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Abstract

We tackle the problem of policy learning from expert demonstrations without a reward func-
tion. A central challenge in this space is that these policies fail upon deployment due to issues
of distributional shift, environment stochasticity, or compounding errors. Adversarial imitation
learning alleviates this issue but requires additional on-policy training samples for stability, which
presents a challenge in realistic domains due to inefficient learning and high sample complex-
ity. One approach to this issue is to learn a world model of the environment, and use synthetic
data for policy training. While successful in prior works, we argue that this is sub-optimal due
to additional distribution shifts between the learned model and the real environment. Instead, we
re-frame imitation learning as a fine-tuning problem, rather than a pure reinforcement learning one.
Drawing theoretical connections to offline RL and fine-tuning algorithms, we argue that standard
online world model algorithms are not well suited to the imitation learning problem. We derive a
principled conservative optimization bound and demonstrate empirically that it leads to improved
performance on two very challenging manipulation environments from high-dimensional raw pixel
observations. We set a new state-of-the-art performance on the Franka Kitchen environment from
images, requiring only 10 demos on no reward labels, as well as solving a complex dexterity ma-
nipulation task.

Keywords: Imitation learning, Model-based learning, World models, Fine-tuning

1. Introduction

Learning by demonstration is a natural way for agents to learn complex behaviors. A small set of
demonstrations is often easy to obtain via tele-operation from a human expert, while dense reward
functions are non-trivial to design, and sparse rewards are challenging for reinforcement learning
methods. Demonstrations further alleviate the need for exploration, as they forego both the search
problem and the exploration-exploitation trade-off, and instead reduce the task to distribution match-
ing. The enduring approach to learning from demonstrations is Behavior Cloning (BC) (Pomerleau,
1988), which, however, suffers from compounding policy errors, instability due to environment
stochasticity, and covariate shift (Ross et al., 2011). Ways to alleviate these shortcomings involve
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more expert data — wider expert coverage (Spencer et al., 2021) or directly querying the expert (Ross
etal., 2011).

Alternative approaches to BC are inverse RL (IRL) (Finn et al., 2016b; Fu et al., 2018) and
adversarial imitation learning (AIL) (Ho and Ermon, 2016; Finn et al., 2016a). Instead of reducing
the problem to supervised learning, these algorithms use reinforcement learning with online inter-
actions to match the long-term visitation distribution of the expert, and agents learn to self-correct
when they deviate from the expert support. In particular, AIL formulates this problem as a GAN
(Goodfellow et al., 2014): a discriminator is trained to distinguish between the expert trajectories
and those produced by the policy. The policy acts as a generator, producing rollouts from the en-
vironment, and is optimized with RL to maximize likelihood produced by the discriminator that
the rollout is from the expert distribution. Both model-free (Ho and Ermon, 2016; Kostrikov et al.,
2019; Blondé and Kalousis, 2019) and model-based approaches (Baram et al., 2016; Rafailov et al.,
2021) to the RL optimization problem have been developed. In general, these methods deploy exist-
ing online policy optimization algorithms with the discriminator-based reward-learning framework
described above.

A crucial difference between the RL setting, for which these online policy optimization algo-
rithms have been developed, and imitation learning is the role of exploration. We argue that RL
methods carry out excessive exploration when used in the imitation learning setting, and are thus
sub-optimal. As the expert distribution is already empirically known and the goal of the agent is to
match that distribution, we argue that this setting is much closer to offline pre-training with online
fine-tuning, where the agents learns from offline data and fine-tunes with few online interactions.
Moreover, this argument is supported by a recent imitation learning method (Garg et al., 2021),
which draws connections between IL and conservative Q-learning (Kumar et al., 2020), an offline
RL method.

In this work, we develop a conservative model-based policy optimization algorithm for ad-
versarial imitation learning from pixel observations, which we dub CMIL, drawing on ideas from
offline RL. We argue that conservatism is inherently well-suited to the imitation learning problem.
We justify theoretically that a model-based conservative algorithm is appropriate, and show signifi-
cant improvements on efficiency and stability over prior imitation learning algorithms. We evaluate
our method on a set of challenging environments featuring long horizon manipulation and complex
dexterity (fig. 1). We further show direct empirical evidence from the environments above for our
theoretical bounds and approximations.

