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Abstract

State-of-the-art control methods for legged robots demonstrate impressive performance and robust-
ness on a variety of terrains. Still, these approaches often lack an ability to learn how to adapt to
changing conditions online. Such adaptation is especially critical if the robot encounters an en-
vironment with dynamics different than those considered in its model or in prior offline training.
This paper proposes a learning-based framework that allows a walking robot to stabilize itself under
disturbances neglected by its base controller. We consider an approach that simplifies the learning
problem into two tasks: learning a model to estimate the robot’s steady-state response and learning
a dynamics model for the system near its steady-state behavior. Through experiments with the MIT
Mini Cheetah, we show that we can learn these models offline in simulation and transfer them to the
real world, optionally finetuning them as the robot collects data. We demonstrate the effectiveness
of our approach by applying it to stabilize the quadruped as it carries a box of water on its back.
Keywords: Legged robots, Data-driven control, Adaptive control

1. Introduction

Recent advancements in legged locomotion controllers enable their widespread deployment in di-
verse environments in industry (Wensing et al., 2022). As these methods mature, there is a growing
interest toward developing control algorithms that can overcome unanticipated conditions at test
time. Most leading control approaches leverage model predictive control (MPC) (Di Carlo et al.,
2018; Grandia et al., 2022; Meduri et al., 2023) or sim-to-real reinforcement learning (RL) (Lee
et al., 2020; Kumar et al., 2021; Margolis et al., 2022), both of which may fail under disturbances
not considered offline. Ideally, a locomotion controller could adapt on-the-fly when it encounters
an environment outside the scope of its model (in the case of MPC) or its training distribution (in
the case of RL). As a step toward this goal, this paper proposes a framework that enables a legged
robot to learn how to stabilize itself under disturbances neglected by its base controller.

Rather than updating the base control policy or its model directly, our approach considers the
response of the closed-loop system composed by the robot and its base controller. We separate the
learning problem into two tasks: learning to estimate the robot’s steady-state output and learning a
local dynamics model near its steady-state behavior (Lemmon et al., 2022). In the context of legged
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locomotion, we refer to the base velocity of the robot along an asymptotically stable periodic orbit
(a.k.a. stable limit cycle and attractor) as the steady-state output.

Decomposing the problem into learning the system’s steady-state behavior and a local dynamics
model offers several benefits. The approach only requires that the base controller exhibits steady-
state behavior when driven by a constant input. Thus, our framework is, in principle, applicable to
model-based and model-free locomotion controllers alike. Once we have an estimate of the steady-
state output of the system, we can subtract it from the true output to calculate the system’s natural
response. After removing its periodic component, the remaining output is hyperbolic in nature. It
follows from the Hartman-Grobman theorem that the local behavior of a system near a hyperbolic
equilibrium point can be captured by linearization techniques. With a local approximation of the
dynamics, we can choose from a suite of available control options (i.e., linear quadratic regulator,
MPC, passivity-based feedback, etc.) to force the system back to its steady-state behavior.

Past work in this area has shown that both a model for estimating the steady-state behavior and
a local dynamics model can be learned through online regression techniques to adapt Raibert’s 2D
hopper to uneven terrain (Lemmon et al., 2022). We build upon this work to produce a more-general
framework applicable to real-world robotic systems. Our contributions are as follows:

* We show that it is possible to train a multi layer perceptron (MLP) in simulation to predict the
steady-state velocity of a robot to a given command, and that the model transfers to hardware.

» Similarly, we demonstrate sim-to-real transfer of a local dynamics model for the closed-loop
system about its steady-state behavior. This step avoids an online training phase when the
robot would be vulnerable to falling due to an unknown disturbance.

* We demonstrate finetuning these models online as the robot encounters new conditions.

* We demonstrate using these models in an MPC algorithm to stabilize the MIT Mini Cheetah
while it carries a box of water.

Overall, we see our work as a step toward endowing robots with the capability of adapting their
skills to new environments with unknown dynamics. Further, it is a strong example of improving
an existing model-based controller with learning-based techniques.

1.1. Related Work

A number of methods for adapting robot control methods to new environments have been proposed
in the literature. A traditional approach is to perform system identification to estimate parameters
in models with known structure (Lee et al., 2024; An et al., 1985; Wensing et al., 2023). While
this technique is critical for accurate simulation and model-based control, our framework takes a
different perspective by estimating a local dynamics model of the closed-loop system composed
of the robot and its base controller, rather than estimating parameters in a physics model. Thus,
our approach addresses non-parametric dynamic uncertainty, which we argue is necessary for an
uncertain world.

