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Abstract
The pursuit of sustainability has paved the way for building management systems (BMSs) that can
steer buildings in an energy-efficient way. In this article, a deep learning approach is proposed
to control multi-input heating, ventilation, and air conditioning (HVAC) systems in order to min-
imise both thermal discomfort and operational cost. More particularly, a long short-term memory
(LSTM)-based encoder-decoder process model, trained on historical weather data and control se-
quences generated while the building was steered by a modern rule-based controller (RBC), is fed
into an optimisation problem, to which a change of variables is applied to efficiently model the
effect of interdependent control inputs. Both the nonlinear LSTM process model and the cost func-
tion of the optimisation problem are linearised to formulate the control problem as a mixed integer
linear programming (MILP) problem, which ensures that the controller can operate in near real-
time and with limited computational power. Moreover, to avoid resorting to model extrapolation
and to improve the model’s predictive performance, the set of allowed control signal values is re-
stricted using a percentile-based approach. In addition to the purely data-driven controller (DDC),
a hybrid controller is designed to leverage the strengths of the RBC and the DDC. The performance
of both controllers is benchmarked against the RBC’s performance using the BOPTEST simulation
environment under various experiment settings, highlighting how the hyperparameters affect the
controller’s performance. Compared to the RBC, we show that the proposed controllers realise
substantial improvements in terms of both thermal comfort and operational cost while controlling
a single zone or two zones simultaneously.
Keywords: HVAC Control, Encoder-Decoder LSTM Model, PNMPC, Interdependent Inputs

1. Introduction

The soaring prices of energy and ever-increasing use thereof make efficient use of this resource
more important than ever before. Out of all sectors, the building sector is one of the major con-
sumers, as it is responsible for both 30% of the global annual greenhouse gas emissions and 20 to
40% of the global energy consumption (Hidalgo-León et al. (2019)). Moreover, the European Union
has made a reduction in net greenhouse gas emissions one of its primary goals, aiming to reduce it by
at least 55% by 2030 and to make climate neutrality legally binding by 2050 (European Parliament
(2022)). Additionally, many heating, ventilation and air conditioning (HVAC) systems are not yet
fully automated, and require human expertise to continually tune or control them (Royapoor et al.
(2018), Stluka et al. (2018)). These factors motivate the search for physics-based or data-driven
approaches that guarantee thermal comfort in a cost-efficient manner using HVAC systems.

In the past decades, digital and electronic equipment have decreased in price and risen in popu-
larity. This has caused the category of model predictive control (MPC) algorithms to gain increased
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attention. These algorithms require a process model to predict the evolution of the building temper-
ature. One approach is to use a physics-based model to approximate the building thermal dynamics
mathematically. However, this approach is time consuming and expensive, as an accurate physical
model must be conceived for each new building. On top of that, the calculations that make use of
this model are computationally taxing, which gives rise to problems when applying this technique
to controllers with limited computational capabilities (Foucquier et al. (2013)). Alternatively, grey
box modelling leverages partial physical knowledge and combines it with data to calibrate the pa-
rameters of a simplified physical model. Although effective in practice, this type of model requires
extensive domain knowledge and data to be tuned correctly. To address the issues of the physics-
based approaches, and given the increased availability of building data, data-driven modelling has
risen in popularity during the last decade. This black box approach constructs an approximate
model of a building, solely based on weather data and sensor data collected from that specific build-
ing. Therefore, the building does not need to be specifically modelled and development times are
reduced, as black box models can be designed and calibrated more efficiently compared to their
physics-based counterparts. Recently, Terzi et al. (2020) have shown that long short-term memory
(LSTM) networks can be effective when used as process model in the context of modelling building
dynamics. This motivates further research to be conducted in this area.

The next sections of this paper are organised as follows. Work that forms the foundation of
the approach and how the proposed methodology further builds upon it, is summarised in Sec-
tion 2. Section 3 describes the data-driven methodology, and in particular the process model and
the minimisation problem forming the MPC control loop. Section 4 evaluates the methodology on
both a single-zone and a multi-zone Building Optimization Testing (BOPTEST) test case (Arroyo
et al. (2021)). Finally, the main conclusions and possible directions for future work are outlined in
Section 5.