We can summarize our contributions as follows: (i) we re-frame imitation learning as offline pre-
training with online fine-tuning; (ii) we augment adversarial imitation learning with conservatism,
which improves performance; (iii) we present a theoretical derivation of imitation learning as con-
servative model-based policy optimization; (iv) we provide a framework for reward-free fine-tuning
of world model agents.

2. Related Work

Our work sits at the intersection of imitation learning, high-dimensional model-based RL, and of-
fline RL. We will review relevant works from these fields below.

World models and RL.  Variational predictive models have demonstrated success in a variety of
challenging applications. These works model the high-dimensional observation space as a POMDP
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and use a recurrent VAE model to jointly learn a compact latent representation and a forward dy-
namics model. One line of research (Hu et al., 2022, 2021; Watter et al., 2015; Zhang et al., 2019;
Lee et al., 2020) utilizes the model for representation purposes only and uses standard RL, control,
or imitation on top of it. Others such as (Ha and Schmidhuber, 2018; Hafner et al., 2020a,b, 2023)
use the learned latent dynamics model to train policies entirely on imagined rollouts. A more recent
line of work (Hansen et al., 2022b, 2023) learns a dynamics model only using a reward, critic and
latent consistency objectives without reconstruction. They then deploy planning-based methods for
the actual control part. These line of work was further extended to efficient learning from demon-
strations and sparse rewards (Hansen et al., 2022a) and deployed on real robot systems (Lancaster
et al., 2023; Feng et al., 2023).

Conservative MBRL  When learning from prior data model-based algorithms need explicit regu-
larization due to model-hacking issues. Model-based offline RL algorithms (Kidambi et al., 2020b;
Yu et al., 2020b; Argenson and Dulac-Arnold, 2020; Matsushima et al., 2020; Swazinna et al., 2020;
Rafailov et al., 2020a; Yu et al., 2021) also start by pre-training a dynamics model from prior data.
However, many of these approaches (Yu et al., 2020b, 2021; Cang et al., 2021) use large off-policy
replay buffers, which make them unsuitable for online fine-tuning. Other such as (Kidambi et al.,
2020a; Matsushima et al., 2020) use on-policy optimization, which makes them more suitable for
fine-tuning, but also does not allow them to make efficient use of prior data for policy optimiza-
tion. MoDem (Hansen et al., 2022a) uses the core approach of (Hansen et al., 2022b) and makes
several modifications to the training pipeline, such as behaviour-cloning pre-training, seed rollouts
and prioritized replay to make the fine-tuning approach more efficient. These ideas were further
developed in (Lancaster et al., 2023; Feng et al., 2023) which also consider epistemic uncertainty
through a critic ensemble to combat model hacking. Alternatively (Rafailov et al., 2023) builds
on the DreamerV?2 architecture for the online-fine-tuning. It combined online-model based rollouts
with Q learning, policy regularization and ensemble-based epistemic uncertainty.

Model-based imitation learning Many works have tried combining the benefits of imitation
learning and the stable, efficient and predictable nature of model-based learning or planning. A
line of works have scaled the approach from (Hafner et al., 2019) to realistic driving scenarios (Hu
etal., 2021). In particular (Hu et al., 2022) combined model-based representation learning and pure
behaviour cloning to achieve state of the art results on the CARLA challenge (Dosovitskiy et al.,
2017). Other works (Baram et al., 2016) use model-based optimization with adversarial imitation
learning (Ho and Ermon, 2016). This approach was also scaled to realistic driving applications in
(Bronstein et al., 2022), which train fully offline, but adds a behaviour cloning regularization term
to the policy training. Other works (Yue et al., 2023; DeMoss et al., 2023; Zhang et al., 2023) use
techniques from inverse RL and offline RL to train fully offline imitation algorithms with world
models. Similar to our setting (Yin et al., 2022) uses online model learning in combination with be-
haviour cloning and planning with a learned discriminator as a cost function and achieves significant
improvement in learning efficiency over prior work (Rafailov et al., 2021).

