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Abstract
Bayesian optimization (BO) has proven to be a powerful tool for automatically tuning control
parameters without requiring knowledge of the underlying system dynamics. Safe BO methods, in
addition, guarantee safety during the optimization process, assuming that the underlying objective
function does not change. However, in real-world scenarios, time-variations frequently occur, for
example, due to wear in the system or changes in operation. Utilizing standard safe BO strategies
that do not address time-variations can result in failure as previous safe decisions may become
unsafe over time, which we demonstrate herein. To address this, we introduce a new algorithm,
Event-Triggered SafeOpt (ETSO), which adapts to changes online solely relying on the observed
costs. At its core, ETSO uses an event trigger to detect significant deviations between observations
and the current surrogate of the objective function. When such change is detected, the algorithm
reverts to a safe backup controller, and exploration is restarted. In this way, safety is recovered and
maintained across changes. We evaluate ETSO on quadcopter controller tuning, both in simulation
and hardware experiments. ETSO outperforms state-of-the-art safe BO, achieving superior control
performance over time while maintaining safety.
Keywords: controller tuning, Bayesian optimization, safe learning, quadcopter, adaptive optimiza-
tion, time-varying systems

1. Introduction

Bayesian optimization (BO) has emerged as a powerful tool to tune controllers without requiring an
exact model of the physical system, e.g., in robotics (Calandra et al., 2016; Marco et al., 2016) or
automotive applications (Neumann-Brosig et al., 2018). This is achieved by optimizing a black-box
objective function that quantifies the closed-loop performance as a function of controller parameters.
This (unknown) function is often modeled as a Gaussian process (GP), which is then used to formu-
late an acquisition function guiding the optimization process. Specifically, the acquisition function
determines which control parameters to choose next trading off exploration and exploitation.

Unbounded exploration can lead to control parameters that are unsafe and can harm the hard-
ware of the physical system or people operating it. Therefore, safe BO algorithms have been pro-
posed (Sui et al., 2015; Berkenkamp et al., 2016) and their efficacy has been demonstrated on various
control systems, including quadcopters (Berkenkamp et al., 2021). Starting from an initial safe con-
troller, these algorithms build up a set of control parameters that are assumed to be safe. Safe BO
considers no variations in the controlled system and thus, no variation in the performance function
between experiments. However, the closed-loop performance may change over time, e.g., due to
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Figure 1: We introduce ETSO, an algorithm for safe black-box optimization in time-varying en-
vironments. ETSO maintains safety across time variations in contrast to state-of-the-art
algorithms such as SafeOpt. Images are from the video: https://youtu.be/nLmeO-fMIvg.

changes in the system dynamics or in the reference. As a consequence, the underlying model can
become invalid, and once found optimal controllers may become sub-optimal. In addition, such
changes may shift the safe set, and parameters that used to be safe may become unsafe. Hence,
adaptation to these changes is vital to ensure both: good performance and safety over time.

Time-varying BO has been proposed to address change over time (Bogunovic et al., 2016; Brun-
zema et al., 2023). However, existing methods focus on performance, yet do not consider safe ex-
ploration. In general, aiming for a-priori safety guarantees under arbitrary changes is an ill-posed
problem, and some assumptions are needed. In this work, we consider systems that remain in a
fixed mode for a minimum of time. Such lower bounds on the time between changes are common
in switched systems literature, where they are referred to as dwell time (Hespanha and Morse, 1999;
Baumann et al., 2019). Scenarios that display this behavior are, e.g., those that involve abrupt,
but infrequent changes. In this paper, we propose to combine existing mechanisms for safe explo-
ration with the recently proposed event-triggered BO approach (Brunzema et al., 2023) to deal with
changes. Event-triggered BO detects change by comparing the expected performance with obtained
measurements, without requiring an explicit model of the time variations. We thus propose Event-
Triggered SafeOpt (ETSO) as a new type of safe BO algorithm that can accommodate for time
variations. Our algorithm learns for a fixed number of rounds until it obtains a suitable controller;
a practical approach for various applications. During the optimization and afterwards, the event
trigger monitors the learned function for changes. Once such changes are detected, ETSO reverts
to a safe backup controller, resets the safe set, and restarts the exploration. Unlike previous contex-
tual BO approaches (König et al., 2021), ETSO does not require any contextual measurements that
quantify the temporal change, but only the noisy evaluations of the performance function.

