Proceedings of Machine Learning Research vol 242:1790-1801, 2024

Restless Bandit Problem with Rewards Generated by a Linear
Gaussian Dynamical System

Jonathan Gornet JONATHAN.GORNET@WUSTL.EDU and Bruno Sinopoli BSINOPOLI@ WUSTL.EDU
Department of Electrical and Systems Engineering, Washington University in Saint Louis

Abstract

Decision-making under uncertainty is a fundamental problem encountered frequently and can be
formulated as a stochastic multi-armed bandit problem. In the problem, the learner interacts with
an environment by choosing an action at each round, where a round is an instance of an interaction.
In response, the environment reveals a reward, which is sampled from a stochastic process, to
the learner. The goal of the learner is to maximize cumulative reward. In this work, we assume
that the rewards are the inner product of an action vector and a state vector generated by a linear
Gaussian dynamical system. To predict the reward for each action, we propose a method that
takes a linear combination of previously observed rewards for predicting each action’s next reward.
We show that, regardless of the sequence of previous actions chosen, the reward sampled for any
previously chosen action can be used for predicting another action’s future reward, i.e. the reward
sampled for action 1 at round ¢ — 1 can be used for predicting the reward for action 2 at round
t. This is accomplished by designing a modified Kalman filter with a matrix representation that
can be learned for reward prediction. Numerical evaluations are carried out on a set of linear
Gaussian dynamical systems and are compared with 2 other well-known stochastic multi-armed
bandit algorithms.

Keywords: Non-stationary stochastic multi-armed bandit, stochastic dynamical systems, Kalman
filter

1. Introduction

The Stochastic Multi-Armed Bandit (SMAB) problem provides a rigorous framework for studying
decision-making under uncertainty. The problem consists of the interaction between a learner and
an environment for a set number of rounds. For each round, the learner chooses an action and
in response the environment reveals a reward, which is sampled from a stochastic process, to the
learner. The goal of the learner is to maximize cumulative reward. In the non-stationary case of the
SMAB, the distributions of the reward for each action can change each round. A key result in the
area is Besbes et al. (2014) where it assumes that the cumulative changes in the reward distributions
are bounded by a known constant.

A more specific variation of the non-stationary SMAB are environments where the rewards are
generated by s-step autoregressive models, i.e. an action’s sampled reward X; is a linear combi-
nation of rewards X;_g, ..., X¢_1 where s is the autoregressive model order. Two key results that
have tackled this SMAB environment are Slivkins and Upfal (2008), Bogunovic et al. (2016), and
Chen et al. (2023). Slivkins and Upfal (2008) studied the performance of a number of algorithms for
rewards generated by Brownian motion. In Bogunovic et al. (2016), the authors consider when the
rewards for each action is generated by a known 1-step autoregressive process. In Chen et al. (2023),
they address SMAB environments modeled as an unknown 1-step autoregressive or a known s-step
autoregressive. A key application of autoregressive models is presented in Parker-Holder et al.
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(2020), where the work tunes the hyperparameters, such as the gradient descent’s learning rate,
during the training process of a reinforcement learning based on neural networks. Finally, another
perspective to s-step autoregressive models is Gornet et al. (2022) where the reward X; and a con-
text 0; are generated by a Linear Gaussian Dynamical System (LGDS), where a context is a partial
observation of the LGDS’s state variables. The authors prove that a linear combination of previously
observed contexts 6;_,...,0;_1 can be used to predict the reward X;, a perspective similar to the
environments considered in Bogunovic et al. (2016) and Chen et al. (2023).

Our work proposes a discrete-time restless bandit with continuous state-space by assuming the
state and rewards are generated by a LGDS. This paper extends the results in Gornet et al. (2022)
where now the context is no longer observed. The contributions of our paper are as follows.

Our Contributions:

* We introduce a SMAB environment where the rewards are generated by a LGDS in Section
2.