Instead of estimating the true parameters of the environment and the robot’s dynamics, an alter-
native approach is to train a policy that is robust to a distribution of parameters (Tobin et al., 2017;
Xie et al., 2021). While locomotion policies trained with domain randomization (DR) are robust,
they are not necessarily optimal (Tan et al., 2018). In contrast, our method finetunes to the cur-
rent environment to avoid sacrificing performance. Others have avoided the robustness-optimality
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tradeoff of DR by training a neural network to estimate a latent embedding of key environment pa-
rameters from a finite history of observations. They condition the control policy on this embedding
to adapt in real-time (Lee et al., 2020; Kumar et al., 2021). Still, the test environment must be simi-
lar to those seen during training for this method to perform well. Our framework complements this
approach by enabling adaptation to new scenarios not seen in prior training.

Another approach is to finetune the robot’s base locomotion policy directly (Smith et al., 2021).
Chen et al. (2023) consider this in addition to modulating between policies for different learned
behaviors. While our framework also has mechanisms for finetuning, it is separate from the base
policy, only assuming that it asymptotically approaches steady-state behavior in response to a con-
stant input. This distinction makes our framework applicable to a more diverse set of controllers.

2. Overview

The system architecture developed in this work is shown in Figure 1. The main components are the
MLP for estimating the steady-state velocity of the robot (Section 3.1), the error system identifica-
tion for approximating the local dynamics near the steady-state behavior (Section 3.2), and the MPC
for regulating the system back to steady-state (Section 3.3), which we refer to as DMDc-MPC to
differentiate it from the base controller. The remaining components are the MIT Mini Cheetah robot
(Katz et al., 2019) and its convex MPC (Di Carlo et al., 2018). The hardware results incorporate a
state estimator (Bledt et al., 2018) for determining the base orientation and velocity. Algorithm 1
outlines our framework’s training and deployment, distinguishing between offline and online steps.

The MLP is trained to predict the robot’s steady-state velocity from a finite history of observa-
tions. Past work (Lemmon et al., 2022) demonstrates the use of a moment-matching model (Astolfi,
2010) for estimating the steady-state output. However, the formulation in Lemmon et al. (2022) is
limiting because (1) it is not flexible to changes in the robot’s input command and (2) it relies on a
model for the disturbance generator. On real-world systems, a teleoperator may change the robot’s
velocity command frequently, and it’s infeasible to anticipate all possible disturbances. We address
the first issue by conditioning the MLP’s prediction on the robot’s velocity command. We train the
model in simulation to predict the steady-state velocity of the Mini Cheetah controlled by its convex
MPC base controller (Di Carlo et al., 2018) for a range of commands. Our MLP does not rely on
a model of a disturbance, nor do our training environments include disturbances. Alternatively, we
demonstrate through a sim-to-sim transfer experiment (Section 4) that the MLP can be finetuned
when the robot encounters new conditions that change its steady-state behavior.

Similar to past work, we apply dynamic mode decomposition with control (DMDc) (Proctor
et al., 2016) to learn a local dynamics model for the closed-loop system about its steady-state be-
havior. To learn how varying the control input affects the error system’s state, it’s necessary to
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“kick” the control input to the robot’s base controller by adding command perturbations. However,
it may be unsafe to “kick” the control input in safety-critical scenarios, where risk for a fall is intol-
erable. We avoid this safety hazard by initializing the model in simulation through an offline training
phase. From the start of deployment, we use the model in the DMDc-MPC to find a sequence of
perturbations to the velocity command that minimizes the robot’s deviation from its steady-state
behavior over a finite horizon. We also finetune the model online through rank-1 updates to adapt to
new disturbances. We validate our approach through simulation and hardware experiments with the
Mini Cheetah, where it must stabilize itself under disturbances not encountered in its prior training.

3. Method

The goal of our learning-based framework is to stabilize the robot in the presence of a disturbance
neglected by its base controller. An accurate estimate of the robot’s steady-state behavior is needed
as areference to where a feedback controller will regulate the robot. The following section describes
a method for estimating this behavior for a range of possible velocity commands to the robot’s base
controller. The feedback controller for stabilizing the robot relies on a model of the closed-loop
system about its steady-state behavior. We describe how to learn such a model with DMDc (Section
3.2), and how we formulate the DMDc-MPC as the feedback controller in our framework (Section
3.3). We also describe how we finetune the MLP and the DMDc model online (Section 3.4).