We test ETSO for controller tuning in simulation and on hardware. Using a Bitcraze Crazyflie 2.1
quadcopter and experiments emulating typical variations, we show (cf. Figure 1): (i) standard safe
BO can indeed fail due to time-variations, and (ii) ETSO remains safe across time variations in these
situations. In summary, our main contributions are:

• ETSO: Combining safe BO and event triggering, we introduce the new algorithm ETSO that
maintains safety across time variations by reverting to a backup controller and resetting its
safe set when needed.

• Empirical evaluation in simulation and hardware: ETSO shows superior safety and per-
formance compared to baselines like SafeOpt, which can fail on time variations.
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2. Problem Setting

We aim to find optimal control parameters θ∗
t ∈ Θ ⊆ Rd over a time horizon T in time-varying envi-

ronments.1 The performance of a controller is quantified by the performance function Jξt : Θ→ R
where the functional dependency of Jξt on θt is unknown. Here, we denote ξt as the system mode
at time t indicating that some variables of the closed loop system that influence the performance
are time-varying. We consider the setting where it is unknown which variables can change, but the
system has a minimum dwell time τdwell and the changes occur after some time steps since the last
change t′ = t − τ > τdwell, where τ is the time step of the change.To avoid system failure, we
further require the optimization to be safe. We therefore aim to ensure a minimum safety threshold
Jξt(θt) ≥ Jmin,t in probability where Jmin,t ∈ R for all time steps t ∈ TT := {1, 2, . . . , T} as it is
standard in SafeOpt-type algorithms (e.g., Sui et al. (2015)). Likewise, we assume that Jξt(θt) is L-
Lipschitz continuous. Note that in our setting this bound is also time-varying as it may depend on ξt.
For safety, we assume access to a backup controller. These are often supplied by the manufacturer
or obtained by some robust controller design; they are usually robust, but sub-optimal.

Assumption 1 We have access to a safe backup controller θB that stabilizes the close loop system
for all system modes ξt. A neighborhood of θB is also safe such that Jξt(θB)− ϵ ≥ Jcrit.

In Assumption 1, Jcrit ≤ Jmin,t is the critical performance before system failure and ϵ ∈ R>0.
Remaining safe implies that we may not be able to find the global optimum, but only the optimum
within the reachable setRt := {θ ∈ Θ | Jξt(θ) ≥ Jmin,t and θ path-connected with θB}. Here we
use θB from Assumption 1 as an initial controller. The reachable set may change depending on ξt;
henceRt is time-varying (see Figure 2). WithRt, we can formalize our optimization problem as

θ∗
t = argmaxθ∈Rt Jξt(θ). (1)

At each time step t, an algorithm can query this performance function only once. In the con-
troller tuning context, this means performing one experiment e.g., flying one round with a quad-
copter (see Figure 1). The algorithm then receives an observation which is perturbed by independent
and identically distributed (i.i.d.) zero mean Gaussian noise with σ2n as the noise variance as

Ĵt = Jξt(θt) + wt, wt ∼ N (0, σ2n). (2)

Problem Statement. We aim to develop a practical algorithm to tune controllers in time-varying
environments by optimizing (1). The optimization should be performed without safety violations.
Contrary to related work in safe BO, we consider time variations in the underlying function, thus a
changing reachable setRt, and no explicit measurements of the changing parameters.

3. Related Work

Our proposed algorithm ETSO builds on ideas from time-varying BO as well as safe BO to ensure
safe learning over time. In the following, we discuss the related work to ETSO in more detail.
Safe Bayesian Optimization. Safe BO methods aim to learn optimal parameters while also ensur-
ing safety. Most proposed algorithms follow the ideas of SafeOpt (Sui et al., 2015). Some pop-
ular examples of SafeOpt variants include modified SafeOpt (Berkenkamp et al., 2016), multiple-
constraint SafeOpt (Berkenkamp et al., 2021), GoSafe (Baumann et al., 2021; Sukhija et al., 2023),

