
Proceedings of Machine Learning Research vol 242:1740–1751, 2024

Adaptive neural network based control approach for building energy
control under changing environmental conditions

Lilli Frison LILLI.FRISON@ISE.FRAUNHOFER.DE
Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg, Germany
Systems Control and Optimization Laboratory, Department of Microsystems Engineering (IMTEK), Georges-
Koehler-Allee 102, 79110 Freiburg, Germany
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Abstract
Deep neural networks are adept at modeling complex relationships between input and output vari-
ables. When trained on diverse datasets, they can understand not just the specifics of individual
objects but also the broader principles governing an entire object class. This research applies this
principle to building heating control, a domain marked by significant heterogeneity and constant
environmental changes, including renovations and changes in user behavior. Our approach in-
volves training the network on a wide range of data instances, enhancing its adaptability to newly
distributed data representing unseen scenarios. We find that Transformer-based LSTM architec-
tures are particularly adept for this task as they are able to remember previous tasks’ learning. We
propose a simple yet effective control algorithm that separates system identification and forecast-
ing from the optimization-based control step. This separation simplifies the control process while
ensuring robust performance. In a wide range of simulation experiments, we demonstrate that our
”universally trained” neural network control can adjust to changing conditions, thus reducing the
need for more complex continual learning techniques. Our results suggest that training neural net-
works on varied datasets empowers the network with the ability to generalize and adapt beyond
specific training instances, which demonstrates their effectiveness in dynamic and heterogeneous
environments.
Keywords: Learning based control, adaptive control, building energy control, neural network
based control

1. Introduction

The integration and advancement of various heating technologies in buildings present exciting op-
portunities for reducing carbon emissions and energy consumption. However, these technologies
give rise to intricate systems that must operate under diverse and ever-changing conditions, such
as weather variations, user behavior, energy availability, and power grid demands. Consequently,
effective management of heat generation and distribution systems, along with intelligent control of
heating systems under varying circumstances, becomes paramount for optimizing energy efficiency
and operational costs. Recent years have seen a growing focus on the smart operation of heating
systems within buildings, marking it as a critical research area, involving modern techniques such
as model predictive control (MPC), AI and reinforcement learning. Accurate predictions about the
future behavior of these dynamic systems are needed to enable well-informed decision-making,
helping to mitigate uncertainties and their potential consequences. An essential element is system
identification. This process involves two steps: creating precise mathematical models for dynamic
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systems behavior and calibrating the model parameters. Both steps are cumbersome and require ex-
pert’s knowledge. Real world processes are under constant change, and model parameters need to be
adapted continuously in order to account for changing systems and environmental conditions. Con-
ventional physics-based modeling approaches can be intricate and challenging to calibrate, mainly
due to the diversity of building types. Deep Neural Networks (NNs) have emerged as a promising
tool for system identification tasks due to their ability to capture complex nonlinear relationships be-
tween input and output variables. There is a growing connection between traditional control theory
and modern data-driven technologies, leading to new possibilities for efficient and adaptive con-
trol systems. However, capturing the intricate interplay of various influencing variables in physical
systems often demands the depth of nonlinear systems modeling. The constraints inherent in lin-
ear methodologies underscore the necessity to explore advanced techniques like machine learning,
with a specific emphasis on neural networks, to effectively navigate and manage the complexity and
dynamic nature of nonlinear systems.

