ck (relative to the seed perturbation c
0
k) and the variables defining

the tube cross sections Xk (i.e. xk, xk) as optimization variables that are chosen to minimize the
predicted cost. The optimization problem (at each iteration at time t) is then:

min
{c,X}

J(c0, c,X) (8a)
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subject to X0 = {xpt }, and 8k 2 {0, . . . , N � 1}, 8r 2 {1, . . . , nx}, 8✓ 2 ⇥t, 8x 2 Xk:

[xk+1]r � [f0(x,Kx+ c
0
k + ck) +

pX

i=1

✓i{fi(x,Kx+ c
0
k + ck)}]r + [w]r (8b)

[xk+1]r  [f0(x
0
k,0,r,Kx

0
k,0,r+c

0
k)+

pX

i=1

✓i{fi(x0k,i,r,Kx
0
k,i,r+c

0
k)}]r+[Ak,0+Bk,0K]r(x�x

0
k,0,r)

+ [Bk,0]rck +
pX

i=1

✓i{[Ak,i +Bk,iK]r(x� x
0
k,i,r) + [Bk,i]rck}+ [w]r (8c)

Xk ✓ X , KXk � {c0k + ck} ✓ U (8d)

XN ✓ XN , [xN ]r � [(A(j)
N +B

(j)
N K)x]r + [w]r, [xN ]r  [(A(j)

N +B
(j)
N K)x]r + [w]r, 8j (8e)

where (8b-c) bound the successor states for all permissible realizations of model uncertainty, xpt
is the plant state at time t defining the initial tube element X0, and analogously to [w]r we define
[w]r = minw2W [w]r. The final tube element XN is required to be a subset of the terminal set XN

(the computation of which is discussed in Section 5). The MPC law is summarised in Algorithm 2.

Algorithm 2: Convex tube MPC
Input : Seed control sequence c0, feedback gain K, terminal cost P , terminal set XN and initial plant state x

p
t

(at time t). The disturbance set W and parameter set ⇥t are also assumed to be known.
Output: Optimal input ut (at time t) and updated control sequence c0

Obtain x
p at a given time t. Set iter  1.

while iter  maxiter and kc⇤k � tol do

Execute Algorithm 1 to obtain Ai, Bi and x0
i,r for i = 0, . . . , p and for r = 1, . . . , nx.

Solve (8) with x 2 V(Xk) and ✓ 2 V(⇥t) to obtain the optimal perturbation c⇤ and predicted tube X⇤.
Update the control sequence: c0  c0 + c⇤, iter  iter + 1.

end

Implement ut = Kx
p
t + c

0
0 and set c0  {c01, . . . , c0N�1, 0}.

Problem (8) can be reformulated on the vertices V(Xk) of Xk (i.e. {xjk, j = 1, . . . , vx}), for
k = 0, . . . , N � 1, and the vertices V(⇥t) of ⇥t (i.e. {✓v, v = 1, . . . n⇥}) due to the convexity of
fi(x, u). Finally, the objective function can be expressed in epigraph form using second order cone
constraints, resulting in a convex optimization subproblem. To extend the method to the general case
of continuous but not necessarily convex f , we consider again ✓i⇤  0 for some i⇤ 2 {1, . . . , p}. In
this case the linearization terms defined by Ak,i⇤ ,Bk,i⇤ and x

0
k,i⇤,r moves from (8c) to (8b), whereas

the nonlinear (concave) term ✓i⇤ [fi⇤(x
j
k,Kx

j
k + c

0
k + ck)]r moves from (8b) to (8c).

5. Terminal conditions

This section considers the construction of an ellipsoidal terminal set XN and a terminal cost weight
QN . To apply linear set invariance theory we consider a difference inclusion (LDI) approximation
(e.g. Boyd et al., 1994) of the model (1). Further, we consider an affine combination of LDIs over
the parameter set ⇥0 resulting in an aggregate LDI. This provides a computationally convenient
means of ensuring that the terminal set is robustly invariant under the terminal control law u = Kx.

The system (1) with u = Kx is approximated for x 2 X̄ = {x : |x|  �x, |Kx|  �u}, using

f(x, u, ✓) + w 2 Co{(A(jm)
N +B

(jm)
N K)x+ w

(ja), jm = 1, . . . , nM , ja = 1, . . . , nW } (9)

5



SAFE LEARNING IN NMPC

This approximation can be constructed by considering LDIs for the individual basis functions
fi(x,Kx) and by combining these using all possible vertex combinations of ⇥0.