3. Preliminaries

In this section we introduce the preliminaries of of variational dynamics models and adversarial
imitation learning.
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POMDP We consider the problem setting of learning in partially observed Markov decision pro-
cesses (POMDPs), which can be described with the tuple: M = (S, A, X, R, T,U,~), where
s € S is the state space, a € A is the action space, € X is the observation space and r = R(s, a)
is a reward function. The state transition dynamics is Markovian and given by the distribution
s’ ~ T (:|s,a). Finally, the observations are generated through the observation model © ~ U(-|s).
We do not have access to the underlying dynamics, the true state representation of the POMDP, or
the reward function. Following the standard inverse RL framework, the agent is provided with a
fixed set of expert demonstrations, which we assume are optimal under the unknown reward func-
tion. The agent can interact with the environment and learns a policy 7(a¢|x<;) that mimics the
expert.

Variational Dynamics Models A common approach in model-based learning for POMDPs is to
use a variational recurrent state-space model (RSSM) jointly model the belief space and the (latent)
transition dynamics as Ty (Hafner et al., 2019, 2020a). The RSSM is optimized via the standard
ELBO bound:

-
Eqq [ 2 log pg(x¢|s:) — Drr(qo(se|e, S1—1, at—1)||To(8¢|St—1, ar—1)) ] )]
t=1 recons??uction latent for;/;rd model

where both the inference distribution gy and the latent dynamics model Ty are Gaussian distributions
parameterized by neural networks. Following (Rafailov et al., 2020b), we train a latent ensemble of
dynamics models {7y} | by selecting a different member of the ensemble to evaluate the above
loss at every time step in the trajectory.

Imitation learning as divergence minimization In line with prior work, we interpret imitation
learning as a divergence minimization problem (Ho and Ermon, 2016; Ghasemipour et al., 2019; Ke
etal., 2019). We begin by analyzing the MDP case. Let p7((s, @) = (1—7) >},2 V'P},(s:=5, a;=a)
be the discounted state-action visitation distribution of a policy 7 in MDP M. We can notice by
marginalizing over all possible states and actions that this is indeed a valid probability distribution.
Then, a divergence minimization objective for imitation learning corresponds to

min D(pk. %)), @)

where p/%l is the discounted visitation distribution of the expert policy 7, and I is a divergence
measure between probability distributions. Essentially, we would like to minimize the divergence
between the distributions of expert and policy-induced trajectories. To see why this is a reasonable
objective, consider the following proposition:

Proposition 1 Let VT denote the expected return of a policy  in M. We we can then bound the
sub-optimality of any policy T as:

2Rmax

< Dy (p'g, Py
T v (PMs Por)

Vi - Vi

where Ry, .x is the maximum reward in the underlying MDP and Dty is total variation distance.

By optimizing the objective in Eq. 2, we directly upper bound the policy under-performance.
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Adversarial Imitation Learning With the divergence minimization viewpoint, we follow the
reasoning in (Ho and Ermon, 2016) to optimize the bound in Eq. 2 using the following max-min
objective.

max 1pin By ), [~ 108 Dy (5,0)] + Equ ey, [~1og (1= Dy(s,a))] 3)
where D, is a classifier used to distinguish between samples from the expert distribution and the
policy generated distribution, also referred to as a “discriminator”. Results from Goodfellow et al.
(2014) and Ho and Ermon (2016) suggest that the learning objective in Eq. 3 corresponds to the di-
vergence minimization objective in Eq. 2 with Jensen-Shannon divergence. This is a valid optimiza-
tion objective, since the total variation distance is upper bounded by the Jensen-Shanon divergence
through Pinsker’s inequality. A challenge of this objective is that the second term requires on-policy
samples, which is inefficient and hard to scale to high dimensions. Off-policy algorithms have been
proposed, but can no longer guarantee that the induced visitation distribution of the learned policy
will match that of the expert.