2. Related Work and Contributions

The proposed approach builds upon five pieces of related work, with a main focus on design-
ing a data-driven controller for a building that is already controlled via an rule-based controller
(RBC), as is often encountered in real-world applications. Firstly, the practical nonlinear model
predictive control (PNMPC) algorithm proposed by Plucenio et al. (2007) enables to use a nonlin-
ear process model in the classical MPC control loop, without having to incur the computational cost
of inferencing a nonlinear model at each time step. To do so, the output of the model is approxi-
mated by a linear function of the control increments around the model’s base response. Secondly,
Terzi et al. (2020) and Schwedersky et al. (2019) propose to use an LSTM-based process model
to model complex system dynamics. In Terzi et al. (2020), the system to be steered consists of a
large building, but the process model is used to control solely the number of active coolers, with-
out controlling temperature set points or interdependent control inputs. Schwedersky et al. (2019)
integrate the LSTM-based process model in the PNMPC framework to control a pH-neutralisation
process. This article builds further on this integration both by relaxing the strong assumption that
all operating conditions are simulated in the training data, and by extending the process model to
an LSTM-based encoder-decoder architecture. Thirdly, Asghari et al. (2022) discuss a transfor-
mation technique to eliminate nonlinear products in the constraints and the objective function of
a minimisation problem. This technique, combined with the PNMPC algorithm, will be used to
rewrite the control problem as a minimisation problem with both a linear cost function and linear
constraints. This allows to use linear, rather than nonlinear, mixed integer programming solvers to
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solve the minimisation problem at each time step, which greatly reduces computational overhead.
Fourthly, Jain et al. (2020) propose a similar approach to our work, but we extend their approach by
linearising the optimisation problem by modeling interdependent inputs as the product of a continu-
ous and a discrete input, and by using an encoder-decoder LSTM (rather than a feed-forward neural
network)-based process model to perform multi-step forecasting. The proposed approach leverages
the five previous pieces of work by combining them to construct an encoder-decoder-based PNMPC
controller that handles interdependent inputs effectively.

The contributions of this article are fourfold. Firstly, it is the first work to use an LSTM-based
encoder-decoder neural network as process model in the PNMPC algorithm to naturally integrate
past and future values of disturbances and control actions. To that end, the work of Schwedersky
et al. (2019) is used as a basis and modified accordingly. Secondly, we focus on designing a data-
driven controller for a building that is already controlled via an RBC, as it is often encountered in
real-word applications. It follows that empirical control actions for a given context (i.e. disturbances
and previous control sequences) do not exhibit high variability, which might lead to untrustworthy
predictions due to extrapolation of the process model. To avoid such extrapolations in unexplored
areas of the feature space, a percentile-based technique is proposed, which improves the model’s
predictive performance by limiting the range of allowed control signal values. Thirdly, we extend
the control problem to handle interdependent control actions, which introduce extra nonlinearities
in the optimisation problem. To eliminate nonlinearities that arise from these interdependencies
and from the nonlinear process model, we combine the PNMPC algorithm with a product-based
transformation of variables, as discussed in Asghari et al. (2022). Fourthly, the control approach is
evaluated in a single-zone and a multi-zone BOPTEST test case, both of which are characterised
by different inputs and thermal properties. To validate the approach, we explore what savings in
terms of thermal discomfort and operational cost can be realised when using a data-driven con-
troller (DDC) rather than an RBC to steer an HVAC system. To this aim, the BOPTEST simulation
environment is used to extensively compare the performance of the RBC and the DDC, and to
uncover how the latter is affected by the hyperparameter values.

3. Methodology

The control approach is based on the MPC control loop as described in Camacho et al. (2004). We
highlight its main components below.

3.1. Process Model

Building on the work of Terzi et al. (2020) and of Schwedersky et al. (2019) and motivated by
its strong predictive capabilities for time series (Schmidhuber et al. (2005), Yu et al. (2019)), we
use an LSTM-based process model to forecast the zone temperature from time +1 up to time +N ,
where time 0 denotes the current time. However, instead of the classic LSTM architecture, we
consider an LSTM-based encoder-decoder network, which is better suited for the control task under
consideration and results in a lower root mean squared error (RMSE). Indeed, the features that are
input of the model can be divided into three categories: (1) variables known at past time steps (past
covariates), (2) variables known at both past and future time steps (future covariates), and (3) the
values of the target variable known at past time steps (past target variable values). To predict the
target variable value at time +i, i ∈ {1, 2, . . . , N}, the past covariates and past target feature values
are available up to time 0, along with the future covariate values up to time step +i. Therefore,
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when using a direct, rather than a recursive, forecasting approach, the input size varies depending
on which time step is predicted: this poses an issue for the conventional LSTM network, as it has
a fixed input size. We alleviate this issue by using an LSTM-based encoder-decoder network as
process model (see Figure 1). This model consists of two parts: (1) an encoder that processes the
past covariates and the past values of the target variable into a lower dimensional context vector, c,
and (2) a decoder that processes the context vector in combination with the set of future covariates
to produce the next target feature values. This architecture enables the model to produce a sequence
of output values, whose length is independent of that of the input sequence.

