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Abstract
Advanced building energy system controls, such as model predictive control, rely on accurate sys-
tem models. To reduce the modelling effort in the building sector, data-driven models are becoming
increasingly popular in research. Despite their promising performance, data-driven models are con-
sidered black boxes. This black box nature is an obstacle to widespread application, as it is difficult
for building operators to understand how predictions are made. Concepts known as Explainable Ar-
tificial Intelligence are being developed to improve the interpretability of black box models. This
work combines the popular Explainable Artificial Intelligence method Shapley Additive Explana-
tions (SHAP) with data-driven model predictive control to increase the interpretability of artificial
neural networks used as process models during model creation. Using a standardised residual build-
ing energy system for controller testing, an in-depth analysis of how the models make predictions
is carried out. In addition, the influence of different model setups on the control performance is
evaluated. The results show that the different control performances can be justified by analysing
the underlying models with SHAP. SHAP shows how the characteristics of a feature affect the pre-
diction and reveals weaknesses in the model. In addition, the features can be sorted according to
their influence on the prediction, which is utilized for feature selection.
Keywords: interpretable machine learning, explainable AI, XAI, MPC, DDMPC, ANN.

1. Introduction

The building sector is a significant contributor to climate change, accounting for about 30 % of
global final energy demand (United Nations Environment Programme, 2022). Advanced control
strategies, such as model predictive control (MPC), offer a promising approach to reduce CO2 emis-
sions during building operation (Drgoňa et al., 2020).

MPC strategies use a mathematical model of the controlled system to determine an optimal se-
quence of control variables. MPC can consider additional information such as weather forecasts and
dynamic electricity profiles, and exploits the inertia and storage masses of the building. However, a
significant barrier to widespread MPC implementation is the effort required to create a sufficiently
accurate system model (Sturzenegger et al., 2016). This is a particular problem for the building
sector due to the heterogeneous nature of the building stock.

Due to the modelling effort involved, data-driven model predictive control (DDMPC) of build-
ing energy systems is increasingly becoming the focus of research (Kathirgamanathan et al., 2021).
In data-driven modelling, system behaviour is not described by physical equations, but is learned di-
rectly from measured training data. Data-driven process models can even outperform physics-based
models (Krzysztof Arendt et al., 2018).

© 2024 P. Henkel, T. Kasperski, P. Stoffel & D. Müller.



HENKEL KASPERSKI STOFFEL MÜLLER

A wide range of data-driven models can be used for DDMPC. Among other things, they differ in
their accuracy, interpretability, and implementation effort. Bünning et al. compare Autoregressive-
Moving-Average with Exogenous Inputs (ARMAX) models identified through linear regression
with random forests and input convex neural networks (Bünning et al., 2022). The authors demon-
strate that the resulting MPCs achieve savings of between 26 % and 49 % of heating and cooling
energy. Other researchers also use non-linear approaches such as Gaussian process regression (Jain
et al., 2018) and artificial neural networks (ANNs) (Stoffel et al., 2023b).

Despite their widespread use in research, data-driven models are considered black boxes. It is
difficult for model developers and building operators to understand how such models make predic-
tions. The black box nature hinders large-scale implementation in practice (Machlev et al., 2022).
The engineering community has traditionally favoured transparent methods (Naser, 2021). Due to
this challenge, concepts, known as Explainable Artificial Intelligence (XAI), are developed to in-
crease the interpretability of data-driven models (Molnar, 2019).

In this work, DDMPC is combined with the popular XAI method Shapley Additive Explanations
(SHAP) to increase the interpretability of ANNs during model creation. The contributions of this
work are as follows:

• Combination of DDMPC and the XAI method SHAP to increase the interpretability of ANNs
used as process models for MPC during the model creation process.

• In-depth analysis of how ANNs make predictions, modelling the standardised BESTEST Hy-
dronic Heat Pump test case of the Building Optimization Testing Framework (BOPTEST).

• Evaluation of the influence of different ANN setups on the control performance of the DDMPC.
Section 2 summarises the state of the art of XAI methods. In section 3 the SHAP methodology and
in section 4 the considered use case are introduced. The results and a conclusion are presented in
sections 5 and 6.