* We prove that we can predict the reward for each action by using a linear combination of
observed rewards. For example, for an environment with 3 actions, if a learner chose action
A;_o =2atround t—2 and A;_1 = 1 atround ¢ — 1, the learner can take a linear combination
of the sampled rewards X;_o and X;_; to predict the reward for action ¢ = 3 at round ¢.
The coefficients for the linear combination are from the identified modified Kalman filter
matrix representation. We provide a proof of the error bound of the reward prediction for
the identified modified Kalman filter. The idea is inspired by Tsiamis and Pappas (2019) for
identifying the Kalman filter, where now we assume that the measurements of the LGDS, a
linear combination of the system’s state variables, can change each round. (See Section 3)

* Using the proved error bound of the reward prediction, we propose the algorithm Uncertainty-
Based System Search (UBSS). The algorithm chooses the action that maximizes the sum of
the reward prediction and its error. (See Section 4)

* For numerical results in Section 5, we apply UBSS to a parameterized LGDS to illustrate
its numerical performance. Here, we compare UBSS to Upper Confidence Bound (UCB)
algorithm (Agrawal, 1995) and Sliding Window UCB (SW-UCB) (Garivier and Moulines,
2008) algorithm, two well-known SMAB algorithms, and for which LGDS UBSS performs
best.

Note: For proofs of the lemmas and theorems, please refer to the ArXiv version found in Gornet
and Sinopoli (2024).

Related Work

One example of the non-stationary SMAB is the restless bandit where the reward for each action is
the function of a state that is generated by a Markov chain Whittle (1988). Whenever the learner
chooses an action, the learner observes a Markov chain’s state and a reward. This paper focuses
on the case when the transition matrix of the Markov chain is unknown. Previous results in the
discrete state-space Markov chain that use an approach similar to UCB are Tekin and Liu (2012);
Ortner et al. (2012); Wang et al. (2020); Dai et al. (2011); Liu et al. (2011). Jung and Tewari
(2019) uses Thompson sampling, i.e. sampling parameters based on a priori distribution of Markov
chain, for action selection. We avoid comparisons with these previous results since the states of
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the Markov chain are discrete, whereas the results presented in this paper focus on when the states
are continuous. This allows us to tackle a different set of application, such as hyperparameter
optimization for reinforcement learning based on neural networks, e.g. Parker-Holder et al. (2020).

2. Problem Formulation

The learner will interact with an environment modeled as a LGDS. We will consider the following
LGDS:
{Zt+1 =Tz + &, 20 ~N (20, Po) 0

X = (ca,, 2t) + M

where the reward X; € R is the inner product of an action vector c4, € A and the state z; € R4,
The process noise ¢ € R? and measurement noise 7; € R are independent normally distributed
random variables, i.e. & ~ N(0,Q) and 1; ~ N(0,02). The action vector c4, € A = {c, €
R | lcally € Beya € [k]} where B, is known and @ € [k] & {1,2,...,k} is the indexed
action. Using similar notation as Abbasi-Yadkori et al. (2011), actions that are realized at round
t are denoted as c4, € A and unrealized actions are denoted as ¢, € A. We make the following
assumptions on system (1).

Assumption 1 The state matrix T is marginally stable, i.e. p (T') < 1.

Assumption 2 The vectors and matrices in system (1) are unknown along with @), o, and d. How-
ever, number of actions k is known.

Assumption 3 The matrix pair (F, QY 2) is controllable. The pair (F, c;r) is detectable for every
vector ¢, € A.

The goal of the learner is to maximize the cumulative reward over a horizon n > 0, i.e.
> 1=y Xt. The horizon length n > 0 may be unknown. To provide analysis on the performance
of any proposed algorithm for maximizing cumulative reward in (1), regret is analyzed which is
defined to be

R, £) E[X; - X, )
t=1

where X is the highest possible reward that can be sampled at round ¢. In the next section, we
discuss a reward predictor for the LGDS (1).

3. Predicting the Reward of the LGDS

This section reviews the optimal 1-step predictor of the rewards, in the mean-squared error sense,
generated by LGDS (1): the Kalman filter. According to Assumption 2, the matrices of the LGDS
(1) are unknown, implying that the Kalman filter needs to be identified. However, to the best of our
knowledge, no current results exist for direct identification of the Kalman filter when the LGDS’s
(1) action vector c4, € A can change each round. Therefore, we propose a modified Kalman filter
to identify. Imposing the assumptions posed in the previous section, we prove that prediction error
of the modified Kalman filter is lower than or equal to the variance of the reward X;, making it
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possible to extract a signal to predict the reward for each action. The added benefit of the modified
Kalman filter is that it is tractable to identify.