Lemma 1 The inequality

kxk2P � kf(x,Kx, ✓) + wk2P � kxk2Q + kKxk2R � � (10)

holds 8(w, ✓) 2 W⇥⇥0, for positive definite P and � � 0 if the following Linear Matrix Inequality

(LMI) in variables S = P
�1

and Y = KP
�1

holds 8jm 2 {1, . . . , nM} and 8ja 2 {1, . . . , nW }:

2

666664

S 0 (A(jm)
N S +B

(jm)
N Y )> S Y

>

0 � w
(ja)> 0 0

⇤ ⇤ S 0 0
⇤ ⇤ ⇤ Q

�1 0
⇤ ⇤ ⇤ ⇤ R

�1

3

777775
⌫ 0 (11)

Proof This follows by substitution of (9) into (10) and using Schur complements.

Theorem 2 The ellipsoidal terminal set XN := {x : x
>
Px  �} is positively invariant, i.e.

f(x,Kx, ✓) + w 2 XN , 8(x,w, ✓) 2 XN ⇥W ⇥⇥0, if P satisfies Lemma 1 and

� � �/�min
�
P

�1/2(Q+K
>
RK)P�1/2

�
(12)

(�min(A) is the minimum singular value of a matrix A). Constraints XN ✓ X \ X̄ and KXN ✓ U
additionally require, for i 2 {1, . . . , nx}, j 2 {1, . . . , nu}, k 2 {1, . . . , nE}, l 2 {1, . . . , nF },

�  min
i,j,k,l

n [�x]2i
[P�1]ii

,
[�u]2j

[K]jP�1[K]>j
,

1

[E]kP�1[E]>k
,

1

[FK]lP�1[FK]>l

o
. (13)

Proof Condition (10) implies that XN is positively invariant if minx2@XN kxk2Q+KTRK � � (since
this implies kxtk2P � kxt+1k2P if xt 2 @XN ), which is equivalent to (12). Condition (13) enforces
the constraints x 2 X̄ , Kx 2 Ū and x 2 X , Kx 2 U , respectively, for all x 2 XN .

A procedure for computing XN and P is summarized in Algorithm 3. This involves the solution
of a (convex) semidefinite program (SDP). We have assumed that the terminal set is computed in
Algorithm 3 using ⇥0 offline. In principle, XN can be updated online using ⇥t ✓ ⇥0, providing an
improved (larger) terminal set and thus improving the performance of Algorithm 2.

Algorithm 3: Computation of terminal constraint set and terminal cost
Input : The parameters defining the LDI in (9): A(jm)

N , B(jm)
N , w(ja) with associated bounds �x, �u, the cost

matrices Q, R and the state and control sets X and U
Output: XN , P , K, �, �
Solve (S⇤

, Y
⇤
,�

⇤) = minS,Y,� � s.t. LMI (11). Set P  S
⇤�1, K  Y

⇤
P and �  �

⇤.
Solve �

⇤ = max � s.t. (13). Set �  �
⇤ and XN  {x : x>

Px  �}.
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6. Recursive feasibility and stability

In Section 3 we exploited the convexity of the system dynamics to obtain tight lower bounds on
tubes bounding future predicted states, and we used linearization to formulate upper bounds as
convex constraints on the vertices of tube cross sections. For a given sequence c0, Algorithm 1
generates a seed tube X0 originating from the current plant state x

p that is consistent with the tube
constraints employed in Algorithm 2. This implies that the seed tube X0 and the linearizations
Ai, Bi generate a feasible optimization (8) since zero control perturbation (c = 0) is necessarily
feasible. Therefore Algorithm 2 must remain feasible between successive iterations. Further, the
robust invariance of the terminal constraint set ensures recursive feasibility at consecutive time steps.

We demonstrate this here, starting with the nestedness of the seed tube at the start of iteration
iter + 1 denoted X0,+ and the optimal tube obtained at the end of iteration iter denoted X⇤. We
denote c0,+ and x0,+

i,r as the corresponding control perturbation and linearization point sequences.

Lemma 3 For k = 0, . . . , N � 1 Algorithm 2 generates tube cross sections which satisfy the

following nestedness property: X
0,+
k ✓ X

⇤
k .