As an alternative, model-based algorithms can utilize a large number of imagined rollouts using
the learned dynamics model, with periodic model correction. In addition, learning the dynamics
model serves as a rich auxiliary task for state representation learning, making policy learning easier
and more sample efficient. Below we justify the model-based approach.

4. Conservative Model-Based Adversarial Imitation Learning

In this section we will justify our choice of model-based RL algorithms and our main theoretical
results. Model-based algorithms for RL and IL involve learning an approximate dynamics model
T using environment interactions. The learned dynamics model can be used to construct an ap-
proximate MDP M. Tn our context of imitation learning, learning a dynamics model allows us to
generate on-policy samples from Masa surrogate for samples from M, leading to the objective:

min D(pT, pa), @)

which can serve as a good proxy to Eq. 2. In other words, we can train the imitation learning
algorithm on imagined rollouts inside a learned model, which is trained in an off-policy manner.
However, this comes at the cost of potential under-performance, due to model mismatch. This
intuition can be captured using the following Theorem.

Theorem 2 Let Ry, .« be the maximum of the unknown reward in the MDP with unknown dynamics
T . For any policy , we can bound the sub-optimality with respect to the expert policy ©F as:

2R v-R ~
VI — VT | Smax Dy (%, ply) + 25« [DTV T(s|s,a), T(s|s,a ] (5)
VA V| <722 Drv o R+ =25 B, [Prv(T(51s,0), T(5)s,0)|
distribution mathcing model mismatch

Proof The proof combines several techniques from prior works on imitation learning and offline
model-based RL. We begin with the left-hand side

_ < _ VT T o_
Vi v < Vi - V| + Ve - Vi
Te?;nl Te;r:l I
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which is a simple application of the triangle inequality. Through Proposition 1 the first term above
produces the distribution matching component of the objective in Eq. 5. The second term yields the
model mismatch part of the objective via the ’simulation lemma” (Abbeel and Ng, 2005):

VE(s0) = Viu(s0)| = [E, i [ (50, a0) + V(1) = B [r(s0, @0) + 7Viy(s1)]]

~v[E, a[Vae)] - Eem Vi)

<Y |Brm [Vi(sD)] - E_ 55 [V_/Cl(sl)]‘ +7[E, i Vsl —E, g [Vﬁ(sl)”
< ’Yfia/’;Eﬁ []DTv(T(sﬂso, ap), 7A'(31\so, ao))] + PYEW,/\? vaa(sl) _ V/’\T?(Sl)u

The first equation follows from the definition of the value function, the next inequality is a direct
application of the triangle inequality. The final inequality follows from Proposition 1. We can then
recursively apply the same reasoning to the final term to obtain the bound:

Rmax = A~

V/(rq(SO) — Viu(so) gﬁEmﬁ [Z ’7t+1DTV(T(St+1|St7at)vT(St—&-l‘stvat))] =
t=0

Y+ Rmax

i W)QE'DW/Q [DT\/(T(S/|S, a),'?(s'|s, a)]

That is, if we want to use imagined rollouts for on-policy training of the distribution matching
objective, as outlined in Section 3, we need to pay the model mismatch cost in potential under-
performance. Prior works (Kidambi et al., 2020a; Yu et al., 2020a; Rafailov et al., 2020b) consider
the model mismatch objective in the context of fully offline model-based reinforcement learning.
Usually such approaches are not applied in online scenarios, or can even be flipped and used as
exploration algorithms (Sekar et al., 2020) as they explicitly encourage the agent to remain within
parts of the state space with high confidence and hinder exploration. However, in the imitation
learning case, we can treat the problem as online fine-tuning, since we have explicit access to data
from the expert. This makes the problem similar to the fine-tuning setting in that it does not re-
quire extensive exploration, where conservative MBRL has show meaningful improvement recently
(Rafailov et al., 2023; Feng et al., 2023).