1.1. Related works

RNNs are widely regarded as the primary neural network approach for modeling nonlinear dynamic
processes due to their inherent sequential data handling, memory retention, and flexibility in captur-
ing complex temporal dependencies. Modern RNN-based process models such as Long Short-Term
Memory (LSTM) Hochreiter and Schmidhuber (1997), the simplified version Gated Recurrent Unit
(GRU) Cho et al. (2014a), and Encoder-Decoder Sutskever et al. (2014) have established them-
selves in this regard. Cho et al. (2014b) proposed an Encoder-Decoder architecture, where two
RNNs are used sequentially to capture input sequences with varying lengths and dependencies.
Zhang et al. (2021) demonstrated that for dynamic processes with many long-term dependencies,
Encoder-Decoder-based RNNs outperform LSTM/GRU-based RNNs. In recent years, Transformer
architectures, which incorporate various types of attention modules, have shown promising perfor-
mance in time series prediction. Lim et al. (2021) developed a sophisticated Transformer architec-
ture called the Temporal Fusion Transformer (TFT) for general time series forecasting, surpassing
other state-of-the-art methods. Gölzhäuser and Frison (2023) compared the performance of five
cutting-edge NN time series forecasting architectures, both state-of-the-art and custom-designed,
for predicting building room temperature.

With the aim of overcoming the drawbacks of model-based control while still benefiting from
its performance, examples can be found in the literature where NNs were trained with data from
an MPC-controlled system, like in the work of Kumar et al. (2018). Drgoňa et al. (2018) proposed
a framework for the synthesis of control strategies that mimic the behavior of optimization-based
controllers, where also NNs were used. A similar approach was proposed by Frison et al. (2020)
comparing different Supervised Learning NN architectures for learning optimal heat pump control
using imitation learning from optimized MPC-generated strategies. This Supervised Learning ap-
proach was also compared to a control strategy based on Deep Reinforcement Learning. The latter
was investigated in more detail by Rohrer et al. (2023). Afram et al. (2017) modeled a residential
house with NNs and used them in a supervisory MPC for control. The focus of Wu et al. (2019)
article is on the design of MPC systems for nonlinear processes, which predict nonlinear dynamics
using an ensemble of RNN models. The goal is to integrate these systems into a control algorithm.
In their article, Bonassi et al. (2022) discuss the integration and evaluation of various RNN struc-
tures in MPCs, particularly concerning stability guarantees, safety checks, and consistency with the
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physical system of the RNN models. For an application in building climate control, Li and Tong
(2021) used an Encoder-Decoder RNN model to develop an MPC for controlling a building climate
control system, demonstrating good convergence and stability. For the same problem, Ellis and
Chinde (2020) used Encoder-Decoder models and argued that these can be easily constructed from
a model identification perspective.

1.2. Contribution

In this research paper, we illustrates the potential of training a NN on a variety of data covering
various system settings in a continual learning setting. Due to their deep architecture, a single NNs is
able to model the thermal behavior of various buildings and buildings under changing environmental
conditions. For this task, we derive a Attention Encoder Decoder LSTM, which represents a light-
weight version of the famous TFT. To integrate the complex NN into an optimization-based control
algorithm, we derive a spline-based surrogate algorithm, which decouples the control algorithm and
the prediction model.

2. Neural network-based predictive control algorithm

2.1. Control problem formulation

We solve the following output control problem, which regulates the system output to follow a de-
fined reference value while penalizing changes of the control variable. u is the control input, y is the
control output and p are disturbances, which could similarly be modelled as uncontrolled inputs. Np

is the past estimation horizon, N is the prediction horizon and Nu ≤ N − 1 is the control horizon
after which uk = uNu for Nu < k ≤ N − 1. fNN is a blackbox function that given past trajectories
of the control output, control input and disturbances, predicts the next output variable as the output
of a neural network.

min
u0,...,uNu

N∑
k=0

∥yk − yref∥2Q +

Nu∑
k=0

∥uk∥2R +

Nu∑
k=1

∥uk − uk−1∥2R∆ (1a)

s.t. y0 = ỹ0 (1b)

yk+1, . . . , yk+N = fNN
(
yk−Np , . . . , yk, uk−Np , . . . , uk+N , pk−Np , . . . , pk+N

)
(1c)

yk ∈ Y = [ymin, ymax] ∀k = 0, . . . , N (1d)

uk ∈ U = [umin, umax] ∀k = 0, . . . , N − 1 (1e)

To design the neural network-based predictive control (NNPC) algorithm, we separate the con-
trol aspect from the system identification and forecasting components. By treating the latter as a
black box, we enhance the modularity of the system. This separation not only facilitates easier
modifications and updates to either component without impacting the other, but also significantly
improves the explainability of each part.