The Kalman filter uses the previous observations X1, . .., X; to compute an estimate of the state
zas5 2 E [2¢ | Fi—1] where F;_1 is the sigma algebra generated by the rewards X1, ..., X;_1,

2t+1 =Tz +TK; (Xt - <CAt7 2t>) ) Pt—i-l =g (Pt7 CAt)
K, = Pica, (ch Pea, +0) : (3)
X = <CAt,5t>

and g (P, c) is defined to be the following Riccati equation (Gelb et al., 1974)
~1
g(P,e)2TPTT +Q —T'Pec (CTPC n a) cTPrT. &)

We impose the following assumption for the LGDS’s (1) initial state zo ~ N'(2, Py) and the
Kalman filter’s (3) initial error covariance matrix Fj:

Assumption 4 The initial state zy € R? of the LGDS (1) is sampled from a normal distribution
with a mean %o € R% that is a solution of 2o = I'Zy and covariance matrix Py € R4 We assume
that Py = Pz, where Pj is the steady-state error covariance matrix, Pz = g (Pg, cg), cg € A. This
assumption implies that the LGDS (1) is in a steady-state distribution.

Remark 1 Assumption 4 states that LGDS (1) is in steady-state and the Kalman filter’s (3) error
covariance matrix is bounded. This is a reasonable assumption as the Kalman filter covariance
matrix P, converges exponentially to the steady state covariance matrix Py as t increases if action
cg € A is consistently chosen. In addition, a similar assumption has been made in Deistler et al.
(1995), Knudsen (2001), and Tsiamis and Pappas (2019). Finally, it will be proven in Lemma 2 that
there exists an action cg € A such that Pz = P, if Pz = P,.

As mentioned earlier, the parameters of LGDS (1) are unknown due to Assumption 2. Therefore,
we propose to learn the Kalman filter (3) for reward prediction. However, since the Kalman filter
matrices P; and K, change constantly, it is intractable to identify the Kalman filter. Therefore, we
prove that there exists a modified Kalman filter that has a bounded reward prediction error regardless
of the choices c4, € A that is tractable to identify. For proving Theorem 3, we first provide Lemma
2 for the bound on the Kalman filter error covariance matrix F;.

Lemma 2 Let P,, a € [k] be the steady state solution of the Kalman filter for each action ¢, € A,
P, = g(Py,cq), where g (P,,cq) is defined in (4). Define Py = 0 to be the steady-state error
covariance matrix of the Kalman filter (3) associated with action cgz € A such that Py = P, for
every action a € [k|. By imposing Assumptions 1, 3, and 4, the LGDS (1), then Pz = P, for any
t=1,2,...,n.

Below is Theorem 3 which proves the existence of a modified Kalman filter with a bounded
prediction error. Proof for Theorem 3 can be found in Appendix B of Gornet and Sinopoli (2024).

Theorem 3 We define the following modified Kalman filter

{zzﬂ = T2 +TLa, (X¢ — (ca,, 2))

-1
, La, & Pic (cT Pgca, + a) , 5
Xt _ <CA“ 2£> + ’YAt Ay aCA; At a Ay ( )
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where y4, = X; — {ca,, 2)) ~ N(O,CLPt’CAt +0) and P| = E |(z — 2}) (2 — élf/)T | Fe1].

It is proven for the modified Kalman filter (5) that 1) the matrix I' — I'L 4, CL is stable and 2) the
variance of the residual Var (v 4,) is bounded.

The key takeaway for Theorem 3 is that there exists a modified Kalman filter (5) that is easier to
identify in comparison to the Kalman filter (3) at the expense of a higher prediction error Var (v,) >
cJ Pic, + 0. This is because the modified Kalman filter has only a finite number of gain matrices
L4, and a static covariance matrix Pg. In addition, the variance of the prediction error Var (7,) has
an upper-bound.

3.1. Learning the Modified Kalman filter

Using Theorem 3 and inspired by the results presented in Tsiamis and Pappas (2019), we will learn
the modified Kalman filter since the matrices and vectors in the LGDS (1) and its modified Kalman
filter (5) are unknown. Let parameter s > 0 denote how far in the past the learner will look. We

define the tuple ¢ £ (c A, .- C At—l) as the sequence of actions chosen by the learner from
rounds ¢t — s to t — 1. The reward X; = (cq, 2¢) + m; for action a € [k] can be expressed as a linear
combination of rewards X;_, ..., X;_1 generated by the tuple c using the matrices defined in the

modified Kalman filter (5):

Xe=cg (T —TLa, ) (T —TLa, ) TLa, Xie—s+...
felTLa Ko+l (T=TLa ek ) (T=TLa ek ) #y+ .