2. State of the Art

In recent years, XAI methods have received increasing attention in the energy sector (Machlev et al.,
2022). XAI methods are designed to increase the interpretability of black box models. They can
be categorised according to their model dependency, application stage, and interpretability score, as
shown in figure 1. The two categories of model dependency are model-specific and model-agnostic.
Model-specific methods are specialised for certain model types, such as ANNs, and cannot be easily
applied to other model types. Model-agnostic methods have the advantage that they can be applied
to different model types, but may not provide explanations as well as specialised methods. In
the review by Chen et al., which focuses on interpretable machine learning for building energy
management, about 56 % of the papers reviewed use model-specific methods (Chen et al., 2023).

The two application stages are ante-hoc and post-hoc. Ante-hoc methods are applied during
model creation, whereas post-hoc methods are applied to finished models. In the articles reviewed
by Chen et al., about 43 % of the methods used are ante-hoc (Chen et al., 2023). In the literature,
most ante-hoc methods are model-specific, whereas most post-hoc methods are model-agnostic.
Ante-hoc methods usually improve interpretability by modifying some characteristics of the model,
whereas post-hoc methods usually do not rely on model characteristics.

The two interpretability scopes are global and local. Local methods explain individual predic-
tions, whereas global methods explain the general characteristics of a model. Global methods often
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evaluate the importance of input features and can assist model developers with feature selection.
Local methods focus on individual input samples and their contribution to a prediction and can
therefore help building operators to understand the output of a model. In (Chen et al., 2023), about
60 % of the methods reviewed are global.

Explainable AI

Model Dependency Interpretability Scope

Model Specific

Model Agnostic

Ante-hoc

Post-hoc

Global

Local

Application Stage

Figure 1: Categorisation of XAI methods.

In the literature, only about 9 % of the publications that apply XAI methods for building en-
ergy management focus on control. The majority of publications (about 62 %) focus on load or
power prediction. (Chen et al., 2023) Therefore, one contribution of this paper is the combination
of DDMPC and XAI methods to increase the interpretability of ANNs used as process models for
MPC. In the literature, ANNs, which belong to the class of deep learning models, are considered
to have a high model accuracy but low model interpretability (Barredo Arrieta et al., 2020). There-
fore, this model type is an ideal application example for the combination of DDMPC and XAI. The
following sections summarise typical methods that explain ANNs and are used in the control of
building energy systems.

Typical ante-hoc methods are modified neural networks (Drgoňa et al., 2021; Di Natale et al.,
2022) and the attention mechanism (Gangopadhyay et al., 2020). Although these methods achieve
promising results, this paper focuses on post-hoc methods because ante-hoc methods are often
model-specific and limit the choice of possible process model types. Details for the focus on post-
hoc methods are presented in section 3.

In general, the two most popular post-hoc XAI methods are SHAP (Lundberg and Lee, 2017)
and Local Interpretable Model-Agnostic Explanations (LIME) (Ribeiro et al., 2016). SHAP deter-
mines the individual contribution of each feature to a given model prediction. An example of SHAP
applied to building energy management is given by Białek et al. (Białek et al., 2022). The authors
train an ANN to predict the heat demand of a district heating network and interpret the influence of
different features on the model output. LIME is a local method that generates an interpretable local
substitute model for a given sample. LIME is used in building energy management for example to
interpret electricity demand predictions and to support the model selection process (Grzeszczyk and
Grzeszczyk, 2022).