2.2. System identification and forecasting module

Our goal is to develop a sophisticated NN architecture for time series forecasting in a system identi-
fication during control context, ensuring sufficient generalization ability to react to new, previously
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unseen inputs arising during the optimization step of the control algorithm and adapt to changing
environmental conditions. We use a NN to predict the system behavior for sequence length future
N timesteps into the future yk+1, . . . , yk+N . For this, the NN is fed with input data x composed of
three parts, which is made of past data and in some cases, future data, cf. Figure 1. The first part
consists of all past data over a history horizon of sequence length past Np timesteps. The second
part consists of known forecasted values and future temporal context. And the third part of the input
is the control input uk+1, . . . , uk+N , which is assumed to be implemented for the forecast. The
Temporal Fusion Transformer (TFT) is a very sophisticated NN architecture, but it comes with the
drawback of high computational complexity and resource requirements. To preserve the TFT core
strengths while enhancing its memory efficiency and inference speed, we have developed an Atten-
tion Encoder-Decoder LSTM (AEDL) architecture. This tailored model is designed to optimize the
balance between computational resources and predictive performance, capitalizing on the inherent
advantages of TFT while addressing its limitations in memory and processing speed. For the AEDL
architecture, we add Input Attention (IA) and Temporal Multi-Head Attention (TA) mechanisms to
an Encoder Decoder LSTM. One LSTM is responsible for receiving the past input time steps and
the other one for receiving the future input time steps. The IA modules enable the network to attend
to a specific part of the input during a certain timestep, respectively to a specific feature. With the
TA, the model can additionally attend to certain time points in the input data, as it also is the case for
the TFT. Instead of being directly fed into the first LSTM, the past input timesteps xk−Np , . . . , xk
are passed through an IA module, one after another, beforehand. Afterwards, the TA calculates the
attention to certain timesteps. The future input timesteps xk+1, . . . , x,k+N are fed into another IA
module initially. The IA’s output for each future input timestep is concatenated with the TA’s output
before being passed through the second LSTM. A single-layer FFN computes the final output pre-
dictions yk+1, . . . , yk+N . Both IA modules compute a Layer Norm after the Multi-Head Attention
calculation. The AEDL architecture is depicted in Figure 1.

Figure 1: NN input data (left image) composed of known past data (blue), known future data (green)
and future control input (yellow). AEDL Architecture (right image).
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2.3. Control Strategy

When solving an optimization problem directly with large and complex neural network dynamic
functions, potential issues include high computational demands, slow convergence, numerical in-
stability, and difficulties in accurately computing gradients. Additionally, in real operation in a
changing environment it may be necessary to include several networks for different purposes such as
novelty detection and memory retention. To address these challenges, instead of directly integrating
neural network predictions into a derivative-based optimization algorithm—which requires comput-
ing derivatives of the neural network model—we employ a surrogate-based optimization approach.
This approach (see Algorithm 1) first constructs a piecewise polynomial approximation (PPA) of the
objective function, e.g., by using 4th-order splines, treating the neural network prediction as a black
box or oracle call. We then optimize the PPA. Building upon the control input uk−1 implemented in
the preceding timestep, we establish an interval [uk−1 − d, uk−1 + d] to identify the outputs corre-
sponding to the sampled inputs using the NN prediction. The interval [uk−1−d, uk−1+d] prevents
a flattering input behavior and is motivated by objective function of the formulated control problem.
Using the sampled data points, we construct a spline-based piecewise polynomial surrogate model
of the objective function.