: LSTM-cell

Figure 1: Graphical overview of the LSTM-based encoder-decoder process model. w denotes the
number of past covariate features and N the prediction horizon. Figure based on Angioi (2022).

To formulate the control task as a linear, rather than a nonlinear, mixed integer programming
problem, the PNMPC algorithm is applied to linearise the process model at each time step. In doing
so, the process model’s output at the next N time steps is approximated by a linear function of the
control increments, ∆u, within the control horizon:

y(u) =

 y+1(u1,+1, . . . , uk,+1)
...

y+N (u1,+1, . . . , uk,+1, . . . , u1,+N , . . . , uk,+N )

 ≈ f(u(0)) +G(u(0))∆u, (1)

where y+i, i ∈ {1, 2, . . . , N} is the process model output at time +i and u = [u1,+1 . . . uk,+1

. . . u1,+N . . . uk,+N ]T , where uℓ,+i, ℓ ∈ {1, 2, . . . , k}, i ∈ {1, 2, . . . , N} is the value of the ℓth
control action at time step +i. Moreover, f = y(u(0)) denotes the process model’s free response,
u(0) the optimal control actions vector obtained at the previous control time and ∆u = u−u(0) the
control increment vector. Generalising Equation (1) in vector notation for time step t, we obtain:

ŷ(u(t)) ≈


ŷ+1(u

(t−∆t))

ŷ+2(u
(t−∆t))
...

ŷ+N (u(t−∆t))

+


∂ŷ+1

∂(u)1

∣∣∣
u(t−∆t)

0 . . . 0

∂ŷ+2

∂(u)1

∣∣∣
u(t−∆t)

∂ŷ+2

∂(u)2

∣∣∣
u(t−∆t)

. . . 0

...
...

. . .
...

∂ŷ+N

∂(u)1

∣∣∣
u(t−∆t)

∂ŷ+N

∂(u)2

∣∣∣
u(t−∆t)

. . .
∂ŷ+N

∂(u)kN

∣∣∣
u(t−∆t)




(∆u(t))1
(∆u(t))2

...
(∆u(t))kN


(2)

where (u)l denotes the lth component of vector u and

(∆u(t))l = (u(t))l − (u(t−∆t))l
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and

∂ŷ+j

∂(u)l

∣∣∣
u(t−∆t)

≈
ŷ+j(u

(t−∆t) + ε(l))− ŷ+j(u
(t−∆t))

ε
(3)

denotes the partial derivative of the jth element of the output vector with respect to the lth future
control signal value within the control horizon, evaluated at u(t−∆t) (Yang et al. (2016)). Here, ε(l)
represents a zero-vector containing a small perturbation ε at position l. The hyperparameters used
for the process model are depicted in Table 1.

LSTM cells 16 Epochs 8 Batch Size 64
Input Length 8 Loss Function MSE Training Optimiser COCOB
Early Stopping Delta 1e-5 Patience 3

Table 1: The process model’s hyperparameter values.

3.2. Minimisation Problem

The minimisation problem, that is embedded in the MPC control loop, is of the following form:

minimize
x

cTx

subject to Ax ≼ h,
(4)

where cTx denotes the cost function that is to be minimised, Ax ≼ h denotes the set of constraints,
and ≼ represents the element-wise inequality operator. The cost function encodes preferences with
respect to the different evaluation criteria:

1
[

fc(u)
T︸ ︷︷ ︸

operational cost

ωζT ωξT︸ ︷︷ ︸
thermal discomfort

]T
, (5)

where 1 = [1 . . . 1] ∈ R(k+2)N , fc represents the operational cost as a linear function of the
control signal values within the control horizon, u, and where ζ = [ζ+1 . . . ζ+N ]T ≽ 0, ξ =
[ξ+1 . . . ξ+N ]T ≽ 0. Here, ζ+i and ξ+i, i ∈ {1, 2, . . . , N} are slack variables that indicate how
much the zone temperature deviates from the lower and upper comfort bounds, respectively, for
time step +i . These slack variables are introduced to convert the hard thermal constraints to soft
constraints, to ensure that a solution always exists. Finally the weight ω > 0 allows to specify the
relative importance of the thermal discomfort compared to the operational cost. The set of con-
straints can be decomposed into three types: (1) constraints that enforce the zone temperatures to
stay within the (softened) comfort bounds, (2) constraints that ensure admissible values for the con-
trol signals, slack variables and possible auxiliary variables, and (3) constraints that link the values
of the control signals to the process model’s output temperatures.