Proof This is shown by induction. We first demonstrate that: X0,+
k ✓ X

⇤
k =) X

0,+
k+1 ✓ X

⇤
k+1.

Considering the linearization points for a given basis function i, we obtain (for r = 1, . . . , nx)

[fi(x
0,+
k,i,r,Kx

0,+
k,i,r + c

0,+
k )]r = min

x2X0,+
k

[fi(x,Kx+ c
0,+
k )]r � min

x2X⇤
k

[fi(x,Kx+ c
0,+
k )]r

� min
x2X⇤

k

[fi(x
0
k,i,r,Kx

0
k,i,r + c

0
k)]r + [Ak,i]r(x� x

0
k,i,r) + [Bk,i]rc

⇤
k),

which follows from the set inclusion X
0,+
k ✓ X

⇤
k , the convexity of f and c0,+ = c0 + c⇤. For

✓i � 0 this implies that due to (8c) and (6) the linear combination of the basis functions satisfies
x
0,+
k+1 � x

⇤
k+1. Upper bounds obtained from X

0,+
k ✓ X

⇤
k and the convexity of f are given by

max
x2X0,+

k

[fi(x,Kx+ c
0,+
k )]r  max

x2X⇤
k

[fi(x,Kx+ c
0,+
k )]r = max

x2X⇤
k

[fi(x,Kx+ c
0
k + c

⇤
k)]r,

which implies x0,+k+1  x
⇤
k+1 due to (8b) and (4) (for ✓i � 0). Since X

0,+
0 = X

⇤
0 = {xpt }, the entire

tube sequence is nested and this completes the proof.

Lemma 4 For all k = 0, . . . , N � 1 we obtain the recursive nestedness property of the tube

cross sections for subsequent time steps of Algorithm 2, i.e. X
0,init
k (t + 1) ✓ X

⇤,final
k+1 (t) and

X
0,init
N (t+ 1) ✓ XN . (The superscripts init and final refer to the initial and final iterations.)

Proof The last line of Algorithm 2 defines the initial seed trajectory at time t+1 as c0,initk (t+1) =

c
0,final
k+1 (t) + c

⇤,final
k+1 (t) for k = 0, . . . , N � 2 and c

0,init
N�1 (t + 1) = 0. Therefore X

0,init
k (t + 1) ✓

X
⇤,final
k+1 (t), and X

0,init
N (t+ 1) ✓ XN follows from condition (8e) and the invariance of XN .

Theorem 5 If the assumptions of Theorem 2 are satisfied and a feasible control seed trajectory c0

at time t = 0 is available, then Algorithm 2 is feasible at each iteration and for all times (t � 0)

7
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Proof The initial seed c0 is feasible by assumption at iteration 0. Furthermore, assume that at time
t and iteration iter, Algorithm 2 returns c⇤ and the associated optimal tube X⇤ as the solution. Then
due to the nestedness property of the seed and optimal tube according to Lemma 3, c = 0 and X0,+

provide a feasible solution at iteration iter + 1 (with origin X
0,+
0 = X

⇤
0 = {xpt }). Further, from

Lemma 4 we conclude that the solution obtained in the final iteration at time step t: c⇤,final(t) with
X⇤,final(t) can be used to construct a feasible solution at time t+ 1: specifically c(t+ 1) = 0 and
X0,init(t+ 1) are feasible, since X

0,init
0 (t+ 1) = x

p
t+1 ✓ X

⇤,final
1 (t).

Lemma 6 The optimal objective in (8) at successive iterations of Algorithm 2 satisfies J
⇤,+  J

⇤
.

Proof Lemma 3 implies c = 0 and X0,+ are feasible and hence J
⇤+  J(c0,+, 0,X0,+). Lemma

3 implies X0,+
k ✓ X

⇤
k and therefore J(c0,+, 0,X0,+) = J(c0, c⇤,X0,+)  J

⇤ due to the definition
of the predicted cost (7) as the worst-case over the tube cross sections {Xk, k = 0, . . . , N}.

