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Abstract
Training Deep Reinforcement Learning (DRL) locomotion policies often require massive amounts
of data to converge to the desired behavior. In this regard, simulators provide a cheap and abun-
dant source. For successful sim-to-real transfer, exhaustively engineered approaches such as sys-
tem identification, dynamics randomization, and domain adaptation are generally employed. As
an alternative, we investigate a simple strategy of random force injection (RFI) to perturb system
dynamics during training. We show that the application of random forces enables us to emulate
dynamics randomization. This allows us to obtain locomotion policies that are robust to variations
in system dynamics. We further extend RFI, referred to as extended random force injection (ERFI),
by introducing an episodic actuation offset. We demonstrate that ERFI provides additional robust-
ness for variations in system mass offering on average a 53% improved performance over RFI.
We also show that ERFI is sufficient to perform a successful sim-to-real transfer on two different
quadrupedal platforms, ANYmal C and Unitree A1, even for perceptive locomotion over uneven
terrain in outdoor environments.
Keywords: Sim-to-real; Legged Locomotion; Reinforcement Learning.

Figure 1: Deployment of the perceptive and blind locomotion policies on the ANYmal C and Uni-
tree A1 quadrupedal platforms trained using our proposed ERFI-50 strategy without requiring actu-
ation modeling or explicit randomization of dynamics or actuation properties.

1. Introduction

Deep reinforcement learning (DRL) has emerged as a promising approach for legged robotic control
enabling highly dynamic and sophisticated locomotion capabilities (Lee et al., 2019; Yang et al.,
2020; Kumar et al., 2021). The sample complexity associated with high-dimensional problems such
as locomotion makes the use of physics simulators (Hwangbo et al., 2018a; Makoviychuk et al.,

© 2024 L. Campanaro, S. Gangapurwala, W. Merkt & I. Havoutis.



CAMPANARO GANGAPURWALA MERKT HAVOUTIS

2021b) appealing for training DRL control policies. This convenience, however, often requires
addressing the reality gap between the simulated training domain and the physical target domain.

Strategies to address this reality gap often include identification of sensory noise which is then
modeled and introduced in simulation during training (Jakobi et al., 1995; Hwangbo et al., 2019),
or alternatively by including dropout during rollouts (Campanaro et al., 2023); accurate param-
eter identification (of properties such as Center of Mass (CoM), mass and inertia of robot links,
impedance gains, system communication delays, and friction) for system modeling in addition to
identification of relevant distributions suitable for domain randomization (Tan et al., 2018; Lee et al.,
2019); and training a Neural Network (NN) to model the actuation dynamics of specific actuators,
e.g. Series Elastic Actuators SEAs (Hwangbo et al., 2019; Lee et al., 2020).

As an alternative to exhaustive system identification and distribution identification for dynam-
ics randomization, Valassakis et al. (2020) demonstrated captivating performance in sim-to-real for
manipulation tasks using an extremely simple RFI strategy. RFI enables emulation of dynamics
randomization through perturbation of system dynamics with randomized forces. However, as pre-
sented in Section 8, locomotion policies trained using RFI exhibit subpar robustness to policies
trained with explicit dynamics randomization. To address this loss of performance, we present
ERFI: ERFI allows to transfer locomotion controllers trained in simulation to the hardware by ran-
domizing only two parameters: a random episodic actuation offset and random perturbations at
each step. First, we show the efficacy of the approach proposed on legged systems, not covered in
previous studies, second, we compare it to its predecessor RFI (Valassakis et al., 2020), to varia-
tions of the same method detailed in the following chapters and to standard domain randomization.
Furthermore, we demonstrate with simulation experiments a significant performance improvement
over RFI (mass variations’ success rate +53%) especially scenarios unseen during training, which
involves adding a manipulator arm on top of the robot at test time (mass variations’ success rate
+61%). Finally, we successfully deploy perceptive and blind policies trained in simulation with
ERFI on to the physical ANYmal C and Unitree A1 quadrupeds. We show that training of actu-
ator networks (mainly adopted for robots containing SEAs) and performing significant dynamics
randomization (Peng et al., 2018), currently accepted as a standard for sim-to-real transfer can be
substituted by a simple ERFI strategy. We test the controller’s locomotion performance over flat
and uneven terrain and further evaluate its robustness to additional mass and variation in CoM by
mounting a Kinova arm on the robot’s base.