Therefore, let there be defined the vectors G, ¢, ca € A, and = (c) to express the reward
Xt = (Cay 2t) + M1

= X; = G 1.5t (€) + Ba + Ya, (6)
Gegje = [ca T =TLa,_,) - (0 =TLa_,,,)TLa,_, ... ciTLa,_,] €R!
—_ T
Zi(e) & [Xims ... Xyq] eR

>

b2l (D=TLa ek, ) (T =TLa_ch )5 €R

Based on equation (6), we can express the reward X; = (c,, z;) + 1, for each action ¢, € A
using G, |c» Ca € A, and = (c) with the following linear model:

.
(1, 2e) +my G(_:%Ic b1 71
(c2,2t) +me G B2 V2

| =| =@+ |+ | (7)
<Ck7 Zt> + Tt GCT;C|C ﬁk Yk

The linear model (7) proves that we only need to identify k**! vectors Ge,|c- Therefore, we
can 1) identify G| for each action ¢, € A and 2) predict the reward X; using inner product of the
identified Gca|c and sequence of rewards X;_g, ..., X¢_1.
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Remark 4 In the linear model (7), there is a parameter s > 0 which is the number of previous
rewards X;_g, . . ., Xy—1 used for predicting the reward X;. Parameter s > 0 impacts the magnitude
of the term B, (which decreases exponentially as s increases) and the number of linear models G .,
to identify (which increases exponentially as s increases).

The following are assumed about G |c, Ya»> and ¢, € A:

Assumption 5 There exists a known upper bound Bg such that |G, c|ll2 < Bg for all a € [K]
which is a common assumption to use in SMAB problems (Lattimore and Szepesvdri, 2020).

Assumption 6 There exists a known constant Br > 0 such that for any round t > 0, we have:
Vtr(Z;) < Br, Z; = E [ztzﬂ , Var (7q) < caTPaca +o, < B%for cq € A,

where Zy (which has the iteration Zi 1 = I'Z.I'" + Q) is the covariance of the LGDS’s (1) state
2. Results in the area of non-stationary SMAB have made similar assumptions (see Chen et al.
(2023)).

To learn G|, assume that at time points 7., = {t1,...,tn,} (N4 is the number of times
action ¢, € A is chosen) the following tuple sequence (cAtrS, . CAzrl) =c € Asfort; €
{t1,...,tn, } and action c4, = ¢, € A are chosen. We have the following linear model

XTepte = CerlcZTege + BTy + B ®)

X7, 2 [Xy ... Xy, ] €RVNe Z71, .2 [En(c) ... Eiy, (c)] e RZNe

B7~ca|c 2 |:ﬁAt1 BAtNa] ERlXNa, ETca\c Y |:'yAt1 /YAtNa} GRlXNa.

The least squares estimate of G, | in (8) is

. -1
Gca|c (72a|c) = X7ZE|CZ'—|7:CE‘CVQ (7-Ca|c) (9)
Na
Vi (Teaje) 2N+ 27, 27 =M+ Y Ei, () Er (o), (10)
i=1

where A > 0 is a regularization term. Since there are k° codes ¢ € A%, then there are kst vectors
G, |c to learn.

4. Uncertainty-Based System Search Restless Bandit Problem

The section above provided a predictor, the modified Kalman filter, for the rewards generated by
the LGDS (1). It also provided a methodology for identifying the predictor. Now that the reward
can be predicted using an identified modified Kalman filter, we discuss how to use the predictor
in Algorithm 1, Uncertainty-Based System Search (UBSS). The general scheme for UBSS is to 1)
identify the predictor G| for each action ¢, € A and 2) select actions that balances what the
learner predicts will return the highest reward versus which actions the learner is the most uncertain
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due to the error of the predictor éca|c. Therefore, for each round ¢ in UBSS, the learner will choose
actions based on the following optimization problem

argimax G g (7;a|c)—r E't (C) + (eca|c (66) + bca|c (51))) \/Et (c)T Va (7;a|c)_

aclk]

1

Ei(c), (D

where with a probability of at least (1—0d.)(1—0dp), the following inequality is satisfied (see Theorem
9 in Appendix C.2 of Gornet and Sinopoli (2024)):

~

Grvte (Teute) " Z1(0) = GT L (Z (0) < (€anje (0) + bauje (00)) /2 ()T Vi (Teuse) ™ 2t (0):