3.1. Learning to Estimate the Robot’s Steady-State Response

In this section, we describe the supervised learning procedure to train the MLP that estimates the
steady-state velocity at time ¢, v{* = [w,v$*]T € RS, for a given command, u; = vi™ ¢
RS, We denote w$* € R? and v® € R as the angular and linear components of the steady-state
velocity, respectively. The MLP’s input is an observation history from the robot’s base controller,
0 € RUEFTDXNo where H + 1 is the history length in timesteps and NN, is the dimension of the
observation space. We perform stochastic gradient descent with a mean-squared error loss function
between the model’s output, v}*, and the state estimate of the true velocity, v; € RS.

The challenge in training the model is to avoid fitting to transient effects. Thus, it’s critical
only to train on data from when the system is in steady-state. We collect training data offline in
simulation, recording the state estimates for a range of valid velocity commands. Each episode, the
robot receives a random command. The system has a transient response to the command before
settling to steady-state, so we drop the first few seconds of data from the training dataset. We
continue collecting data for a fixed episode length or until a fall, in which case we discard the data.

Selecting the observation space, o, involves a design tradeoff: providing the model enough
information to estimate the steady-state velocity but not enough to fit to transient effects. We found
that including the state estimate in the observation led to overfitting. Instead, we selected the history
of observations as 0,4 = [W—f7.¢, Ct— -], Where ¢, € [0, 1](H“'1)X4 is a history of contact
phase variables, which encode the contact status of each foot. The observation allows the network
to capture oscillations due to the gait cycle. Each component 7 takes a value O when contact ¢ is
midway through a swing phase, and linearly increases with time such that it is 0.5 mid-stance. The
components reset to 0 when contact ¢ reaches mid-swing again.

We collected a training dataset in simulation (MIT Biomimetics Robotics Lab, 2019), and
trained an MLP to map, [w—p.¢, Ci— e}, t0 [wi ™, v v)*], where H = 10 (100 ms). We
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chose not to estimate the full v;* because the convex MPC base controller only takes the de-
sired yaw-rate, forward velocity, and lateral velocity as input. Each episode, we sampled a
command from a gaussian distribution with mean diag(Orad/s,0.5m/s,0m/s) and variance
diag(0.33 rad?/s%,0.5m?/s?,0.33 m?/s%). We dropped the first two seconds of data to avoid fit-
ting to transient effects. We terminated the episode after 10 s or if an emergency stop was triggered.
The MLP had 3 hidden layers with 16, 64, and 16 neurons, as well as ReLLU activations after the
first two layers and layer norms after the last two layers. We trained for 15,000 iterations with the
AdamW optimizer (Loshchilov and Hutter, 2017) and a batch size of 32. We set the initial learning
rate to 1 x 1072 and decreased it by a factor of 10 when the validation loss plateaued (Paszke et al.).

Tables 1 and 2 show the maximum mean absolute error (MAE) of each episode in the test
set for MLP’s trained with datasets of various sizes and observation history lengths. We noticed
diminishing improvements when expanding the size of the training data. Extending the observation
history length improved the model up to a point where the performance degraded.

We validated that the MLP transferred to the actual system by conducting an experiment where
we suddenly changed the robot’s velocity command and observed the MLP’s output. Figure 2 is a
plot of the forward velocity (blue), the MLP estimate (orange), and the command during the exper-
iment (green). During steady-state, the MLP tracks the robot’s state estimate, including oscillations
due to the gait cycle. After command changes, the robot overshoots the command, but the MLP
ignores the transient effects. The results validate our method of curating the training data to avoid
fitting to transients and show that the MLP, trained in simulation, transfers to the real system.

The MLP prediction error from the velocity state estimate, e; = V3® — vy, captures deviations
from the steady-state behavior due to disturbances not considered during prior training. The next
section discusses how to learn a dynamics model for this error signal.