Theorem 7 If the offline computation described in Algorithm 3 is feasible, then the closed loop

system defined by the controlled system (1) and the control law of Algorithm 2 robustly satisfies

the constraints xt 2 X and ut 2 U . Furthermore, the closed loop system satisfies the bound:

limt!1
1
t

Pt�1
t=0(kxtk

2
Q + kutk2R)  �.

Proof By Lemma 4 and Theorem 5, c(t+1) = 0 and X0,init(t+1) are feasible at the first iteration
of Algorithm 2 at time t+1. This implies that J⇤,init(t+1)  J(c0,init(t+1), 0,X0,init(t+1)) 
J(c0(t), c⇤(t),X⇤(t))�kxtk2Q�kutk2R+� due to Lemma 1. Lemma 6 implies that J⇤,final(t+1) 
J
⇤,init(t + 1) and therefore we obtain J

⇤,final(t + 1)  J
⇤,final(t) � kxtk2Q � kutk2R + �. The

finiteness of the optimal predicted cost implies the bound provided on the average stage cost.

To extend the theory to the general case we consider again some ✓i⇤  0. Since, as previously
discussed, the linearization terms defined by Ak,i⇤ ,Bk,i⇤ and x

0
k,i⇤,r move from (8c) to (8b), whereas

the nonlinear (concave) term ✓i⇤ [fi⇤(xk,Kxk + c
0
k + ck)]r moves from (8b) to (8c), it follows that

the extension of the proofs of Lemma 3 and 4 is straightforward.

7. Example method for online model learning

For a set-based parameter estimation scheme (Lorenzen et al., 2019), we rewrite the model (1) as:

xt+1 = Dt✓ + dt + w (14)

with Dt(xt, ut) = [f1(xt, ut), . . . , fp(xt, ut)] and dt(xt, ut) = f0(xt, ut). Let ⇥t := {✓ 2 Rp :
H✓✓  ht} 8t � 0 be a fixed complexity parameter set (Lu et al., 2021), where H✓ is fixed and ht is
updated at each time t to obtain an improved set estimate. For an estimation horizon of length N⇥

we determine ⇥t+1 from the intersection of ⇥t with unfalsified parameter sets over window of N⇥

past time steps. The largest such intersection can be computed by solving a linear program for each
row i of H⇥:

[ht+1]i = max
✓2⇥t

[H⇥]i✓ subject to ✓ 2 ⇥t, xt+1�l �Dt�l✓ � dt�l 2 W, 8l 2 {0, . . . , N⇥ � 1}

and updating the vertex representation ⇥t = Co{✓v, v = 1, ..., n⇥}. In Lu et al. (2021) it is shown
that the estimated parameter set satisfies ⇥t+1 ✓ ⇥t ✓ · · · ✓ ⇥0, and under specific conditions that
ensure persistency of excitation, the parameter set ⇥t converges to the true parameter ✓⇤.
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8. Simulation results

Example 1: Online model learning. Consider the 2nd order nonlinear system xt+1 = f0(xt, ut)+
✓1f1(xt, ut) + wt with xt 2 R2, ut 2 U := {u 2 R : �1  u  1}, ✓1 2 ⇥0 := {✓ 2 R :
0  ✓  0.05} with true value ✓

⇤
1 = 0.0375, and wt 2 W := {w 2 R2 : �0.05  [w]i 

0.05, i = 1, 2}. The known part of the model is given by f0(x, u) = Ax+ Bu with A = [ 0.7 1
0 0.7 ],

B = [ 01 ] and the unknown part is ✓1f1(x, u) = ✓1[x21 x
2
2]
>. The cost weights are Q = [ 1 0

0 1 ],
R = 50, the prediction horizon length is N = 10, and the simulation total duration is Nsim = 15
steps. We execute Algorithm 3 based on the LDI bounds �x1,2  1.5 and obtain P = [ 3.84 9.43

9.43 54.22 ],
K = [�0.157 �0.948], � = 3.65, and � = 0.006. ⇥t is updated using a parameter set estimation
scheme as described in Section 7 with H⇥ = [1 �1]>, h0 = [0.05 0]>, estimation window
length N⇥ = 5, and dt(xt, ut) = f0(xt, ut), Dt(xt, ut) = [f1(xt, ut)]. We apply Algorithm 2 with
tol = 10�8, using (Gurobi Optimization, LLC, 2023) to solve problem (8), requiring on average
3.8 iterations with an average CPU time of 71ms per iteration (AMD Ryzen Pro 7 @ 1.7 GHz). The
closed-loop state and control trajectories with wt uniformly distributed on W and the evolution of
the parameter-set estimate ⇥t are shown in Figure 1.
Example 2: Coupled tank problem. Consider the following model of two connected water tanks2