(12)
The terms e, |c (0c) and b, |c () are defined as
1 det(Va (72a|c))1/2
Caale (8c) = | 2B log (fSe det(A])1/2 (13)

besje (05) 2 \ﬁ Br tr(I—AVa(TCa|C)‘1)+A\/tr<va(7;a,c)‘1)30. (14)

Reward prediction uncertainty (12) of action ¢, € A is impacted directly V, (7;a|c) which is a
sum of N, (number of times action ¢, € A is chosen) positive semi-definite matrices. Therefore,
choosing an action frequently (large N, ) will lower the reward prediction uncertainty. The rationale
behind optimization problem (11) is to balance choosing the action with the highest reward versus
the action with the most uncertainty. We summarize below which term is defined to be in (11) within
Algorithm 1 which consists of an Exploitation term (which action the learner expects to return the
highest reward) and an Exploration term (how much should the learner explore an action).

« Exploitation term: G, (72,a|c)T Z (c)

+ Exploration term: (c., o (6.) + be, e (8)) \/Z¢ ()T Va (Toyie) ™ Ee (e)

Parameters (0., dp) are failure rates of the bound in (12) where (d¢,d;) values closer to 0
computes a larger bound (12). Parameter s is the number of previously observed rewards X;_,
(t =1,...,s) used for predicting the next reward. The number of models to learn increases expo-
nentially as s increases. Finally, A is a regularization parameter to ensure that (10) is invertible.

4.1. Regret Performance

Algorithm 1, UBSS, has the following upper bound on regret (2). Proof is in Appendix C.3 of
Gornet and Sinopoli (2024).

Theorem 5 Using Algorithm I and setting . = 0, = § € (0, 1), regret (2) satisfies the following
inequality with a probability of at least (1 — §)*:

S

R, < ZmaxE[( « — Cay 2t)]

= ca€A
k 2
—4B (| c)
+) 2(n—s)B2B% <1 —(1-0)"* <1 — exp ( ))) , (15)
; QAGT ol :t(C)AGCa‘C
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Algorithm 1: Uncertainty-Based System Search (UBSS)
Input: 6,0, € (0,1), A >0, s € N, B, B, Bg € R"
// Initialization

force {(ca, Cay ... ca) €A%} do
for a € [k] do
ca\c % {} Va ( Ca |c) — A, C?ca\c (7T:a|c) — 0sx1
(ecale (3e) s beyje (8p)) <= 1/€ where € small
end
end

// Learner interaction with LGDS
fort=1,2,...,ndo

if ¢ > s then

// Action selection

Ay < argmax G ol (7;a|c)T = (c) +
ac{1,2,....k}

(cente (0:) + beyje (8)) /22 (€) T Vi (Toyie) ™' =t ()
Sample X; from (1)

C<_(CAt,S cAtfl)
7;At‘c «— 72At‘c U {t}

// Update estimates
VAt (7-cAt\c) < VAt <7;A |c> + = (C) = (C>T

~ T -1
GCAt\C (TCAAC) = GCA lc (72At|c> + Xi=4 (C)T Va, (7;Atlc>
// Update bounds

Sete (6) and b, |c (9) based on (13) and (14), respectively.

ca,le
else

A; < Sample uniformly a ~ [k]
Sample X; from (1)

end

end

where AG., | = Gepele = Geglo 224 AR {Et (c) = (c)T}, and B (6 | c) is

= /
3A+(n_s)w
B (0| c) £ 2312’% log % < 7 > \/:w

-l [FEUE O g [FEUS O

8
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Theorem 5 proves that regret increases at worst linearly, i.e. O (n). If the covariance for two
different actions is large, e.g. large AG,,|c and Yz, () terms, then the bound will decrease. The
bound decreases exponentially as uncertainty (12) decreases.