Num. Episodes | Max Test MAE MLP Sim-to-real
100 0.1301 Lo
1000 0.0429
12000 0.0211

Table 1: MLP Test Loss by Training Set Size

o
=]
"

Forward Velocity (m/s)
(=]
W

Length | # Params | Max Test MAE 5 : " s
1 6627 0.0308 Time (s)
10 7635 0.0211
20 8755 0.0267 Figure 2: The MLP ignores the transient ef-
fects due to command changes and estimates the
Table 2: MLP Test Loss by H robot’s steady-state velocity.

3.2. Learning a Local Dynamics Model

Our framework proposes learning a dynamics model to predict how e; evolves over time, which
is equivalent to learning a dynamics model for the robot about its steady-state behavior. Since we
removed the steady-state behavior, the dynamics can be captured by a linear model. Prior work
proposed applying DMDc to learn the dynamics model (Lemmon et al., 2022). We extend this work
by showing how to learn this model in an offline simulation and transfer it to the real world, avoiding
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the need to “kick” the robot’s command on hardware. Additionally, we demonstrate training a single
DMDc model that sufficiently captures the dynamics of e; regardless of the robot’s command uy.
We learn the error system dynamics through input-output data (Lemmon et al., 2022). We
treat e; as the error system’s output and use a length N, delay embedding as the system’s state,
Zi = (€N, € (N.4+1)s €1, e;]T. Taken’s embedding theorem (Takens, 1981) states that if
the system is observable, a history of outputs can be used as the system’s state provided N, is
sufficiently large. The system’s input is Auy, where the total velocity command is u{®* = u; + Au.
We collect the input-output dataset, {z;, Au;} fi_ol, through an offline training period. We select
commands for the base controller, {uk},ivio_ ! that adequately cover the space of possible inputs to
the robot. For fixed intervals, /, we send one of these commands to the robot until we sequence

through all of the commands. Simultaneously, we periodically “kick” the control input such that,

Ny —1
= 3 (g + A ag) (kI <t < (k+ 1)1}, )
k=0

where {ay, \x} are uniform random variables that characterize the magnitude and decay rate of the
k™ perturbation, and {kI < t < (k + 1)I} = 1 if the condition inside the brackets is true and zero
otherwise. Each aj has the same dimension as the control input, and each \; < 1.

We apply DMDc to compute matrices A and B that minimize the least-squares regression loss
between Az, + BAu,; and z;; on the training dataset. We form matrices

. Z0 zZ1 .. ZN—-2 ’ zZ1 z9 “. ZN-1
Z = A'u,o A'U,l A’U/N_Q:|7 z _|:A'u,1 Au2 AUN_l ’ (2)

and take the first n rows and n columns of W = Z’(Z7 Z)~'Z" as the matrix A, where z; € R”",
and the next m columns of the first n rows as the matrix B, where Au; € R™.

Figure 3 visualizes the training data (top row) and model-fitting error (bottom row) from training
an error system dynamics model for the Mini Cheetah. We followed the procedure above for data
collection, sending N,, = 8 base commands, uy, and perturbations, {ay, A;}, over 4 minutes of
simulation. We set N, = 10, making z; € R3. On the top row, the orange lines are the command
perturbation, Auy, while the blues lines are the MLP prediction errors e;. Despite the variety in
base commands, the matrices A and B achieve a tight fit, other than the spikes near the peaks of
the perturbations. We can improve the fit online through recursive updates (Section 3.4.1).

3.3. Closing the Loop with MPC

In this section, we close the loop on the MLP prediction error, e;, to regulate the system to its
steady-state behavior. Equivalently, we want to design a feedback controller to regulate e; to zero.
We propose using our DMDc dynamics model within a finite-horizon LQR problem,

Hmpc
- T T
min E z; Qz; + Au; RAu;,,
z,Au 1
1=

subject to:  z;11 = Az + BAwy, 29 = z, Aug = Auy,

where z = (21, ..., ZH,,.), and Au = [Auy, ..., Aug, ]. We solve it in MPC fashion using CVX-

OPT (Andersen et al., 2023) and execute the control tape, {Aui}fi“gm, such that the total command
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Figure 3: Training data (a,b,c) and fitting error (d,e,f) for the Mini Cheetah’s DMDc model.

to the base controller is u}%l; = u;y; + Au;. Our choice of MPC was motivated by its ability to
ensure consistent performance across iterative calls to the adaptation framework. The robot follows
the trajectory from the previous iteration as it waits for the next control tape.