2. Related Works

Actuators are an essential part of legged systems: they can be hydraulic (Semini et al., 2011), elec-
tric (Seok et al., 2013) and contain compliant elements (Hutter et al., 2016). Their dynamics is
difficult to model involving nonlinear/nonsmooth dissipation, feedback loops and several internal
states which are not directly observable. To accurately approximate SEAs, the authors of (Hwangbo
et al., 2019) trained an actuator network able to output an estimated torque at the joints given as
inputs a history of joint position errors and joint velocities recorded from the hardware. Modeling
the actuation dynamics with NNs, for robots adopting SEAs, is now considered a standard and other
works employed derivations of the same approach (Gangapurwala et al., 2020; Miki et al., 2022;
Bohez et al., 2022). The limitations of learning the actuators’ dynamics can be summarized in the
need of recording motors’ torques (not directly measurable for direct drives), training and testing
the NN. In this context it is important to underline that direct drives motors are simpler to model
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compared to SEAs and adopting an actuator network is not necessary, since classic system identifi-
cation is enough. However, ERFI also removes the need for system identification by randomizing
motors’ torques.

Alongside actuator networks, the rise of highly dynamic controllers is driven by domain ran-
domization, particularly dynamics randomization. Initially introduced in (Tobin et al., 2017; Peng
et al., 2018), the approach consists in the randomization of some of the parameters of the robot’s
dynamics or of the environment. The additional robustness achieved can then compensate for dis-
crepancies between simulation and the real world. In (Hwangbo et al., 2019) the domain random-
ization involves adding noise to the center of mass positions, the masses of links, and joint positions.
In (Bohez et al., 2022) the randomization covers: mass, center of mass position, joint position, joint
damping, joint friction, joint position tracking gains Kp, torque limits; while regarding the obser-
vations’ perturbations: delays, joint position noise, angular velocity noise, linear acceleration noise
and base orientation noise. Alongside with dynamics randomization, observations were also per-
turbed during training (Bohez et al., 2022) by adding delay, injecting noise into the joint positions,
angular velocity, linear acceleration and base orientation. A significant randomization was also
adopted in (Gangapurwala et al., 2020): gravity, actuation torque scaling, robot link mass scaling,
robot link length scaling, random external forces at the base, gravity, actuation torque scaling, link
mass scaling, link length scaling, actuation damping gain.

Considering the long list of parameters affected by randomization, the additional robustness it
offers requires substantial efforts in system identification: especially in selecting the factors respon-
sible of the reality gap (Valassakis et al., 2020) and in defining their randomization range; which if
done incorrectly can severely affect the real world performances of the controller, leading to overly
conservative policies (Xie et al., 2020).

An alternative technique – Random Force Injection – was proposed in (Valassakis et al., 2020),
it aims to transfer policies trained in simulation to real systems without further tuning, with a limited
number of parameters and it consists of injecting random forces into the simulator’s dynamics. This
method was tested on manipulation tasks, where it performed comparably to domain randomization.
However, its potential was not evaluated for floating-base systems, especially when the overall
stability is compromised by external perturbations.

3. Preliminaries

3.1. System Model

We model a quadrupedal system as a floating base B. The robot state is represented w.r.t. a reference
frame W . We assume the z-axis of W , eWz , aligns with the gravity axis. The base position is then
expressed as rB ∈ R3, and the orientation, qB ∈ SO(3), is represented by a unit quaternion. The
corresponding rotation matrix is expressed as RB ∈ SO(3). The angular positions of the rotational
joints in each of the limbs are described by the vector qj ∈ Rnj . For the quadrupeds considered
in this work, nj = 12. The linear and angular velocities of the base w.r.t. the global frame are
written as vB ∈ R3 and ωB ∈ R3 respectively. The generalized coordinates and velocities are thus
expressed as q and u where

q =

rBqB
qj

 ∈ SE (3)× Rnj , u =

vB
ωB

q̇j

 ∈ R6+nj . (1)
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3.2. Impedance Control

In the context of this work, we consider a quadrupedal system is actuated using the joint control
torques τj ∈ Rnj . These torques are computed using the impedance control model given by

τj = Kp(q
∗
j − qj) +Kd(q̇

∗
j − q̇j) + τjFF , (2)

where Kp and Kd refer to the position and velocity tracking gains respectively, q∗j is the vector
representing desired joint positions, q̇∗j , the desired joint velocities, and τjFF refers to the feed-
forward joint torques.