Only three papers were found that use post-hoc XAI methods for the control of building energy
systems. Mao et al. (Mao et al., 2023) explore the use of interpretable machine learning techniques
such as LIME and SHAP for the purpose of Heating, Ventilation and Air Conditioning (HVAC)
predictive control. However, the focus is on data analysis and modelling and the controller design
is not discussed. Kotevska et al. (Kotevska et al., 2020) use LIME, partial dependence plots and
individual conditional expectations for interpretable reinforcement learning (RL) of a heating, ven-
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tilation and air conditioning control use case. The main difference with this paper is the focus on RL
instead of DDMPC. Yu and Pavlak (Yu and Pavlak, 2022) generate interpretable building control
rules from MPC data sets using rule extraction. The authors represent the simplified rules in the
form of interpretable decision trees. The main difference with this paper is that the interpretable
models are extracted from MPC data sets, whereas in this work the process models of a DDMPC
are interpreted. In summary, to the best of the author’s knowledge, there is no publication that com-
bines DDMPC and XAI for building energy management.

3. Methodology

In this work, the interpretability of ANNs used as process models for MPC is increased by using
the XAI method SHAP. First, the selection process of the XAI method used is explained, and then
SHAP is presented in detail.

There exists a wide range of possible data-driven models that can be used for DDMPC. In
order not to limit the choice of models by the choice of XAI method, it is advantageous if the XAI
method used is model-agnostic. Most model-agnostic methods are also applied post-hoc. Regarding
the interpretability scope, it is favourable, if the XAI method used can provide global and local
explanations. Global explanations are helpful during model creation and feature selection. Local
explanations are useful for analysing how the different features influence the output of specific
predictions during DDMPC runtime.

The two most commonly used model-agnostic XAI methods are SHAP and LIME. Both gen-
erate local explanations. With SHAP, the individual local explanations can be aggregated globally.
In (Chika E. Ugwuanyi, 2021), all the tests surveyed stated that SHAP generates more readable
explanations than LIME. Therefore, SHAP is used in this work to increase the interpretability of
ANNs used as process models for MPC.

SHAP belongs to the class of additive feature attribution methods (Lundberg and Lee, 2017).
These methods approximate the prediction f(x), of the original model f , based on the input x with
m features, with a local substitute model g, where g is a linear function of binary variables:

g(z
′
) = ϕ0 +

m∑
i=1

ϕiz
′
i, z

′ ∈ {0, 1}m (1)

Substitute models often use simplified inputs x
′

that map to the original inputs through a mapping
function x = hx(x

′
). Hence, g(z

′
) should be an approximation of f(x) [g(z

′
) ≈ f(hx(z

′
))],

whenever z
′ ≈ x

′
. ϕi is the Shapley value of feature i. The Shapley values originate in cooperative

game theory and determine the individual contribution of a player to the coalition outcome. The
contribution of feature i is the marginal contribution of this feature to each coalition in which it is
not included:

ϕi(f, x) =
∑
z′⊆x′

(m− |z′ | − 1)!|z′ |!
m!

(f(hx(z
′
))− f(hx(z

′ \ {i})) (2)

The marginal contribution is the difference between f(hx(z
′
)) and f(hx(z

′ \{i}). The contribution

of a feature i is the weighted average of these marginal contributions. The term (m−|z′ |−1)!|z′ |!
m! is
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used to weight the marginal contributions.

In a data-driven model, each coalition is a subset of the input features. Most models cannot
handle missing features. Therefore, the absent features are replaced by the feature input values of
background data, for example, the training data. ϕ0 is the expected value of f(x) over this back-
ground data. The Shapley values ϕi increase the interpretability of black box models by showing
the individual contribution of features to the model output. As absent features are replaced by the
feature input values of the background data, a major drawback of SHAP is the assumption that fea-
tures are independent. To compare different models, the same background data must be used, as
this influences the SHAP values.

In this work, the regression-based KernelSHAP (Lundberg and Lee, 2017) is used to calcu-
late the SHAP values. A preliminary comparison with DeepSHAP, which was developed for deep
learning models, shows that DeepSHAP can significantly reduce the calculation time. However, the
SHAP values are sometimes very different. Therefore, the more accurate KernelSHAP is used.