3.4. Finetuning Models Online

During a deployment, the robot may encounter new environments different from those seen dur-
ing training. Ideally, the robot can finetune to these conditions, rather than resort to further offline
training. Our framework has two finetuning mechanisms: recursive updates to the error system
dynamics model (Section 3.4.1) and MLP transfer learning (Section 3.4.2). Upon a sudden per-
turbation, the feedback controller (Section 3.3) will stabilize the robot. However, if a disturbance
gradually changes the robot’s steady-state behavior, then MLP transfer learning is necessary to cap-
ture this change. The recursive DMDc updates finetune the error system dynamics model as its
equilibrium point shifts due to changes in the MLP.

3.4.1. RECURSIVE DMDc UPDATES

We propose performing rank-one updates to the DMDc model through a recursive least squares al-
gorithm, which is a variant of the Kalman filter (Kalman, 1960). The recursive updates improve the
model as the robot collects more data and finetune it to disturbances not seen during prior training.
Since we pretrained the model offline, we can implement the feedback controller immediately and
learn as the robot collects more data, avoiding the need to “kick” the robot’s control input online.
Each iteration, we observe the transition (z;—1, u;—1) — z;. We perform a rank one update as

P;_
Ry +¢; 1P,y
W, =W, + Ky (z¢ — (Ay—124-1 + Bio1Aug_y)), 4)
P, =P+ Ry - Kl Py 1, (5)

where K, is the Kalman gain, P, € RMtm)x(n+m) i5 the estimated covariance matrix of the
parameters, ¥, = [z, ut]T, R, € R(tm)x(ntm) iq the process noise covariance, and Ry is the
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measurement noise covariance. We take the first n rows and n columns of W as the matrix Ay,
and the next m columns of the first n rows as the matrix B;. We initialize Py = ZZ7, where Z
is the data matrix collected during the offline training period, and we set Ay and B with the A
and B matrices estimated through pretraining (Section 3.2). Due to this strong prior, we set Ry =
K X (n4m) x (n+m) Where L, oy (nim) is the (n 4 m) X (n + m) identity matrix and Ro/k > 1.

3.4.2. MLP TRANSFER LEARNING THROUGH FEEDBACK

We propose transfer learning to finetune the MLP online. When the robot suddenly encounters a
new disturbance, it may be impossible to collect a large enough dataset to retrain the last layer(s) of
the MLP. Instead, we consider making rank-one updates to the MLP’s last layer. We apply the same
recursive least squares algorithm as in Section 3.4.1 (Equations 3-5), where w?/ILP is the output of
the MLP’s second to last layer and WML are the weights of its last layer. The weights update is

W = W 4 K (v — (WHEF)T ), ©

which improves our MLP through feedback from the robot’s state estimate. For ease of implementa-
tion, we initialize WML to zero and Pg/ILP = 100 Iymrp , yyire, where N, MLP is the MLP embed-
ding dimension. We set the noise covariances such that RY™F /k > 1, where RM'Y = k Ty v,
to avoid sudden large changes in the equilibrium point of the DMDc model.

3.4.3. SIM-TO-SIM TRANSFER EXPERIMENT

We tested our finetuning methods through an experiment where we varied the simulation’s gravity,
such that g = [0, 1.5 sin(%¢), —9.81]"m/s?. In prior training, the MLP and DMDc model only saw
environments with g = [0,0, —9.81]7m/s?. We commanded the robot to walk forward at +1 m/s.
Figure 4 visualizes the estimates of the robot’s steady-state (blue) and true (orange) lateral velocity.
Initially, we shut off the DMDc-MPC to show that the disturbance caused the robot to sway left
and right, and we inference the pretrained MLP, which does not capture the oscillations in lateral
velocity. At 10 s, we begin finetuning the MLP to estimate the robot’s new steady-state behavior. We
set RMP = 1073I v, « v, and RYF = 103, and the Kalman gain KM"F converged to ~0.025. As
the filter converges, the MLP model adjusts its estimate to capture the oscillatory behavior. At 20 s,
we turn on the DMDc-MPC and the recursive DMDc updates, with Ry = 10_31(n+m)x(n+m) and
R, = 10°. The Kalman gain K; converged to ~0.0015. The DMDc-MPC reduces the amplitude
of the oscillations, as the DMDc model finetunes about the new steady-state behavior.