4.1. Extension to POMDPs

The results of Section 4 were derived under the MDP formulation. In this section we will formulate
how they can be translated into the more general POMDP setting, which we explore in this work.
Consider the upper bound under Theorem 2. Theorem 1 in (Rafailov et al., 2021) justifies using the
belief representation for bounding distribution matching objective in Eq. 5. Here we will extend
this interpretation to justify using latent transition models for the model mismatch objective as well.
We formulate this in the below Theorem:
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Theorem 3 Consider two POMDPs M and M’ with identical components, besides potentially
different transition models T and T'. We denote the density over observations at time t+ 1 as
Pp( - |w<t, a<t). The, the following result holds

Df(PM ($t+1|l‘<t7 aSt)a PM’(xt+1|x<t7 aSt)) < ]D)f(T(S/|Sa a)v T/(S/|S> a)) (6)

where Dy is an arbitrary f-divergence.
Proof From the data processing inequality Cover (1999), and the definition of a POMDP, it follows
that

D¢ (Pm(zesr]e<e ase)s Poe (@1 |r<e, a<i)) < Dp(Pam(sir1|r<e, a<e), Par (si1]T<t, a<e))
(7N
However, we also have that Ppy(si+1|x<i,a<e) = T (Si+1|8e,ar) and Pay(sps1|r<,a<t) =
T (st+1]8¢, ar) which gives us the final result. [ |

This result, allows us to justify latent model uncertainty in as an upper bound on the

5. Our Method

Our full algorithm has several components: (i) variational dynamics model (as described in sec. 3),
(ii) state-action discriminator, and (iii) the actor-critic policy optimization. We will discuss all of
these in more detail. We train the model, discriminator, actor and critic simultaneously.

Adversarial Formulation Directly applying Theorem 1 in (Rafailov et al., 2021), we can bound
the objective of Eq. 5 by optimizing the same bound in the learned models’ latent belief space. In
more detail, we consider sequences of data of the form 7 = (1.7, a1.7). At each agent training
step, we infer latent states s(f:T ~ qo(s1.7|®1.7, @1.7). We also denote a;.7 as a(l]:T. Using these
states as starting points, we use the policy 7y, to generate H-step rollouts steps with the follow-
ing notation: @’ ~ my(als}) and .§§+1 ~ po(s|at, 8%). Following standard off-policy learning
algorithms, we use critics {Q}?_, and and target networks {Q,i }7_.

We can bound the distribution matching component of Eq. 5 through Pinsker’s inequality and
follow a standard adversarial approach by training a discriminator (Ghasemipour et al., 2019):

T T,H—1
. 1 E _E 1 7 ¢t
%LH—T]ETN'DE#M L; log Dy (s;”, a; )] - —HTIETQ,M L_;_Olog(l — Dy (s;,a;)) 8)

where sﬁT ~ qg(sl:T|1:F£T, aﬁT) are the expert’s inferred latent states and actions. On-policy
samples from the model also give theoretical justification for this discriminator learning objective
as the expectation is taken under the current policy. We cannot directly optimize the model mismatch
component of Eq. 5, as we cannot directly estimate divergence factor. Instead, following prior work
(Yu et al., 2020a; Kidambi et al., 2020a; Rafailov et al., 2020b), we optimize a surrogate objective
based on ensemble model disagreement. In particular, we use

By [Drv(T()s.0). T(s]s,0)| ~ B, 7lstd({por (s, @)}))] ©)
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where (i (s, @) is the parameterization of the mean of i-th Gaussian latent model 7y:(|s,a). The
combined final reward for the agent is then:

r(s,a) = log Dy(s,a) —log(1 — Dy(s,a)) — astd({u:(s,a)}< ) (10)

where « is a tunable hyper-parameter. We note that this still a fully differentiable function of the
state. We can then label all data and model-sampled latent transitions v} = 7 (s}, al). However, we
use the uncertainty regularization only on the model-generated rollouts and not on the replay buffer

data.