1. Throughout this paper, we highlight time dependency using a subscript t ∈ N to denote discrete time steps.
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and StageOpt (Sui et al., 2018). These variants have been used in various control applications, such
as quadcopters (Berkenkamp et al., 2021) or heat pumps (Khosravi et al., 2019). An alternative
method, GoOSE (Turchetta et al., 2019), can transform any algorithms to be safe by incorporating
similar safety measures as SafeOpt. However, all of these methods assume that the performance
function is time-invariant. This means that safe decisions are assumed to remain safe over time.
This does not hold in dynamic environments, where previously safe decisions may become unsafe.
We build on the modified SafeOpt method and extend it to time-varying environments. It is worth
noting that other approaches could be used; we predominantly choose modified SafeOpt due to
computational efficiency, which is necessary due to the limited battery life of the quadcopters.
Adapting to Time-Variations. There are several approaches to time-varying BO (TVBO), which
consider trade-offs between remembering and forgetting data. These approaches either use a Markov-
chain model (Bogunovic et al., 2016; Brunzema et al., 2022, 2023) or a variation budget (Zhou and
Shroff, 2021; Deng et al., 2022) to model time variations. Since we aim to be adaptive to changes,
we build on the algorithm proposed in Brunzema et al. (2023) (cf. Section 4). It leverages ideas
from event-triggered learning (Solowjow and Trimpe, 2020; Umlauft and Hirche, 2019), i.e., de-
tecting changes online and re-learning only when necessary, and transfers them to TVBO. Unlike
all proposed TVBO approaches, we additionally consider safety and obtain an algorithm that learns
safely under time variations such that it can be applied to hardware systems.
Contextual Safe Bayesian Optimization. In contextual BO (Krause and Ong, 2011), the model
of the underlying function includes a context parameter. This parameter represents environmental
conditions that cannot be influenced during optimization and may vary over time. Safe contextual
BO methods leverage this context parameter to account for time variations in the system and en-
able safe exploration using BO. Such methods have been successfully applied to various control
problems (Su et al., 2018; Fiducioso et al., 2019; De Blasi et al., 2023). Other methods, such as
GoOSE for adaptive control (König et al., 2021) and VACBO (Xu et al., 2023), are variants of this
approach. Given our problem setting in Section 2, safe contextual BO methods cannot be applied
as we assume to only have access to noisy observations and no additional environmental condition
measurements. To circumvent this lack of additional information to quantify change, our approach
utilizes an event-based trigger to detect changes based on the expected and observed performance.

4. Background

Our method combines safe Bayesian optimization with the adaptation to time variations using an
event trigger. Next, we will introduce the necessary background and notation for both concepts.
Gaussian Processes. GPs (Williams and Rasmussen, 2006) are a probabilistic non-parametric
method for regression that provide explicit uncertainty estimates for the learned function. This
makes them a powerful tool for regression and also as the probabilistic surrogate model for Bayesian
optimization. A GP is fully defined by its mean function m : Θ → R and kernel k : Θ × Θ → R
and we denote it as f(θ) ∼ GP(m, k). The prior belief defined through the mean function and
kernel can be updated using a data set Dt := {(θi, Ĵi)}t−1

i=1 to obtain a posterior prediction over
a test point θ. Assuming i.i.d. additive Gaussian noise in the observations as in (2), the poste-
rior mean and covariance are µDt(θ) = m(θ) + kT

t (θ)(Kt + σ2nIt)
−1(Ĵ −m(θ)) and σ2Dt

(θ) =

k(θ,θ)−kT
t (θ)(Kt+σ

2
nIt)

−1kt(θ), respectively, where Kt = [k(θi,θj)]
t−1
i,j=1 is the Gram matrix,

kt(θ) = [k(θi,θ)]
t−1
i=1, and noisy measurements are concatenated as Ĵ = [Ĵ1, . . . , Ĵt−1]

⊤.
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Safe Bayesian Optimization. BO (Garnett, 2023) is an optimization method for noisy black-box
functions. The core components of BO are a surrogate model such as a GP and an acquisition
function that balances exploration and exploitation. To safely optimize J , i.e., without violating
some minimal performance Jmin with high probability, SafeOpt-type algorithms impose regularity
assumptions on J : first, that J is L-Lipschitz continuous, and second, that J ∈ Hk, where (Hk, ∥ ·
∥k) is the unique reproducing kernel Hilbert space with the reproducing kernel k. Specifically,
SafeOpt-type algorithms require that there exists a bound R ∈ R≥0 such that ∥J∥k ≤ R. With
this, one can leverage frequentist uncertainty bounds on the GP regression error which state that
|J(θ) − µDt(θ)| ≤ βtσDt(θ) for all θ ∈ Θ and all time steps holds true with probability at least
1 − δ (see e.g., Srinivas et al. (2009, Theorem 6)). In our method, we use the modified SafeOpt
algorithm (Berkenkamp et al., 2016) which directly computes the safe set based on the upper and
lower confidence bounds based on such uncertainty bounds as ut(θ) := µDt(θ) + βtσDt(θ) and
ℓt(θ) := µDt(θ)−βtσDt(θ), respectively. With this, the safe set, the maximizers, and the expanders,
of the modified SafeOpt algorithm are St := {θ ∈ Θ | ℓt(θ) ≥ Jmin},Mt := {θ ∈ St | ut(θ) ≥
maxθ′∈St ℓt(θ