Input: Past horizon Np, prediction horizon N , control horizon Nu, past control input
uk−1, . . . , uk−1, past output yk−1, . . . , yk, past and forecasted external influences
pk−Np , . . . , pk+N , control interval step d

Output: Optimized control inputs uk
for each mpc iteration k do

1. Select a set of M possible control sequences (uik, . . . , u
i
k+Nu

) within the interval [uk−1 −
d, uk−1 + d]

2. For each i ∈ M query NN model with uik, . . . , u
i
k+Nu

(and parameters) to get output
yik+1, . . . , y

i
k+N (Eq. 1c)

3. For each i ∈M compute objective function value ŷi (Eq. 1a) using sampled data points
4. Construct PPA using sampled points (uik, . . . , u

i
k+Nu

, ŷi), i ∈M
5. Optimize PPA using derivative-based optimization to find optimal control input u∗k
6. Set uk ← u∗k, run the controlled system and advance one step

end
Algorithm 1: NNPC using PPA

To keep the computational burden low, we select a small M such as 10 and set Nu as low as 1
or 2, leading to a low dimensional spline surface model as a surrogate.

3. Application to thermal building control

3.1. Building simulation framework for data generation

The data that we used in this work to train, validate and test the proposed heat pump control strat-
egy is obtained from an open access building thermal energy simulation framework provided by
Fraunhofer ISE, called I4B (Intelligence for Buildings) Zhang et al. (2024). The tool can be used
for generating a wide range of synthetic thermal building simulation data. Additionally, it serves
as a comparison framework for advanced heat pump control strategies. It simulates a simplified
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building with a single room which is heated by an underfloor heating system. The setup and func-
tionality of I4B is shown in Figure 2. The buildings are defined by the following parameters: Living
area, room height, transmission losses, ventilation losses, thermal capacity of the building as well
as information about the windowed areas. An air-water heat pump is used to heat the respective
building. The heating system is defined in terms of heat pump type and refrigerant mass flow. The
simulation framework provide different reference controllers such as traditional MPC or a tunable
heating curve control, which serves as a standard reference controller in this field.

Figure 2: I4B simulation framework.

We obtain the parameters for the buildings from the web tool TABULA 1. This tool provides
information for generically specified buildings in European countries which are categorized by re-
gion, period of construction, state of renovation and building type. The renovation states for German
houses are defined as follows:

• Renovation state 1 describes the building in its original state without any further renovation.
We refer to this as SOC, meaning state of construction.

• Renovation state 2 corresponds to a commonly renovated building, referred to as ENEV
(named after the German energy saving regulation ’Energieeinsparverordnung’ from 2001).

• Renovation state 3 describes the building after an advanced renovation, referred to as KFW
(named after a funding program of the German bank ’Kreditinstitut für Wiederaufbau’).

The forecasting model was trained on seven buildings, each from varying construction periods and
potentially renovated, totaling approximately 445,000 samples. Three additional buildings, with
around 190,000 samples each, were used for validation and for testing. Training data were generated
through simulations that incorporated diverse heating curve controllers to reflect the unique thermal
characteristics of each building. We obtain ambient temperature and solar irradiance from the online
weather data acquisition tool PVGIS2. The building simulation framework subsequently calculates
the solar gains that impact the building’s thermal behavior. Additionally, an internal heat gains
profile can be specified, which includes thermal contributions from inhabitants’ body heat and heat
emitted by electrical devices. These internal and external gains are critical factors in modeling
and managing the building’s thermal dynamics. For the forecasting model, data from 2011-2013 is
used for training and validation, with 2015 data for testing. For the control algorithm, 2015 data is
employed for validation and 2017 data for testing.

1. https://webtool.building-typology.eu
2. https://joint-research-centre.ec.europa.eu/pvgis-photovoltaic-geographical-information-en

6



ADAPTIVE NEURAL NETWORK BASED CONTROL

3.2. Forecasting model hyperparameter optimization

Hyperparameter optimization (HPO) is conducted through the Optuna framework Akiba et al. (2019),
employing a Tree-structured Parzen Estimator Bergstra et al. (2015) for sampling and a Hyperband
Pruner Ozaki et al. (2020) to terminate unpromising trials. Based on the conducted HPO exper-
iments, we fix the sampling rate of 30 min, the past time horizon of 48h (past sequence length
Np = 96) and the future time horizon of 4h (future sequence length N = 8) in order to focus the
comparison on the type of architecture. Selected hyper parameters for AEDL and TFT are summa-
rized in Table 1.