For locomotion, we train DRL control policies that modulate the joint actuation torques by
generating q∗j . Additionally, we set q̇∗j = 0 and τjFF = 0. Peng and van de Panne (2017) presented
that such an approach offers more stable training and better performance than a torque controller.
Equation 2 can thus be simplified to

τj = Kp(q
∗
j − qj)−Kdq̇j . (3)

3.3. Rigid Body Dynamics Model

The rigid body dynamics model of a quadrupedal system can be expressed in the form of generalized
equations of motion expressed as

Mu̇ + h = ST τj + JTλ, (4)

where M ∈ R(6+nj)×(6+nj) is the mass matrix relative to the joints, h ∈ R6+nj comprises Coriolis,
centrifugal and gravity terms, ST = [0nj×6 Inj×nj ]

T , and J is the Jacobian which maps the contact
forces λ ∈ Rnf at nf = 4 feet to generalized forces.

4. Extended Random Force Injection

Valassakis et al. (2020) investigated the effects of introducing random perturbations to a manipula-
tion system. These random force injections aimed to diversify the visited states during training of
DRL policies. In this regard, their implementation augmented the generalized equations of motion,
similar to Equation 4, by random forces fr ∼ U(−f lim

r , f lim
r ) sampled from a uniform distribution

U with limits −f lim
r and f lim

r . These forces are sampled and applied at each time step to perturb
the state transition P . In this work, we adapt this approach for quadrupedal systems and write
Equation 4 with RFI as

Mu̇ + h = ST τj + JTλ+ fr. (5)

It is important to note that Valassakis et al. (2020) used this approach for a fixed-base system. In
our preliminary experiments, for a mobile-base quadrupedal system, we observed that perturbing
the robot’s base with even small forces and torques resulted in convergence to undesired locomotion
behavior. For the ANYmal C quadruped, forces and torques on the base sampled from distributions
with f lim

rb
> 5N and τ limrb

> 3Nm respectively resulted in pronking behavior. Although this
behavior was robust to external disturbances on the base, the pronking gait is energy inefficient and
unsuitable for transfer to the physical system. Therefore, to better handle uncertainty in the system,
we only introduce perturbations to the rotary joints of the quadruped and randomize forces on DoFs
that we directly control.
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The impedance controller described by Equation 2 is often executed at the actuation level at
a higher frequency compared to the locomotion controller which is described by the DRL control
policy mapping robot state information to desired joint positions. In this article, we refer to these
frequencies as impedance control frequency and locomotion control frequency. We introduce per-
turbations at the impedance control frequency. We then split Equation 5, describing RFI, into the
generalized equations of motion given by Equation 4 and an augmented impedance controller given
by

τ rj = Kp(q
∗
j − qj)−Kdq̇j + τrj , (6)

where τrj refers to the random joint torque injections sampled from U(−τ limrj , τ limrj ) at each impedance
control update step. Note that Equation 6 is only utilized during training. For deployment, we con-
sider the actuation is governed by Equation 3.

In this work, we also investigate the effects of introduction of episodic actuation offsets during
training. As opposed to randomizing τrj at each impedance control step, we sample joint torque
offsets τoj from U(−τ limoj , τ limoj ), at the beginning of each training episode and apply them at each
impedance control step. We refer to this as random actuation offset (RAO). This can be represented
similarly as our implementation of RFI and is written as

τ oj = Kp(q
∗
j − qj)−Kdq̇j + τoj . (7)

This constant offset enables us to emulate a shift in the robot’s mass, inertia, impedance gains and
contact Jacobian. However, unlike RFI, wherein the dynamics vary at each impedance control step
resulting in a more reactive control behavior robust to temporally local perturbations, with RAO,
the policy learns an implicit adaptive behavior for temporally global variations in system dynamics.