[xt+1]1 = [xt]1 � �
A1

A

p
2g[xt]1 + �

kp

A
ut, (15a)

[xt+1]2 = [xt]2 � �
A2

A

p
2g[xt]2 + �

A1

A

p
2g[xt]1. (15b)

Here [xt]1, [xt]2 are the depths of fluid in each tank, with xt 2 X := {x 2 R2 : 0 cm < [x]i 
30 cm, i = 1, 2}, and ut 2 U := {u 2 R : 0V  u  24V} is the command signal to a pump
connected to one of the tanks. Each tank has area A = 15.2 cm2, the outflow orifice areas are
(A1, A2) = (0.13, 0.14) cm2, g = 981 cm s�2 is gravitational acceleration, kp = 3.3 cm3s�1V�1

is the pump gain and the sampling interval is � = 1 s. The dynamics in (15) are learnt as a weighted
sum of convex radial basis functions (RBF) xt+1 = ✓0 +

Pp
i ✓ifi(zt) with the multiquadric ker-

nel fi(zt) = (1 + kzt � cik2)1/2 where zt = [x>t ut]> and ci 2 R3 are precomputed centers.
The sign of each parameter ✓i is not constrained; hence the dynamics can be learned as a dif-
ference of convex functions (DC), thus providing sufficient representation power for smooth sys-
tem dynamics (Hartman, 1959). The DC decomposition is xt+1 = g(zt) � h(zt), where g(zt) =
✓0 +

Pp
i fi(zt)max{0, ✓i} and h(zt) =

Pp
i fi(zt)max{0,�✓i} are convex. The DC decomposi-

tion with p = 49 and uniformly spaced centers is shown in Fig. 2 (left) for the [xt+1]2 dynamics.
Training on 103 random samples results in a mean absolute error (MAE) of [0.095 0.044]> cm s�1.
The control problem is to drive the system to a reference state x

r
k = [(A2/A1)2hr hr]> with

hr = 15 cm. We take Q = [ 0 0
0 1 ], R = 0.1, and the MPC prediction horizon has N = 50 time steps.

Three cases are considered: (i) a nominal problem in which the MPC algorithm experiences
modelling errors due to the RBF approximation error and an additional i.i.d. Gaussian disturbance
with standard deviation equal to the MAE; (ii) a perturbed problem in which the flow rate between
the tanks in (i) is reduced by 20% after training the RBF; (iii) the same perturbed problem with
20% flow-rate decrease between tanks and online retraining of the RBF parameters. We apply
Algorithm 2 with conventional linearisation and solve problem (8) using (MOSEK ApS, 2021),

2. MATLAB code for Example 2 is available at https://github.com/martindoff/Radial-basis-TMPC.
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requiring on average 0.62 s per time-step.3 The cost evaluated along closed loop system trajectories
increases by 30% from scenario (i) to (ii), but the suboptimality is reduced to 17% when the RBF
parameters are re-trained. The closed loop responses for each case are compared in Fig. 2.

Figure 1: Closed loop responses for 10 simulations of Example 1. Left: Estimated parameter set. Right:
control and state trajectories; mean values (black lines) and variation (red shading).
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Figure 2: DC decomposition of the model (15b) and responses for Example 2. Left: f = g � h (blue) with
g (red) and h (green) fitted to data. Right: closed loop responses for MPC with a nominal model
approximation and with a 20% decrease in flow between the tanks, with and without re-training.

9. Conclusions

This paper introduces a convex programming framework for robust nonlinear MPC with bounded
additive disturbances and online estimation of model parameters. The approach is applicable to
feedforward neural network models with convex activation functions, allowing the linear parame-
ters of the output layer to be estimated online. The method is based on sequential convex approx-
imation, allowing efficient implementation, and the online optimization can be terminated after an
arbitrary number of iterations without compromising stability or constraint satisfaction. Guarantees
of recursive feasibility and closed-loop performance bounds are derived. Further work will address
the scalability of the approach with respect to the state dimension by replacing the hyperrectangular
tube cross sections in the vertex formulation of Algorithm 2 with simplex cross sections.

3. Computation may be reduced significantly using a bespoke first order solver, as discussed in Doff-Sotta et al. (2022).
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