4. Use Case

The DDMPC use case studied is based on BOPTEST (Blum et al., 2021). BOPTEST provides
use cases for benchmarking building control strategies. In this work, the BESTEST Hydronic Heat
Pump case is used. The test case is based on the BESTEST case 900 building with 192m2 (R.
Judkoff and J. Neymark, 1995) extended by an underfloor heating system and an air-to-water mod-
ulating heat pump. The residential building is located in Brussels and is inhabited by a family of
five. BOPTEST defines reference periods for controller testing. The peak heating period is from
January 17th to 31st and the typical heating period is from April 19th to May 3rd, respectively.

The control task of this test case is to keep the zone temperature Tzone within comfort constraints
while minimising the electric costs Cel. The heat pump’s modulation uhp ∈ [0, 1] is used as the
control signal. The DDMPC used in this work is mainly based on our previous work and a detailed
description can be found in (Stoffel et al., 2023a). Two ANNs are used to model the quantities
of interest. One ANN predicts the change in zone temperature ∆Tzone,k. Therefore, the zone
temperature at the next time step Tzone,k+1 can be expressed as:

Tzone,k+1 = Tzone,k +∆Tzone,k (3)

The second ANN is used to model the electricity consumption Pel,k. The predictors use not only the
current (k) but also the lagged (past) values (k - M) of the input features to account for the thermal
inertia of the system. The input features are listed in table 1. The features are selected manually
and are based on system analysis and initial closed-loop experiments (Stoffel et al., 2023a). We
construct the logistic modulation uhp,log as an additional feature to support the learning of the heat
pump’s minimal power consumption. The logistic function continuously approximates a step that
outputs 0 if uhp = 0 and 1 if uhp > 0. The time of day tday and time of the week tweek are encoded
as sin and cos.

Two different data sets are considered as training data. Both data sets are generated by sim-
ulating the BOPTEST framework during the first two weeks of January. The data set ‘Base’ is
generated using the reference controller of the framework. When using the reference controller, the
zone temperature varies little, making model identification difficult. To provide a data set with more
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Table 1: Features and lags considered to predict the quantities of interest in the DDMPC. A lag of one means
that the time steps k and k − 1 are considered. (Stoffel et al., 2023a)

∆Tzone Pel,hp

Feature Considered Lag Considered Lag
Zone temperature Tzone x 2 x 0

Ambient temperature Tamb x 1 x 0
Heat Pump modulation uhp x 2 x 0

Heat Pump modulation (logistic) uhp,log - - x 0
Specific direct solar radiation q̇sol,dir x 0 - -

Time of the Day (sin and cos) x 0 - -
Day of the Week (sin and cos) x 0 - -

operating points, the ’Explo’ data set is introduced. This data set uses random zone temperature set
points within the comfort bounds to excite the system. We show in our previous work (Stoffel et al.,
2023a), that the base ANNs fail to generalise beyond the training data, while the explorative ANNs
achieve better control performance. In addition, to show how SHAP can help with feature selection,
a third ANN ’Feature selection’ is introduced. It is based on the data set ’Explo’, but unimportant
features with low SHAP values are removed to investigate if the model can generalise better with
a reduced feature space. In the following, the training data of the data set ’Explo’ will be used as
background data (see section 3) for the SHAP methodology.

5. Results

First, the influence of the different data sets on the control performance of the DDMPC is evaluated.
Afterwards, the ANNs used are interpreted in-depth using SHAP.

Figure 2 shows the discomfort and operational cost of the BOPTEST scenarios for the investi-
gated setups. In the peak heating period, both the ’Base’ and ’Explo’ DDMPCs can significantly
improve the operational cost with only a small increase in discomfort compared to the reference
controller. It is important to note that the increase in discomfort is negligible compared to the sav-
ings. The DDMPC ’Explo’ outperforms the DDMPC ’Base’ due to its more informative data set.
In the typical heating period, the DDMPC ’Base’ is not able to improve the control performance
compared to the reference controller, while the DDMPC ’Explo’ can improve the operational cost.
However, compared to the peak heating period, the increase in discomfort is higher, but still neg-
ligible compared to the savings. As shown in our previous work (Stoffel et al., 2023a), the poorer
performance of the DDMPC in the typical heating period can be explained by the fact that in this
period the ANNs have to extrapolate more often beyond the known training data.