Real-world control problems are often characterised by interdependent inputs, which are inputs
that cannot be considered separately as they jointly affect the process’ output. In building control,
binary on/off activation bℓ = [bℓ,+1 . . . bℓ,+N ]T and continuous supply temperature set point signals
vℓ = [vℓ,+1 . . . vℓ,+N ]T of a given HVAC component ℓ are examples of interdependent control sig-
nals. To model their joint effect, the problem can be written as a mixed integer linear programming
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(MILP) in which the product of the variables is used as feature of the process model: bℓ⊙vℓ, where
⊙ denotes the element-wise multiplication operator. However, this expression is nonlinear, which
entails that nonlinear solvers are needed to solve the optimisation problem. To circumvent this com-
putational overhead, an auxiliary vector ũℓ = bℓ ⊙ vℓ as well as extra constraints are introduced
for each pair of interdependent control signals, which allows the problem to be rewritten in a linear
form and to be solved using MILP solvers (Asghari et al. (2022)); in this case, CVXOPT is used
to solve the MILP problem (Andersen et al. (2024)). Combining Equations (4) and (5), the vector
of unknowns x is given by the block vector

[
uT ζT ξT bT vT

]T , where u =
[
ũT
1 . . . ũT

k

]T ,

b =
[
bT1 . . . bTk

]T and v =
[
vT
1 . . .vT

k

]T .

3.3. Percentile Cutoff

In real-world control applications, one of the main challenges when building a purely data-driven
process model is the lack of variability in the training data, and in particular in the control actions,
which often follow a (semi-)manual control strategy. This might lead to a large discrepancy between
the control actions considered during the control phase and those encountered during the training
phase, and hence to extrapolation of the process model. To address this issue, there are two options.
Either the training data could be generated in such a way that it sufficiently covers all possible values
of the model’s input space, or the control approach could be limited to only use values that occur
sufficiently often in the training data. We opt for the latter approach, as using the former approach
would result in significant costs or thermal discomfort for the occupants, which is to be avoided in
real-life applications. To restrict the range of control values, a form of robust optimisation is used,
which we call percentile cutoff. This approach limits the range of values allowed during the control
phase to those values included between the 100αth and 100(1−α)th percentiles, where α ∈ (0, 0.5)
is a hyperparameter. The higher the value of α, the lower the extrapolation of the process model, but
the more constrained the control actions. To mitigate the risk of model extrapolation, other robust
optimisation techniques could be considered, such as adjusting the cost function to penalise control
actions that rarely occur in the training data.

4. Implementation and Results

To validate the methodology, two building emulators available in the BOPTEST framework
are used: (1) a single-zone building with low thermal inertia and equipped with an emission heating
system, called the bestest hydronic test case, and (2) a two-zone building with higher thermal
inertia, the multizone office simple hydronic test case, within which each zone has a
dedicated emission subsystem and an air handling unit (AHU) (BOPTEST, icupeiro (2022)). For
each test case, a dataset is generated by controlling the building emulator for a simulated duration
of one year using an advanced RBC, which consists of a hysteresis controller with a night set-back
and a predetermined room temperature compensation. For this period, the weather data, the control
signal values, the zone temperatures and the HVAC system sensor data are saved. The first nine
months of data constitute the process model’s training data while the last three months are split into
two equally sized sets that make up the validation and testing sets, respectively. The past covariates
consist of data that is captured by HVAC system sensors, while the future covariates consist of the
control actions and of variables that can be predicted (such as weather forecasts).
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To assess the controllers’ performance, we consider two criteria: (1) the thermal discomfort,
and (2) the operational cost, or energy cost1, which are displayed in Figure 2. Equation (6) shows
the thermal discomfort, which is defined as the (cumulative) deviation of the zone temperature from
the thermal comfort range, where [t0, tf ] is the period during which the HVAC system is controlled,
s
(t)
z is the deviation from the comfort range in zone z at time t, and M is the number of zones.