We also introduce an extended variant of RFI by combining RFI and RAO to learn control
policies which can be robust to temporally local and global variations in system dynamics. We refer
to this as ERFI-Cumulative (ERFI-C). In this case, we inject both a randomized force sampled
at each impedance control step and an episodic actuation offset. The impedance controller with
ERFI-C can be then written as

τ cj = Kp(q
∗
j − qj)−Kdq̇j + τrj + τoj . (8)

We further explore another strategy with the same motivation as for ERFI-C. In this case, we only
utilize RFI with 50% of the parallelized DRL training environments. The remaining environments
employ RAO. We refer to this approach as ERFI-50. In comparison to ERFI-C, which can be
considered as RFI with randomized distribution mean thereby resulting in a possibility of a learning
bias for robustness to temporally local perturbations, ERFI-50 promotes unbiased learning of both
local and global variations in system dynamics.

5. Why does ERFI work?

In Figure 2(a) and Figure 2(b), respectively, we show the effects of adding RFI and RAO as a feed-
forward term of the PD controller (Kp = 15, Kd = 1) when commanding a step position change of
0.17 rad (≈10 deg) to the hind right knee.
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(a) (b)

Figure 2: The magnitudes of τ limrj and τ limoj affect the dynamics of the system.

5.1. How does RFI model delays?

As can bee seen from Figure 2(a), the yellow line reaches the desired position faster than the green
line, although the green line settles earlier. This implies that RFI adds stochasticity to the rise and
settling times, i.e. it either increases or reduces the rise and settling times. The increase or decrease
depends on the direction of the perturbation. This allows us to implicitly randomise actuation dy-
namics, especially parameters that relate to delays, friction and inertia (Section "ERFI robustness to
delays" of the accompanying website).

5.2. How does RAO model mass and kinematic variations?

In Figure 2(b), the additional torque shifts the desired position of the joint and implicitly models
offsets in the joint position (kinematics variations) or in the payload supported by the robot. Evi-
dences of these effects can be found in Figure 4(a) and Figure 4(d) and video 3, 4, and 10 (on the
accompanying website), demonstrating the robustness of the controllers even when the unmodelled
payload reaches 42% of the total weight of the robot.

6. Problem Definition

The complex SEAs present on the ANYmal C quadruped exhibit a highly nonlinear behavior
(Gehring et al., 2016). To address their complex dynamics, networks modeling the actuation be-
came common practice in the community (Section 2). Evaluating the effectiveness of ERFI on such
a platform thus provides a measure of the robustness of the method and of its generalization abilities.

Conversely, Unitree’s A1 adopts quasi-direct drive actuators, which are affected by high levels
of delay, signal noise and inaccurate tracking. Given the different technology adopted compared to
SEAs and the canonical role that Unitree A1 has played in recent research works (Shao et al., 2022;
Yang et al., 2022), we also investigated the effects of ERFI for obtaining locomotion policies for
A1.

6.1. Perceptive Quadrupedal Locomotion

The ANYmal C robot is used to track a velocity command [vx, vy, γ̇]B on uneven ground using pro-
prioceptive and exteroceptive information. The state is represented as s := ⟨sr, sv, sjp , sjv , sa, sm, sc⟩,
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where s ∈ R259, sBr ∈ R3 is the second row of the rotation matrix, sv ∈ R6 is the base linear and
angular velocities, sBjp ∈ R24 is the sparse history of joint position errors and sBjv ∈ R24 is the sparse
history of joint velocities, sa ∈ R12 is the previous action, sm ∈ R187 are measurements from the
height-map around the robot’s base and sBc ∈ R3 is the velocity command. The actions a ∈ R12 are
interpreted as the reference joint positions q∗j . The state s is fed to an MLP network made by three
layers respectively of size [512, 256, 128] and the action a is subsequently tracked by the low level
PD controller (Kp = 80.,Kd = 2.).