In the following, the ANNs are analysed in-depth using SHAP in order to find differences that
explain the different control performances. First, the ANNs using the data set ’Explo’ are analysed.
Then the differences with the ANNs using the data set ’Base’ are examined. Figure 3 shows the
distribution of all calculated SHAP values for the ANN -Pel,hp,Explo. The colour of a point indi-
cates whether the feature input value for the calculated SHAP value is high or low. For a better
understanding, the point which is furthest to the left and belongs to the feature uhp is explained:

• The feature input value of uhp is low, indicated by the blue colouring.
• The SHAP value is approximately -1600, which means that in this prediction, feature uhp has

reduced the prediction of the electrical power from the base value by 1600 W.
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Figure 2: Control performance results of the BOPTEST scenarios for the examined setups.

The figure shows that the relative modulation of the heat pump uhp is the feature with the strongest
influence on the model prediction. Furthermore, high feature input values of uhp increase the pre-
diction of the electrical output, which is a physically meaningful correlation. All other features have
only a small influence on the prediction.

−1500 −1000 −500 0 500 1000 1500

SHAP value

Tzone

uhp,log

Tamb

uhp

Low

High

Fe
at

ur
e

va
lu

e

Figure 3: SHAP values for ANN-Pel,hp,Explo.

Figure 4 shows the summary of the SHAP values for the ANN-∆Tzone,Explo. It can be seen
that the features Tzone with no lag and with a lag of 1 have the greatest influence on the model
prediction. A high value of Tzone with no lag increases the model’s prediction and a low value
decreases it. This correlation is reversed for Tzone with a lag of 1. This phenomenon is also visible
in the features Tamb. As a result, the model learns to predict the change in zone temperature not
only from the feature input values but also by calculating the derivatives of some of the features.

In contrast, uhp has only a small influence on the prediction of ∆Tzone. This is problematic, as
this feature is the control variable and therefore should have a noticeable influence. However, the
direction of the influence of uhp is correctly learned by the model. In addition, it becomes apparent
that uhp with a lag of 1 has a greater influence than the current value of uhp. Given the slow system
dynamics of building energy systems, this can be explained physically.

Furthermore, the figure shows that in the learned model the four time features and the solar radi-
ation have only a small influence on the prediction. To validate the assumption that the time features
are not important, a new ANN called ’Feature selection’ is trained. It also uses the data set ’Explo’
with all the features shown in table 1 without the time features. The control performance is shown in
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Figure 4: SHAP values for ANN-∆Tzone,Explo.

figure 2. It can be seen that removing the time features results in a comparatively small difference in
the peak heating period. However, the control performance could be improved in the typical heating
period. This illustrates that it can be advantageous to eliminate unimportant features, which allows
the model to generalise better due to the reduced feature space. In addition this demonstrates the
strength of the SHAP methodology in the feature selection and model creation process.

Figure 5 shows an overview of the SHAP values for the ANN-Pel,hp,Base. In comparison to
the ANN-Pel,hp,Explo, noticeable differences are recognizable. The most important feature is still
uhp. However, the SHAP values for this feature are lower, while the other features have higher
influences. The ANN-Pel,hp,Explo already recognises whether the heat pump is switched on or off
by the feature input value of uhp. The ANN-Pel,hp,Base, on the other hand, also requires the feature
uhp,log, which reduces the prediction of the electrical output when the heat pump is switched off.
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Figure 5: SHAP values for ANN-Pel,hp,Base.

Another difference between the two ANNs can be seen in Tzone. In the ANN-Pel,hp,Base, Tzone

has a large influence on the prediction, whereas in the model ANN-Pel,hp,Explo it has almost no rec-
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ognizable influence. A possible reason for this is that the setpoint temperature for the base controller
is reduced when the occupants of the house are not present. As a result, little electrical power is
required for heating at low zone temperatures. This means that the ANN-Pel,hp,Base does not learn
a physical relationship, but rather imitates the behaviour of the base controller.