′)} and Gt := {θ ∈ St | gt(θ) > 0}, with gt(θ) :=| {θ′ ∈ Θ \ St | ℓt,(θ,ut(θ))(θ
′) ≥

Jmin} |, respectively. The acquisition function is then defined as θt = argmaxθ∈Gt∪Mt ut(θ) −
ℓt(θ). SafeOpt-type algorithms require an initial safe controller as in Assumption 1.
Event-Triggered Time-Varying Bayesian optimization. The concept of detecting and adapting
to time-variations in BO using an event trigger was introduced by Brunzema et al. (2023). It al-
lows their algorithm ET-GP-UCB to account for time variations without explicitly modelling and
estimating a rate of change. The event trigger is defined as follows.

Definition 1 (Event-triggered TVBO framework) Given a test function ψt and a threshold func-
tion κt, both of which can depend on the current dataset Dt and the latest query location and
measurement pair (θt, Ĵt), the event trigger at time step t is defined as

γreset = 1⇔ ψt

(
Dt, (θt, Ĵt)

)
> κt

(
Dt, (θt, Ĵt)

)
(3)

where γreset is the binary indicator for whether to reset the dataset (γreset = 1) or not (γreset = 0).

Brunzema et al. (2023) define their test and threshold function such that the event trigger activates
when observations deviate significantly from the prediction leveraging the following bound on de-
viations between measurements and the prediction where t′ is the time step since the last reset.

Lemma 2 (Brunzema et al. (2023, Lemma 3)) Let J ∼ GP(0, k). Pick δB ∈ (0, 1) and set
ρt′ = 2 ln

2πt′
δB

, where
∑

t′≥1 π
−1
t′ = 1, πt′ > 0. Also set w̄2

t′ = 2σ2n ln
2πt′
δB

. Then, observations Ĵt
satisfy |Ĵt − µDt(θt)| ≤ ρ

1/2
t′ σDt(θt) + w̄t′ for all time steps t′ ≥ 1 with prob. at least 1− δB .

With this Lemma for non-changing functions J , they set the test function and threshold function to

ψt

(
Dt, (θt, Ĵt)

)
=

∣∣∣Ĵt − µDt(θt)
∣∣∣ (4) and κt

(
Dt, (θt, Ĵt)

)
=
√
ρt′σDt(θt) + w̄t′ . (5)

5. ETSO – Combining Safety and Adaptation to Changing Environments

In this section, we present our algorithm Event-Triggered SafeOpt (ETSO) for safe BO in time-
varying environments. Specifically, we aim to solve (1) for a given task by combining the concepts
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Figure 2: Overview of our proposed algorithm. ETSO starts by optimizing a the performance func-

tion with SafeOpt. Once our event trigger detects a significant change, we reset to the
safe backup controller, calculate a new threshold Jmin,t, and restart the exploration.

of SafeOpt-type algorithms and adapting to changes by detecting them based on the expected per-
formance with an event trigger that can reset the data and thus, the safe set. Figure 2 gives an
overview of ETSO and it is summarized in Algorithm 1. Initially, ETSO performs safe BO for safe
exploration for TL ≤ T rounds while being monitored by the event trigger. This way, changes can
already be detected during optimization. As discussed, we choose the modified SafeOpt algorithm
(Berkenkamp et al., 2016) for this step, as well as an event trigger as in Definition 1 with (4) and (5).
After TL rounds, ETSO chooses the parameters that maximize the posterior mean within the safe
set. If at any point the trigger is activated, ETSO resets the dataset, and explores the new system
mode ξt with SafeOpt. For this, the first round is performed using θB and a new limit to the cost
Jmin,t with respect to it, as will be described in the implementation details section.

To prove safety for ETSO for different modes ξt, we require assumptions on the performance of
our event trigger as well as on the performance of the controller for the iteration in the new modes.