6.2. Blind Quadrupedal Locomotion

The A1 quadruped robot is required to follow a velocity command [vx, vy, γ̇]B on flat ground us-
ing proprioceptive information. The state is represented as s := ⟨sr, sv, sjp , sjv , sa, sc⟩, where
s ∈ R192, sBr ∈ R3 is the second row of the rotation matrix, sv ∈ R6 is the base linear and angular
velocities, sBjp ∈ R84 is the history of joint position errors and sBjv ∈ R84 is the history of joint ve-
locities, sa ∈ R12 is the previous action, velocity and action and sBc ∈ R3 is the velocity command.
The actions a ∈ R12 are interpreted as the reference joint positions q∗j . The state s is fed to an MLP
network formed by two layers respectively of size [512, 512] and the action a is tracked by the low
level PD controller (Kp = 15.,Kd = 1.). The base linear velocity in sv is not provided by the
onboard state estimator and it was estimated similarly to (Ji et al., 2022) through an MLP network
of size [128, 128].

Figure 3: (Left) Examples of stairs with varying step-height and step-depth used for evaluation.
(Center) ANYmal C walking on stairs with an unmodeled Kinova manipulator. (Right) ANYmal C
walking on rocky terrain during tests.

7. Experimental Setup

To evaluate our method, we employed ANYmal C as a reference platform and we trained different
policies for 10,000 iterations using IsaacGym (Makoviychuk et al., 2021a) each adopting one among
RFI, RAO, ERFI-50, ERFI-C, and ActNetRand, where ActNetRand represents the present state-of-
the-art approach implementing both actuation network and extensive domain randomization, as in
(Rudin et al., 2021). The environment settings used are described in Section 6.1.

The performances of the policies trained with the different methods were assessed by ad-
dressing perceptive locomotion over stairs and rocky terrain as relevant case study (Figure 3).
Moreover, to obtain more realistic results the experiments were conducted in a different simulator
(RaiSim (Hwangbo et al., 2018b)) and we included an actuator network to reproduce the dynamics
of SEAs (which was not used during the training of RFI/RAO/EFRI policies). The robot is always
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deployed at the same position, the velocity command is fixed to 0.5m s−1 and it has 8 s to go up the
stairs; the attempt is considered a failure when the robot falls on the ground or when it is not able to
move forward for at least 2.5m. We generated 50 random stairs as in (Gangapurwala et al., 2020),
which are placed just in front of the robot, and walking for 2.5m from the spawning point requires
tackling at least one step.

To assess the robustness of the policies to unseen conditions we introduced perturbations to the
simulation environment: the application of external forces [0 ; 150]N to the base (fixed value during
training: 0.) for a duration of 3 s, the application time of an external force of 50N varies between
[0 ; 3] s (fixed value during training: 0.), the application of external torque [0 ; 75]Nm to the base
(fixed value during training: 0.) for a duration of 1 s, the friction coefficient between ground and feet
in the range [0.2, 0.8] (fixed value during training: 0.5), the gravitational acceleration was modified
between [−18 ; −2]m/s2 (fixed value during training: −9.81m/s2), the position of the knees’
motors was shifted by [−0.15 ; −0.15]m (fixed value during training: 0.) and the mass of the base
changed between [22 ; 65] kg (fixed value during training: 27 kg). Throughout the evaluation we
alter only one parameter at the time and for each of them we run 50 experiments with different
terrains. Furthermore, we replicate the set of experiments above with a robotic arm mounted on top
of ANYmal C, this introduces significant variations in the mass matrix M which the robot never
explicitly experienced during training. Following the thorough validation presented in simulation,
the best performing controller (resulted to be trained with ERFI-50) was deployed on the hardware,
tested on rough and uneven terrain, both in the laboratory and outdoor environments to validate the
feasibility of the method.

In addition, we demonstrate the effectiveness of ERFI-50 with hardware experiments also on
Unitree A1, this time performing blind locomotion in challenging conditions. We present results of
extensive hardware evaluation in Figure 5 and on our accompanying website https://sites.
google.com/view/erfi-video.