4. Results

We validated our adaptation framework on an MIT Mini Cheetah (Katz et al., 2019), training the
MLP and DMDc model in simulation (MIT Biomimetics Robotics Lab, 2019) and transferring them
to hardware. We provide simulation results of improved disturbance recovery with our framework
(Section 4.1). In Section 4.2, we compare the velocity tracking of the convex MPC base controller
(Di Carlo et al., 2018) with and without our framework while carrying a box of water (Figure 5).

4.1. Improved Disturbance Recovery

Before hardware tests, we validated our adaptation framework in simulation by comparing the
robot’s disturbance rejection ability with and without our framework. Figure 6 shows the robot’s
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Figure 6: Tracking errors (TE) from disturbance rejection experiments. With our adaptation frame-
work (d,e,f), the jump in tracking error after the impulse is smaller, and it decays faster. This held
true for various operating points, including a lateral trot (a,d), a forward trot (b,e), and a turn (e,f).

absolute tracking error parallel to the direction of the disturbance force across various tests, includ-
ing a lateral trot at 0.33 m/s (experiments a,d), a forward trot at 1.0 m/s (experiments b,e), and a turn
with wy md _ () 33 rad/s and vf’cmd = 1.0 m/s (experiments c,f). For all experiments, we kicked
the robot at 5, 10, 15, and 20 s with an impulse, J € R3, over 1 ms though the COM of its base.
In experiments a and d, we sent J = [+4.5,0,0] N-s at 5 and 10 s, and J = [—4.5,0,0] Ns at 15
and 20 s. In the other experiments, we sent J = [0, +4.5,0] N-sat 5 and 10 s, and J = [0, —4.5, 0]
N-s at 15 and 20 s. Experiments a, b, and ¢ were baseline tests without adaptation, whereas ex-
periments d, e, and f included our framework. Our adaptation framework dampened the amplitude
and increased the decay rate of the tracking error after the disturbances. The results show that our

framework improves the disturbance rejection ability of the robot’s convex MPC controller.

4.2. Carrying Box of Water

We deployed our framework on hardware to verify it improves the stability of the robot while it
carries a box of water. Due to onboard compute limitations, we run our adaptation framework on a
laptop at 50 Hz and communicate with the robot over an ethernet cable.
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Figure 7: Hardware tests carrying a box of water. Without adaptation (a,b,c), the robot sways due
to the control perturbations (orange). In experiment a, the robot fell. With adaptation (d,e,f), the
robot’s tracking error (blue) still oscillates, but with a smaller amplitude and a faster decay rate.

The convex MPC base controller, without our framework, could walk while carrying the box of
water (Figure 5). However, when perturbed, the water would slosh back and forth, causing the robot
to oscillate about its commanded velocity (Figure 7, a,b,c). We perturbed the robot by sending it
sudden lateral velocity commands. Plots of the commanded lateral velocity and the tracking error
are shown in Figure 7. The tracking error (blue) is filtered over a 0.5 s averaging window. In
experiments a, b, d, and e the robot received zero velocity command, while in the experiments ¢
and f, the robot received a forward velocity command of 0.8 m/s. Experiments a, b and ¢ were
without our adaptation framework. The robot swayed back and forth after the perturbation and in
one case (experiment a) fell over. With our adaptation framework (experiments d,e,f), the amplitude
of the oscillations were smaller and decayed at a faster rate. The results show that our framework
improved the disturbance recovery of the robot’s convex MPC base controller, despite not seeing
conditions similar to the box of water in prior training.

5. Conclusion

This paper proposed a learning-based framework to adapt a legged robot to conditions neglected by
its base controller. The framework separates the learning problem into two tasks: learning to esti-
mate the steady-state response of the robot, and learning a local dynamics model near the system’s
steady-state behavior. Through experiments, we show that is is possible to train in an offline simu-
lation (1) an MLP to predict the robot’s steady-state velocity to various input commands and (2) a
local dynamics model of the closed-loop system, and that these models transfer to the real-world.
We also demonstrated that these models can be finetuned, as the DMDc-MPC stabilizes the robot.
We applied our proposed approach to the MIT Mini Cheetah, both in simulation and on hardware.
We demonstrate that our framework improves the disturbance rejection ability of the robot’s convex
MPC base controller, and that it stabilizes the robot as it carries a box of water on its back.

Future work may consider applying our approach to a robot controlled by an RL policy to
stabilize it via feedback. In principle, the framework may apply to any system that approaches
steady-state behavior when given a constant input.
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