AEDL TFT AEDL TFT
Hyperparameter Metric

Layers l 1 1 MAEval (K) 0.14 0.12
Hidden size h 99 31 MAEmax,val (K) 2.63 2.87
Hidden cont. size hc - 26 MAEtest (K) 0.55 1.38
FFN size f - - MAEmax,test (K) 2.43 13.55
Attention heads a 4 7 Storage size (MB) 0.48 0.52
Dropout drop - 0.222 Inference speed (ms) 4.42 46.28

Table 1: Results of forecasting model architecture comparison on the validation dataset, along with
the HPO-found model hyperparameters.

The AEDL model employs LSTM cells without warm-up steps. At each prediction step, the
internal states of the LSTMs are reset and reconstructed using the new input data.

3.3. Experimental results

For the TFT, we utilize the implementation provided by the PyTorch Forecasting module. The
custom-built AEDL is implemented in PyTorch. Standard SciPy functions are employed for opti-
mization and spline interpolation.

3.3.1. BEST FORECASTING MODEL & CONTROL PERFORMANCE

The control performance is evaluated based on comfort deviation (CD) from the target temperature,
electrical energy consumption (Eel), and heat pump efficiency, indicated by the coefficient of per-
formance (COP). The COP represents the ratio of supplied thermal energy for heating the house
to the electrical energy required by the heat pump. CD is assessed in terms of both positive and
negative deviations from the target value, and is further analyzed for greater meaningfulness by
considering both average and maximum values. Ideally, both maximum and average negative CD
and Eel should be low, while COP should be high. In comparing the forecasting performance of
AEDL and TFT, the TFT model achieves superior performance on the validation dataset but requires
significantly more inference time, cf. Table 1. Additionally, in terms of prediction performance on
the test data set during the control experiments, AEDL outperforms TFT. While the mean MAE for
the AEDL rises to 0.55 K, the corresponding value for the TFT is almost three times as high, with
1.38 K. This causes the ANN HP control algorithms to produce unrealistic and unusable results
when incorporating the TFT as the room temperature forecasting model. For example, the control

7



FRISON GÖLZHÄUSER

simulation results for building 3 are shown in Table 2. The results indicate that, although the AEDL

CD ↑max (K) CD ↑(K) CD ↓(K) CD ↓min(K) Eel(kWh) COP

NNPC-AEDL 4.17 0.17 -0.12 -1.48 9853.45 3.34
NNPC-TFT 15.17 6.73 -0.07 -2.12 22675.62 2.16

Table 2: Control performance of the neural network-based predictive controller (NNPC) using
AEDL vs. TFT as forecasting model with maximum and average negative and positive
comfort deviation, electrical energy consumption and heat pump coefficient of perfor-
mance.

model performs slightly worse on the training data validation set, it generalizes significantly better
to the new application data compared to the TFT model. The data used to train the models differ
from the data encountered during the application of the adaptive HP control algorithm: The training
data originate from the standard rule-based heating curve controlled simulations, whereas the appli-
cation data are generated on-the-fly by the control algorithm itself. This improved generalization of
AEDL may be due to the TFT architecture’s higher sensitivity to changes in data characteristics or
the need for more training data to fully leverage the TFT architecture’s potential.

Table 3 depicts the results for the three different buildings from the validation set compared
against a standard heating curve control.