The distribution of the SHAP values for the ANN-∆Tzone,Base is shown in figure 6. It can be
seen that the time of day in cosine format has a significantly greater influence than in the ANN-
∆Tzone,Explo shown in figure 4. The SHAP values for this feature are negative between 7 am and
5 pm and positive between 5 pm and 7 am. This roughly corresponds to the periods in which the
occupants are present or absent during the week. The presence of occupants in the building results
in internal heat gains. These have a positive influence on ∆Tzone. The ANN-∆Tzone,Base has pre-
sumably learned the influence of occupant behaviour on the change in zone temperature. However,
this influence seems to be overestimated, as the feature has the fifth largest influence on the model
prediction and therefore a greater influence than the system control variable.
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Figure 6: SHAP values for ANN-∆Tzone,Base.

Another difference between the ANN-∆Tzone,Base and the ANN-∆Tzone,Explo concerns the fea-
ture uhp. While with the explorative ANN, an increase in the control variable increases ∆Tzone,
the opposite is true for the base ANN, which cannot be explained physically. Thus, uhp is a feature
for which the SHAP approach can show that the explorative ANN has learned the influence more
reliably. The same can be seen for the solar radiation.

In summary, the previous section shows the differences between the explorative ANNs and the
base ANNs by analysing the SHAP values. At first sight, the distribution of the SHAP values appear
similar. However, a deeper analysis reveals some differences. Looking at the two ANNs modelling
Pel,hp, we can see that they learn in different ways whether the heat pump is switched on or off.
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Looking at the feature Tzone, it is suspected that the base ANN imitates the base controller rather
than learning actual correlations. Natale et al. (Di Natale et al., 2022) and Bünning et al. (Bünning
et al., 2022) also show results where the prediction models imitate a base controller. For the ANNs
modelling ∆Tzone, the application of the SHAP methodology reveals that the influences of some
features on ∆Tzone are not correctly captured by the base ANN. Differences are also visible in the
feature time of day in cosine format. The base ANN learns the influence of user behaviour on
∆Tzone via this feature, whereas the explorative ANN learns no correlation.

6. Discussion and Conclusion

In this work, the popular explainable artificial intelligence method SHAP is combined with data-
driven model predictive control. The aim is to increase the interpretability of artificial neural net-
works used as process models for MPC during the model creation process. Using the standardised
BESTEST Hydronic Heat Pump test case of the Building Optimization Testing Framework, an in-
depth analysis of how the models make predictions is performed. In addition, models using a base
data set and models using an explorative data set with more operating points are compared in terms
of control performance. The comparison is interesting to analyse how the training data affect the
generalisation ability of ANNs.

The control using the explorative data set outperforms the control using the base data set. The
difference in control performance can be explained by analysing the SHAP values. It is shown that
the influence of some features on ∆Tzone is not correctly captured by the base model. In addi-
tion, unimportant features are identified using SHAP. Removing these unimportant features from
the model results in an improved control performance.

The results show that it is possible to increase the interpretability of ANNs using the SHAP
methodology. This paper shows how the characteristics of a feature affect the prediction. Further-
more, the most important features are identified, and those that only have a minor influence on the
prediction. Using the SHAP approach, it is also possible to identify weaknesses in the model. In
addition to the analysis of a single ANN, it is shown how the SHAP methodology also allows a
comparison between different ANNs.

A critical point to discuss is that the choice of background data can have a significant impact on
the SHAP values. In addition, the SHAP approach reveals which correlations the model has learned,
but not why the model has learned these correlations. Furthermore, it should not be neglected that
the SHAP approach is subject to a crucial simplification, namely the assumption of independence
of the features. As a result, unrealistic inputs are generated by the SHAP approach and evaluated
by the model.

Future work should discuss the sensitivity of the SHAP methodology to the background data.
In addition, the results of SHAP should be compared with other explainable artificial intelligence
methods and should be applied to more models for comparison. Finally, the performance of data-
driven model predictive control should be further increased. This can be done by improving the
feature selection for example by analysing the feature importance as shown in this paper. In addition,
physical prior knowledge should be incorporated into the model creation process by using modified
neural networks.
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