Equation (7) shows the operational cost, which is defined in terms of the magnitude of the auxiliary
variable, where ũ

(t)
z,i is the value of the ith auxiliary variable of zone z at time t, and Ũz is the set

of auxiliary control signals of zone z. Figure 3 shows that for the bestest hydronic test case,
the auxiliary variables are strongly correlated to the value of the BOPTEST cost key performance
indicator (KPI). This motivates the choice of a linear function for the (unknown) operational cost in
Equation (5) and the use of (7) as evaluation metric.

D(t0, tf ) =
1

M

M∑
z=1

∫ tf

t0

∥s(t)z ∥ dt (6)

C̃(t0, tf ) =
1

M

M∑
z=1

∫ tf

t0

∑
i∈Ũz

ũ
(t)
z,i dt (7)

Figure 2: Thermal discomfort (top) and op-
erational cost (bottom) metrics.
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Figure 3: The BOPTEST cost KPI is
strongly correlated to the auxiliary variable
for the bestest hydronic test case.

4.1. Experiments

To assess the controllers’ performance, receding horizon control is used for both test cases, where
the constrained optimisation problem is repeatedly solved for a period of one week, ranging from
23 December 2021 until 30 December 2021.

4.1.1. SINGLE-ZONE BUILDING

The left panel of Figure 4 shows the evolution of the zone temperature obtained by both the RBC
(red) and the DDC (blue). The DDC manages to keep the temperature within the comfort bounds
more often, although the temperature generated by the DDC strongly oscillates. This is explained
by the fact that the simulated building has a low thermal inertia and that the DDC switches the
HVAC system on and off more often. The RBC avoids this oscillatory behaviour by applying more
gradual transitions in the HVAC system’s activation regime2. Predicting such volatile temperatures
poses an additional challenge for the process model, as is shown in the right panel of Figure 4. An
overview of the process model’s accuracy in terms of its RMSE for each of the test cases is shown
in Table 2. Figure 5 shows that the data-driven approach manages to eliminate the sharp peaks in
thermal discomfort of up to 5 K that are generated by the RBC, thanks to its ability to anticipate the
need for heating shortly before the building starts to be occupied. However, the DDC does result in
higher thermal discomfort compared to the RBC at times where the comfort bounds are constant.

1. The operational cost and energy cost criteria coincide, up to a proportional factor, since simulations are based on a
constant pricing scenario.

2. More details on the control signals for the RBC and DDC can be found in Hinderyckx (2023).
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Test Set Control Set

bestest hydronic 0.26 K 0.45 K
multizone office simple hydronic 0.24 K 0.27 K

Table 2: RMSE of the process model during the training phase and the control phase for both test
cases (in Kelvin).
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Figure 4: Left panel: Zone temperature resulting from the DDC and RBC, and forecasting errors
of the DDC. The comfort bounds are shown in green and the linearisation and prediction errors are
depicted by the shaded regions, whose values can be read on the right-hand axis. Right panel: Com-
parison between the predicted zone temperature and the true zone temperature during the control
phase.

Figure 5: Thermal discomfort D(t0, tf ) as a function of time. The peaks in discomfort resulting
from the RBC occur at time steps at which the comfort bounds change. The values of the cumulative
thermal discomfort that are visualised by the shaded regions can be read on the right-hand axis.

Given that the DDC outperforms the RBC when the comfort bounds change, and that the RBC
outperforms the DDC when the comfort bounds are constant, we expect to see improved perfor-
mance when the two controllers are combined. To leverage the advantages of both controllers, we
introduce a hybrid controller, which dynamically — based on the shape of the past and future com-
fort bounds — decides whether to use the DDC or the RBC. More concretely, if there is a change in
the comfort bounds in a window of size W centered around the control time, the DDC is selected,
while the RBC is selected if the comfort bounds are constant within the window. Using a window
size W equal to 12 time steps, the temperatures shown in the left panel of Figure 6 are obtained.
The hybrid controller is able to anticipate heating needs, as is shown by the figure’s enlarged view,
while limiting the oscillatory behaviour, which mainly occurs when the DDC mode is activated.
To reduce the magnitude of oscillations, an alternative to using a hybrid controller is to penalise
high variations of the control signals in the cost function. However, this comes at the expense of
worsening the two other dimensions: guaranteeing comfort and minimising cost. Moreover, the
oscillations could be dampened by reducing the linearisation error. This could be achieved by ap-
plying an iterative version of the PNMPC algorithm, PNMPCi, which runs the PNMPC algorithm

8



LINEARISED DATA-DRIVEN LSTM-BASED CONTROL OF MULTI-INPUT HVAC SYSTEMS

DDC Hybrid DDC

Operational cost -9% -3%
Thermal discomfort -27% -44%

Figure 6: Zone temperature obtained by the hybrid controller (left) and relative improvement of the
DDC and of the hybrid DDC compared to the RBC for the two evaluation metrics (right).

for multiple iterations to reduce the mismatch between the process model’s output and its linear
approximation (Schwedersky and Flesch (2022)).