Assumption 2 When there is a change relevant for the performance, it is detected.Let the change
happen at time τ . The parameters θτ are at least critically stable in the new system mode ξτ .

The first part of the assumption is satisfied if the change is significant enough w.r.t. the threshold
function of our event trigger. This threshold can be large during optimization given our acquisition
function that selects control parameters with the highest variance in the safe set. It is substantially
smaller after TL rounds, when ETSO selects its best predicted control parameters. We will demon-
strate in our experiments that not all changes can nor should be detected, as some are insignificant.
The second part of the assumption is a natural extension of Assumption 1 and acts as a regularity
assumption on the temporal change. With the two assumptions, the following is immediate:

Corollary 3 Given Assumption 1 and Assumption 2, ETSO remains safe across time variations with
probability at least 1− δ.

Proof We optimize safely with high probability using SafeOpt as shown in Sui et al. (2015, Theo-
rem 1). With Assumption 2, once a change occurs, we detect it and have no system failure. ETSO
resets the safe set and reverts to θB, which is safe for the new system mode by Assumption 1. The
following optimization is again safe by the above arguments proving the claim.
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Algorithm 1: Event-Triggered SafeOpt (ETSO).
Input: GP prior (µD0 , k), backup controller θB, δB ∈ (0, 1), β, max. learn rounds TL > 1

1 Initialize GP with D1 = (θB, ĴB); Set Jmin,t ← Jmin(ĴB); Set t′ ← 1
2 for t← 1 to T do
3 Update GP with Dt

4 if t′ ≤ TL then
5 Update St,Mt, Gt according to mod.

SafeOpt (Berkenkamp et al., 2016)
6 if t′ < TL then
7 θt ← argmaxθ∈Gt∪Mt(ut(θ)− lt(θ))
8 else
9 θt ← argmaxθ∈St(µt(θ))

10 Ĵt ←OBSERVATION(θt)

11 Dt+1, t
′ ←Event Trigger(Dt, (Ĵt,θt), δB)

12 end

13 Event Trigger(Dt, (Ĵt,θt), δB):
14 γreset ← evaluate (??) with (4) and (7)
15 if γreset then

/* reset to backup controller */

16 ĴB ←OBSERVATION(θB)

17 Dt+1 = {(θB, ĴB), (θt, Ĵt)}
18 Jmin,t ← Jmin(ĴB)
19 t′ ← 2

20 else
21 Dt+1 ← Dt ∪ (θt, Ĵt)
22 t′ ← t′ + 1

23 return Dt+1, t
′

This Corollary is an immediate extension of the safety proof from Sui et al. (2015) to the time-
varying case with an event trigger under the stated assumptions. Notwithstanding, it formalizes
the conditions where ETSO is guaranteed to be safe and underscores the significance of a reliable
event trigger. Essentially, the proposed event trigger allows for decoupling the entire process into
individual, stationary sections, for which the safety rationale of existing safe BO can be applied.
We will demonstrate in our experiments, that ETSO will detect significant changes. We will next
describe implementation details regarding the event trigger and the new initialization after a reset.
Implementation details. We next describe key algorithmic choices in our implementation of ETSO.
First, the data cannot be standardized for the GP, because each data point is added to the SafeOpt
algorithm individually, and all sets are updated at each time step. Instead, we normalize the data
with the rounded up absolute value of ĴB and set the prior mean µD0

:= m(θ) = −1, obtaining the
relation −1 = µD0 ≤ µD1(θB) ≤ ĴB/⌈abs(ĴB)⌉. From SafeOpt we also derive some restrictions
on the safety threshold and the prior standard deviation σD0 . Jmin,t must be below the performance
of the backup controller and above the lower bound ℓt(θ) such that points for which we have no
relevant information cannot be classified as safe. This gives us the relation

µD0 − β0 · σD0 < Jmin,t < µD1(θB)− β1 · σD1(θB), (6)

and we choose Jmin,t and σD0 as Jmin,t = µD1(θB)−β1 ·σn− ϵ and σD0 = max(
µD0

−Jmin,t+ϵ

β0
, 13),

respectively, as well as ϵ = 0.2. Additionally, we scale the threshold function of the trigger as

κt

(
Dt, (θt, Ĵt)

)
= 3/4 · √ρt′σDt(θt) + 1/4 · w̄t′ . (7)

The reason for this is that the infinite series in Lemma 2 will result in large bound over time–
especially in the noise term w̄t′ . While this is necessary for theoretical reasons (Srinivas et al.,
2009; Bogunovic et al., 2016; Brunzema et al., 2023), it has practical downsides regarding safety
as some changes may not be detected in later rounds. By having the tighter bound in (7) that still
increases in time, we increase safety in practice by reverting to θB more quickly.