8. Results

We compared ERFI-50, ERFI-C, and RAO against two baselines, RFI and ActNetRand (policy
trained using dynamics randomization and actuator network). The metric adopted to assess their
performances is the success rate described in Section 7. The first row of Figure 4 (Figures 4(a)
to 4(c)) shows the robustness of the different approaches to changes in the base mass, in the ap-
plication of external forces, or to different friction coefficients between feet and ground; in this
first batch of experiments, the arm was not included. From these plots, it is evident that the stan-
dard RFI is the least performing method, while still providing decent robustness especially close
to the training domain. Conversely, RAO and ERFI-50 are the better-performing ones (providing
on average 53% better success rate than RFI on mass variations, Figure 4(a)), they are often very
close and sometimes better than ActNetRand, which is currently the standard approach to deploy
controllers on the hardware. Regarding ERFI-C, it does better than standard RFI (on average 41%
better success rate on mass variations, Figure 4(a)), but still not as well as ERFI-50 and RAO (on
average 12% worse success rate on mass variations, Figure 4(a)). The analysis presented above was
repeated after mounting a fixed Kinova manipulator arm on top of the robot; the same policies, per-
turbation, and set of stairs were considered during the experiments. The objective of this last study
is to test the robustness of the controller in real-world scenarios never encountered during training.
The resulting performances are depicted in Figures 4(d) to 4(f ), where we observe the gap between
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Figure 4: Figures 4(a) to 4(c) show how RFI, ERFI-50, ERFI-C, RAO and ActNetRand resist to
variations of the base mass, to external forces, or to different frictions. In Figures 4(d) to 4(f )
the same experiments are replicated with a Kinova manipular on top of the robot. In Figures 4(g)
and 4(h) we investigated the effects of the perturbations also on the rocky terrain in Figure 3. While,
in Figure 4(i) we studied how different τ limoj and τ limrj affected the robustness of the controller.

RFI and RAO/ERFI-50 enlarging with a performance loss for RFI -even in the training domain- of
roughly 50%, while RAO and ERFI-50 achieved roughly 62% higher success rate than RFI on this
task, Figure 4(d).

Furthermore, we investigated the effects of τ limoj and τ limrj on the overall performances of ERFI-
50, we show the outcomes of different limits on the success rate when the base mass is increased,
Figure 4(i). The curves in Figure 4(i) show that high τ limoj provides greater robustness in combination
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with high τ limrj (ERFI50-40+40, red line), when compared to τ limoj = 20[Nm] and τ limrj = 20[Nm].
However, for values of τ limoj = 30[Nm] and τ limrj = 30[Nm] the performance improves in one
portion of the domain and it remains comparable to τ limoj = 20[Nm] and τ limrj = 20[Nm] in the
remaining one.

To provide a comprehensive assessment, we present the performance on the rocky terrain in
Figure 3, which complements the results obtained in the staircase environment. Notably, the survival
rates in high perturbation regimes are partially reduced due to the absence of rocky terrain in the
training environment. Nonetheless, the relative performances of the methods remain comparable to
those observed in the staircase evaluation, Figures 4(g) and 4(h).

The robustness to further perturbations –as varying the duration of the external force, applying
an external torque, varying the gravitational acceleration and shifting the knee motors’ positions–
were investigated and the results are consistent with what is already shown in Figure 4.

Figure 5: This figure shows some of the experiments on Unitree A1 adopting ERFI: a) Walking
on wet terrain and recovering from slipping, b) resisting to kicks, and c) withstanding impulsive
forces. More experiments and videos available on our accompanying website https://sites.
google.com/view/erfi-video.

9. Conclusion

In this work we showed that transferring policies trained in simulation to real systems is possible
without defining the domain randomization’s parameters and their ranges, without further system
identification to measure the noise to inject in the observations and without recording any of hard-
ware data to train an additional NN to model the motors’ dynamics. Instead we proposed to use a
blend of episodic and continuously changing random force perturbations (ERFI-50), which has com-
petitive performance compared to state of the art extensive domain randomization (ActNetRand) and
which only requires tuning two parameters (τ limoj and τ limrj ); hence reducing the sim-to-real transfer
efforts compared to previous approaches by a large margin. We further demonstrated the validity
of our approach by transferring the controllers to the hardware and showing stable locomotion with
Unitree A1, uneven terrain locomotion and mounting an unmodelled manipulator on top of the robot
with ANYmal C.
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