1949..1957 ENEV 1969..1978 SOC 2010..2015 KFW
Metric RB-B NNPC RB-B NNPC RB-B NNPC

CD↑
max (K) 3.03 2.20 3.26 1.98 7.26 6.43

CD↑ (K) 0.94 0.05 1.10 0.05 1.40 0.17
CD↓ (K) -0.01 -0.06 0.00 -0.11 0.00 -0.13

CD↓
min (K) -0.84 -0.80 -0.46 -0.81 -0.67 -1.53

Eel (kWh) 3427.76 3056.46 11578.40 9948.30 2003.30 1709.47
COP 4.12 4.33 3.1 3.33 4.60 4.90

Table 3: Comparison between NNPC-AEDL and reference standard heating curve controller RB-B
(rule-based basic) on the three buildings from the validation set.

3.3.2. ADAPTABILITY TO CHANGING ENVIRONMENTAL CONDITIONS

Our research motivation was to assess if NN-based control is capable of handling changing oper-
ational conditions as well as changing environmental conditions. In this subsection, we show the
results of experiments conducted to answer this question by assessing the performance on several
different scenarios. In all of them, heat pump control is accomplished with AEDL as forecasting
module on one of the validation buildings and a building with construction period 1969-1978 in state
SOC is selected. Note that the standard rule-based controller lacks the capability to automatically
detect and adapt to changes, making it unsuitable as a reference.

8



ADAPTIVE NEURAL NETWORK BASED CONTROL

Scenario 1: Increase of internal gains due to change of user behavior. For this experiment,
we increase the internal gains Q̇int by multiplying each value of the respective time series with a
value uniformly sampled from the interval [1, 2], from a certain point of time tchange onward. As
a possible real-world scenario, this could be related to a new person moving into the household.
Figure 3 shows the transition between the different internal gain profiles at tchange. We can observe
that NN-based control is able to adapt the control to the new environmental conditions after a short
time period.

Figure 3: NN-based control simulation with change in internal gains. This figure shows the re-
sults over a period of 2 weeks, with higher internal gains from a certain point of time
tchange onwards. The plot shows the heat pump’s supply and return temperature Tsup

and Tret, the ambient weather conditions in terms of ambient temperature Tamb and so-
lar global horizontal irradiance Igh, as well as the progression of the room temperature
Troom. tchange is marked with a vertical dashed line.

Scenario 2: Building renovation. In order to assess the NN-controller’s ability to handle
big changes made to the controlled environment during runtime, we simulate the renovation of a
building from state SOC to state KFW at a certain time point tchange. The results are depicted in
Figure 4. Directly after tchange, we observe high positive comfort deviations CD ↑max= 2.81K.
With advancing time, this behavior recedes and reaches the usual control performance, as soon as
the model’s past time horizon (48h) does not include tchange anymore.

Scenario 3: Varying target room temperatures. Besides changes in the controlled envi-
ronment, we also consider adaptions of the target room temperature Ttarget, which influence the
thermal behavior of the building. Figure 5 shows the control simulation results with a setback from
Ttarget = 20 ◦C to Ttarget = 17 ◦C for a duration of one week. In the real world, this behavior could
e. g. be related to a time during which the inhabitants are on vacation but do not want the building
to cool down completely. We can observe that the NN control manages the transitions between the
different target room temperatures with a delay of up to approximately 12 h. The transition from
lower to higher Ttarget is delayed more and also results in a subsequent room temperature overshoot
(CD ↑max= 2.67K).
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Figure 4: NN-based control simulation with building renovation scenario.

Figure 5: NN-based control with target room temperature change.

4. Conclusion

This paper introduces an methodology for optimizing building heating control in a dynamic envi-
ronment by leveraging sophisticated deep neural networks trained on varied datasets. Employing
a novel combination of Transformer-based LSTM architectures, it enhances adaptability to chang-
ing conditions. Additionally, the introduction of a spline-based surrogate-control algorithm dis-
tinguishes system identification from the control process itself. Future advancements may include
integrating the forecasting module directly into the control algorithm and integrating a continual
learning module into the control pipeline. Such an enhancement would enable the neural network
controller to continuously learn and adapt, effectively absorbing new information from a wide array
of real-time situations ensuring that the learning process remains dynamic and responsive.
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