7



EVENT-TRIGGERED SAFE BAYESIAN OPTIMIZATION ON QUADCOPTERS

6. Experiments on a Quadcopter
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Figure 3: Control structure on the
Crazyflie 2.1.

We demonstrate our algorithm in simulation and on hard-
ware of a quadcopter. Specifically, we use a Bitcraze
Crazyflie 2.1 with the Crazyswarm firmware (Preiss et al.,
2017) and use a Vicon camera system to obtain position
estimates. For the simulation, we use the gym-pybullet-
drones (Panerati et al., 2021) environment.2 The controller
of the Crazyflie is a cascaded PID (Mellinger and Ku-
mar, 2011) as in Figure 3. We only tune the PI gains of
the position PID, i.e., θ = [Pxy, Pz, Ixy, Iz] ∈ R4. As
the backup controller, we set θB = [0.4, 1.25, 0.05, 0.05]
as specified in the firmware. For the GP, we use a Matérn kernel (ν = 5/2), lenghtscales
[0.15, 0.75, 0.025, 0.050] as obtained from simulation, and set the noise standard deviation to
σn = 0.016 based on measurements obtained from the real system. Additionally, we use the param-
eter bounds [0, 10] for each parameter, thus including many unstable configurations in the search
space. We use βconst = 2 as the β hyperparameter for SafeOpt; a value widely used in the literature
(e.g., Berkenkamp et al. (2016)). Alternatively, a logarithmic β can be used, which increases with
time (Kandasamy et al., 2015). This more conservative approach can improve safety. We choose
βconst because it leads to faster learning, which is necessary given the quadcopter’s battery life. We
choose for the optimization the following cost functions for simulation and hardware, respectively,

Jsim(θ) = −
∑Q

q=1 |exyz(q)|
1
2 , Jhw(θ) =

∑Q
q=1 |exyz(q)|

1
4 , (8)

where exyz(q) = mink∈TK
√
(xk − xq)2 + (yk − yq)2 + (zk − zq)2, for a trajectory with waypoint

index q ∈ TQ and position measurements at time steps k ∈ TK within an experiment. Hence, we
measure performance as the minimum deviation achieved by the quadcopter to pre-defined way-
points. We perform three different experiments. In each of them, a variation occurs at time τ > TL:

• 2D Trajectory variation (2DTV): the quadcopter flies a figure eight in the xy-plane, and
after τ , an hourglass-like figure is specified as the reference.

• 3D Trajectory variation (3DTV): the quadcopter flies a figure eight in the xy-plane, and
after τ , a figure eight with altitude changes is specified as the reference.

• Change in attitude controller (ACC): the quadcopter flies a figure eight in the xy-plane
with the default attitude controller, and at τ , we change the gains of the attitude controller of
the quadcopter by multiplying them with the factor C (cf. Figure 3).3

We execute the simulation experiments for Tsim = 60 rounds, with TL,sim = 15 rounds of ex-
ploration for the finite learning algorithms. Due to the limited battery life of the quadcopters, we
perform fewer rounds in the hardware experiments. For the 2DTV and AC experiments, we define
Thw = 20 and TL,hw = 9, and for the 3DTV experiment, Thw = 16 and TL,hw = 7. We compare our
algorithm ETSO to SafeOpt using the specified budgets above. Further, we compare to SafeOpt∞
as a variant with unlimited budget as well as to the performance of the safe backup controller.

2. The repository for ETSO is freely available in https://github.com/antoHolz/ETSO.
3. In the output of an attitude controller, the computed torques usually have the form (from Luukkonen (2011)):

τϕ =
(
Kϕ,P · eϕ +Kϕ,I ·

∫
eϕ(t) +Kϕ,D · ∂eϕ(t)

∂t

)
· Ixx where I is the moments of inertia of the quadcopter.

Here, changing all gains by some factor C is equivalent to changing the moment of inertia Ixx. In other words,
changing the low level controller has the same effect as having miss-specified moment of inertia in the controller.
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Figure 4: Trajectory change experiments in simulation. Left: Trajectories of the quadcopter before
the variation time. Center: Trajectories of the quadcopter after the variation time, with
ETSO. Right: Performance of the algorithms normalized by the initial performance of the
backup controller as (Jξ0(θB)− Jξt(θt)) /Jξ0(θB) and the resets performed by ETSO.