5. Numerical Results

For numerical results, we generated rewards X; € R for each action {¢1, 2} from the following

LGDS:
A [ cosf sind
0.9R (6 I R(0) =< . )
s :< (0) R20>Zt+§t —sinf cosd -
. <02X>2 09K () " a £(10 0 0 0) 17
= {Ca, 2t) + 1)
! AR e 2(0 10 0 0

where the process noise & ~ N (0,14) and the measurement noise 7, ~ N (0, 1) are sampled
from standard normal distributions. The LGDS (17) is proposed to study how the magnitude of the
error covariance matrix P impacts performance of UBSS, where P is directly impacted by the
parameter 6 € [0,2n]. Prior to the learner’s interaction with the LGDS (17), 10? time steps are
computed of the LGDS (17) to set the system to a steady state. After, the 10* time steps, the length
of the interaction between the environment and the learner is n = 10* rounds. Regret (2) is used to
provide a metric of performance. Parameter s in Algorithm 1, UBSS, is set to 1 in the top left plot.
For comparison, we consider UCB (Agrawal, 1995), SW-UCB (Garivier and Moulines, 2008), and
a learner that selects a random action each round (this learner is denoted as Random). We use UCB
as a comparison since the eigenvalues of the LGDS (17) state matrix I' € R**# is Schur, implying
that the reward distributions have a bounded covariance with a mean of zero. SW-UCB is also used
as a comparison since the reward is still generated by a dynamical system. Finally, Random is used
as baseline for worst performance.

In the top left plot of Figure 1, the percentage of UBSS’s regret (2) is lower than UCB (red),
Sliding UCB (green) and Random (blue) regret is shown for each 6 € [0, 27|. The middle plot of
Figure 1 is the minimum eigenvalue of the Observability Gramian O (Hespanha, 2018) for both
actions ¢, € {c1,ca}, which is the solution of the Lyapunov equation O = I'TOT" + c,¢). The
bottom plot of Figure 1 is the real part of the eigenvalue of the state matrix I'. In the white regions,
all the comparison algorithms outperform UBSS. Based on the plot in the middle, it appears that
the low Observability Gramian minimum eigenvalue and a positive real part of the state matrix’s
eigenvalue is the cause. For the blue regions, no algorithm outperforms Random, implying that the
rewards are too noisy to estimate/predict for the compared algorithms. Finally, the gray regions is
approximately where UBSS performs the best, providing approximately a 10% improvement for
each of the algorithms mid-region. Based on the bottom 2 plots, this increase in performance is
from the high observability and an eigenvalue with a negative real part for the state matrix. High
observability lowers the magnitude of the error covariance matrix Pg, which leads to a lower regret
bound of UBSS. In addition, an eigenvalue with a negative real part for the state matrix leads to rapid
switching of the optimal action, making it difficult for UCB to adapt. For the plot on the far right,
this is the relative performance of UBSS for each parameter s = 1,2,3 when the LGDS system
(17) parameter set to approximately 57 /8 (approximately where we see the largest improvement in
performance of UBSS in the top left plot). Therefore, it appears that as s increases to s = 2, 3, regret
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Figure 1: Comparison algorithm’s regret normalized with respect to UBSS’s regret. A positive

percent implies that UBSS has a lower regret than the compared algorithm.

performance of UBSS decreases. Since the number of parameters to identify increases exponentially
as s increases (leading to longer exploration times), regret performance of UBSS decreases as s
increases.

6. Conclusion

We have presented an algorithm for addressing a variation of the restless bandit with a continuous
state-space. The rewards generated by this restless bandit variation is a LGDS. Based on the for-
mulation, we propose to learn a representation of the modified Kalman filter to predict the rewards
for each action. We have shown that regardless of the sequence of actions chosen, the learned rep-
resentation of the modified Kalman filter converges. It is then proven what strategy should be used
given the bound on regret, leading to an uncertainty-based strategy.

In this work, we have not considered how the sequence of actions impact prediction error, how
to choose window size (how far the learner looks into the past), and best obtainable performance
of SMAB with LGDS environments. First, the perturbation added for exploration only considers
error of the model and not the sequence of actions impact on the error of the prediction. In other
words, the chosen sequence of actions are myopic. Therefore, future work will focus on the action
sequence impact on the reward prediction. Next, an important parameter in UBSS is the window
size. In UBSS, this is a parameter to set prior to the interaction with the environment. However,
questions we care to ask is how to automate the process of choosing window size. Finally, UBSS has
linear regret performance. Therefore, future work will be to derive the best obtainable performance
of any algorithm applied to a SMAB with rewards generated by this paper’s proposed LGDS. We
will then analyze if UBSS regret performance is close or far to the best obtainable performance.

10



LINEAR GAUSSIAN DYNAMICAL SYSTEM RESTLESS BANDIT

References

Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. Improved algorithms for linear stochastic
bandits. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 24. Curran Associates, Inc., 2011.