The right panel of Figure 6 shows the relative improvement of the DDC and of the hybrid
DDC compared to the RBC. Globally speaking, the two controllers outperform the RBC in terms of
both thermal comfort and cost. The DDC realises larger cost savings due to its oscillatory control
behaviour. Although theoretically optimal, this behaviour is not desirable in practice, as it could
cause significant wear and tear on the HVAC system. Moreover, the hybrid DDC reduces the thermal
discomfort significantly compared to the DDC.

To assess the robustness of the control approach, the one week control experiment is repeated for
different times throughout the year. Figure 7 shows the performance of the hybrid DDC, expressed
as relative improvement compared to the RBC’s performance, and the forecast RMSE as a function
of the control week offset, which is defined as the number of weeks in between the end of the training
phase and the beginning of the control phase. The RMSE of the process model does not fluctuate
much with the control week offset, which indicates that the model accuracy is robust to different
times of the year. The hybrid DDC shows an overall improvement in terms of both evaluation
metrics, except for a single peak in the relative discomfort at an offset of six weeks. However, this
relative increase translates into a negligible increase of the absolute discomfort D(t0, tf ).

4.1.2. MULTI-ZONE BUILDING

To simulate a more realistic scenario, the control approach is applied to a two-zone building, in
which each zone contains a dedicated HVAC system, composed of both a heating and a ventilation
system that have to be steered simultaneously. To extend the approach to a multi-zone building,
decentralised MPC is used by deploying a separate instance of the controller in each zone. Table 3
summarises the results of the decentralised MPC approach applied to the multizone office
simple hydronic test case. One apparent outlier in the results of the hybrid DDC is the RMSE
value of the south zone temperature. This is due to the significant discrepancy between the data
encountered during the training phase and the control phase, as is shown in the left panel of Figure 8.
For all experiments, a default value of α = 10−3 was used in the percentile cutoff procedure.
However, increasing α to 5 · 10−2 leads to both a better predictive and control performance, as
is depicted in the right panel of Figure 8. This shows that managing the associated trade-off is
important to improve the performance: larger values of α leads to a better predictability, at the cost
of limiting the freedom of the controller, as the range of allowed control values is limited.
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KPIs RMSE

Thermal discomfort Operational cost Training Control

North zone -36% -3% 0.24 K 0.27 K
South zone -64% -3% 0.14 K 1.14 K

Average -50% -3%

Table 3: Evaluation metrics and RMSE ob-
tained by the hybrid DDC in the multi-zone,
multi-subsystem test case.
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Figure 7: Impact of the control week on the
RMSE (green) and evaluation metrics for the
hybrid DDC (red and blue).
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Figure 8: Discrepancy between the distribution of the training data and the control data for the south
zone (left) and effect of α on the RMSE (green) and on the evaluation metrics (red and blue) of the
south zone (right).

5. Conclusion

This work presents a linearised encoder-decoder LSTM controller that combines past and future
covariates in a natural way and extends previous work by considering the case of interdependent
control actions, while preserving the affine characteristic of the cost function. To cope with the
limited variability observed in real training datasets, the range of allowed control signal values is
restricted using a percentile-based approach, allowing to improve the process model’s predictive ac-
curacy during the control phase. Making use of the BOPTEST framework, the proposed approach
is shown to globally outperform the performance of advanced RBCs in terms of both the thermal
comfort and the operational cost. Furthermore, it is demonstrated that dynamically combining the
data-driven and rule-based controllers allows to anticipate heating needs while maintaining more
stable zone temperatures under constant comfort bounds, by leveraging the advantages of both con-
trollers. The robustness of the approach was shown in terms of the number of weeks separating the
training and the control phase, as well as in terms of the complexity of the building emulator. The
proposed hybrid controller can be further extended to take dynamic pricing into account by building
on the work of Bindels and Nelemans (2022).
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