6.1. Simulation Results

Figure 4 shows the results of the trajectory change experiments 2DTV and 3DTV. Both experiments
have the same initial trajectory (a figure eight in the 2D plane) and undergo a change at τ = 30. The
right side of Figure 4 shows the performance of the algorithms for each experiment setup. For the
experiment 2DTV (top), the change in reference results in an insignificant change in performance.
With this insignificant change, the event trigger does not activate; hence, ETSO does not reset,
saving resources compared to re-optimizing. Here, all baselines outperform the backup controller
and yield similar performance. In the experiment 3DTV (bottom), ETSO outperforms SafeOpt∞
and SafeOpt. Changing the reference in altitude results in a significant change in the performance
function. ETSO detects this change, resets (see bottom right in Figure 4), and then re-optimizes
without stale data. We observe the same trend for ETSO and SafeOpt in Figure 5 (left) for the
AC.65 simulation experiments. However, using SafeOpt∞, the quadcopter crashed 50 out of 50 runs
after some time steps after the system change. SafeOpt∞ assumes that areas that were previously
safe remain safe, but a new system mode can shift the safe set. By resetting to θB, ETSO resets its
safe set to ensure good performance as well as safe optimization over time with no crashes. SafeOpt
also results in no crashes. Therefore, the system change in AC.65 satisfied Assumption 2.

6.2. Hardware Results

The results of the hardware experiments displayed in Figure 5 confirm the insights from the simula-
tions. Insignificant changes (2DTV) do not require re-learning. Here, ETSO and SafeOpt perform
equivalently as ETSO does not reset. SafeOpt∞ exhibits marginally improved performance towards
the end of the 2DTV experiment. The training time for the other algorithms is insufficient to find
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Figure 5: Performance in the remaining simulation and hardware experiments (without failures),
normalized by the initial performance of the backup controller.

the optimal control parameters. This is unavoidable in the hardware setup due to battery constraints.
For the experiments with the altitude change (3DTV), we observe that ETSO outperforms SafeOpt,
picking the best performing controller at the last time step. In AC.40, SafeOpt performs worse than
in simulation. Furthermore, we recorded two crashes out of the 10 different rounds for SafeOpt.
This highlights that in practice iterations with the quadcopter are not fully i.i.d. in the real world. As
a remedy, we included a buffer time in between the rounds, but some influence of the previous con-
trol parameters in the next round was inevitable. ETSO and SafeOpt∞ yield similar performance,
however, for SafeOpt∞ we recorded two out of 10 crashes. Using ETSO, we recorded no crashes,
highlighting that our event trigger increases safety in practice by resetting the safe set in presence
of significant changes. In Figure 1, we showed a comparative example of the performance of ETSO
and SafeOpt∞. In the video, SafeOpt∞ fails two time steps after the change, while ETSO manages
to reset to the backup controller and learn a better controller for the changed system.

7. Concluding Remarks

Event-Triggered SafeOpt (ETSO) is an algorithm that combines the concepts of SafeOpt with an
event trigger as a first step toward safety in time-varying environments with only access to the cost
signal. In our software and hardware experiments with a quadcopter, we find that:

(i) ETSO only resets for significant changes. Without significant changes, ETSO performs equiv-
alently to SafeOpt and SafeOpt∞ and better than the safe backup controller.

(ii) After detecting significant changes, ETSO outperforms the other baselines.
(iii) If changes cause the safe set to shift considerably, using SafeOpt or SafeOpt∞ can lead to

failures during optimization, whereas ETSO avoids such failures by resetting the safe set.
ETSO is not restricted to the controller discussed here and fits any safety-critical optimization prob-
lem. It also allows for decoupling performance and safety in the optimization by using multiple
constraints SafeOpt variants as in (Berkenkamp et al., 2021). Furthermore, ETSO does not depend
on the existence of a dwell time, but it makes the change detection in Assumption 2 for systems with
high dimension more likely. Nevertheless, Assumption 2 may not be viable for all systems. There-
fore, extending ETSO to include crash prevention strategies as proposed in GoSafe-variants (Bau-
mann et al., 2021; Sukhija et al., 2023) is a promising future direction.
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