Rajeev Agrawal. Sample mean based index policies by o (log n) regret for the multi-armed bandit
problem. Advances in Applied Probability, 27(4):1054-1078, 1995.

Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochastic multi-armed-bandit problem with non-
stationary rewards. Advances in neural information processing systems, 27:199-207, 2014.

Ilija Bogunovic, Jonathan Scarlett, and Volkan Cevher. Time-varying gaussian process bandit
optimization. In Arthur Gretton and Christian C. Robert, editors, Proceedings of the 19th In-
ternational Conference on Artificial Intelligence and Statistics, volume 51 of Proceedings of
Machine Learning Research, pages 314-323, Cadiz, Spain, 09-11 May 2016. PMLR. URL
https://proceedings.mlr.press/v51/bogunovicl6.html.

Qinyi Chen, Negin Golrezaei, and Djallel Bouneffouf. Non-stationary bandits with auto-regressive
temporal dependency. In Thirty-seventh Conference on Neural Information Processing Systems,
2023.

Wenhan Dai, Yi Gai, Bhaskar Krishnamachari, and Qing Zhao. The non-bayesian restless multi-
armed bandit: A case of near-logarithmic regret. In 2011 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 2940-2943. IEEE, 2011.

Manfred Deistler, K Peternell, and Wolfgang Scherrer. Consistency and relative efficiency of sub-
space methods. Automatica, 31(12):1865-1875, 1995.

Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for non-stationary bandit
problems. arXiv preprint arXiv:0805.3415, 2008.

Arthur Gelb et al. Applied optimal estimation. MIT press, 1974.

Jonathan Gornet and Bruno Sinopoli. Restless bandit problem with rewards generated by a linear
gaussian dynamical system. arXiv preprint arXiv:2405.09584, 2024,

Jonathan Gornet, Mehdi Hosseinzadeh, and Bruno Sinopoli. Stochastic multi-armed bandits with
non-stationary rewards generated by a linear dynamical system. In 2022 IEEE 61st Conference
on Decision and Control (CDC), pages 1460-1465. IEEE, 2022.

Joao P Hespanha. Linear systems theory. Princeton university press, 2018.

Young Hun Jung and Ambuj Tewari. Regret bounds for thompson sampling in episodic restless
bandit problems. Advances in Neural Information Processing Systems, 32, 2019.

Torben Knudsen. Consistency analysis of subspace identification methods based on a linear regres-
sion approach. Automatica, 37(1):81-89, 2001.

Tor Lattimore and Csaba Szepesvéri. Bandit algorithms. Cambridge University Press, 2020.

11


https://proceedings.mlr.press/v51/bogunovic16.html

GORNET SINOPOLI

Haoyang Liu, Keqin Liu, and Qing Zhao. Logarithmic weak regret of non-bayesian restless multi-
armed bandit. In 2011 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 1968—1971. IEEE, 2011.

Ronald Ortner, Daniil Ryabko, Peter Auer, and Rémi Munos. Regret bounds for restless markov
bandits. In International conference on algorithmic learning theory, pages 214-228. Springer,
2012.

Jack Parker-Holder, Vu Nguyen, and Stephen J Roberts. Provably efficient online hyperparameter
optimization with population-based bandits. Advances in neural information processing systems,
33:17200-17211, 2020.

Aleksandrs Slivkins and Eli Upfal. Adapting to a changing environment: the brownian restless
bandits. In COLT, pages 343-354, 2008.

Cem Tekin and Mingyan Liu. Online learning of rested and restless bandits. I[EEE Transactions on
Information Theory, 58(8):5588-5611, 2012.

Anastasios Tsiamis and George J Pappas. Finite sample analysis of stochastic system identification.
In 2019 IEEE 58th Conference on Decision and Control (CDC), pages 3648-3654. IEEE, 2019.

Siwei Wang, Longbo Huang, and John Lui. Restless-ucb, an efficient and low-complexity al-
gorithm for online restless bandits. Advances in Neural Information Processing Systems, 33:
11878-11889, 2020.

Peter Whittle. Restless bandits: Activity allocation in a changing world. Journal of applied proba-
bility, 25(A):287-298, 1988.

12



	Introduction
	Problem Formulation
	Predicting the Reward of the LGDS
	Learning the Modified Kalman filter

	Uncertainty-Based System Search Restless Bandit Problem
	Regret Performance

	Numerical Results
	Conclusion