Actor-Critic Policy Optimization Once we have rewards, we can use them to train an actor-critic
model. We follow the actor and critic objectives in Rafailov et al. (2023), which work well in the
offline pre-training to online fine-tuning setting. In short, the actor is optimized on a joint objective
of maximizing the TD()) estimates of both model imagined and real environment rollouts (using the
reward formulation above): The critic is trained via bellman backup using model-generated rollouts
and real data sampled from the environment. Notably we do not use the epistemic uncertainty
penalty on real rollouts. Incorporating real environment data serves as strong supervision for the
actor and critic, especially since we have access to expert trajectories, and aids in minimizing shift
from the expert-induced state-action distribution.

Practical Implementation Notes We share some notable implementation' details that we have
employed. We build on the DreamerV?2 architecture, keeping all hyperparameters default. Beyond
the optimization procedure outlined above, we add a few details to help with training. As in (Hansen
et al., 2022a), we initialize the policy with behavior cloning, and then roll out “seed” episodes to
add to the replay buffer. Additionally, we add behaviour cloning loss with a hyperparameter (3
to the actor loss to regularize actor training (Rafailov et al., 2023). Crucially, we add Gaussian
noise \'(0, 02) to the state-action input vector in training the discriminator (eq. 3), which serves to
regularize training. We found this to be important in training stable and robust discriminator, and
hence an integral part of the algorithm’s success. We apply the same regularization to the expert and
the policy. While we have experimented with different discriminator training regimes (e.g. using
Wasserstein distance), they did not yield a significant improvement in results.

6. Experiments & results

We devise a diverse experimental setup to evaluate our approach, CMIL, on the relevant domains —
dexterous manipulation (ShadowHand Baoding balls) and long-horizon planning (Franka Kitchen).
The first environment consists of manipulating a 20-DoF 24-joint Shadow Hand robot that has to
revolve two Baoding balls, and in the latter environment the objective of the task is to use a 7-
DoF Franka Emica Panda robot to manipulate four objects in the kitchen in a certain order (open
the microwave, move the kettle, turn on the light, open a cabinet); this happens over ~ 250 time
steps, and hence demands long-horizon planning, in addition to learning dexterity. We focus on the
high-dimensional learning setting and use only pixel observations for both environments. Note that
we have access to action information of the expert demonstrations, i.e. we are targeting the setting
where we can extract actions, but it is non-trivial to define a complete state and form an MDP. We

1. https://www.github.com/victorkolev/cmil


https://www.github.com/victorkolev/cmil

IMITATION LEARNING WITH CONSERVATIVE WORLD MODELS

i

Figure 1: The suite of environments. Left: ShadowHand Baoding Balls. Right: Franka Kitchen.

use 10-20 expert demonstrations for each task, which are collected from expert policies’. We use
the reward functions only as oracles for evaluation, but not at any stage during training.

In the experimental results, we will be looking at performance measured by success rate and
sample efficiency of learning. We choose success rate as a metric instead of total reward to be
faithful to the reward-free setting, and also because it is more representative of the agent’s success
in learning the expert distribution. We run three random seeds and present training curves with 95%
bootstrap confidence intervals.

Baselines We compare CMIL with three baselines: (i) standard behavior cloning, (ii) P-DAC,
an AIL model-free algorithm designed to work from pixel observations, and (iii) VMAIL, a model-
based imitation learning algorithm, which does not use conservatism. We also attempt to benchmark
with IQL (Garg et al., 2021), but could not stabilize the algorithm for continuous control from pixel
observations. With this set of baselines, we cover both standard approaches (BC), and leading
model-free and model-based imitation learning algorithms. We use default hyperparameters for the
baselines.

Results: performance & sample efficiency Training curves are presented in figure 2. We see
CMIL out-performing baselines in both environments, notably achieving close to expert-level per-
formance with few environment interactions (250K steps), demonstrating improved sample effi-
ciency to previous methods which are typically trained on the order of 1M steps.

We note that our algorithm is the only one to solve the ShadowHand Baoding Balls environ-
ment. We postulate this is due to the higher dimensionality of the action space, which demands
conservatism to constrain the search space. While baselines also solve the Kitchen environment, we
note that there is a tangible difference in both stability and sample efficiency between our algorithm
and baselines. All architectural hyperparameters have been kept at default from the DreamerV2
architecture (Hafner et al., 2020a), and we only tune the Gaussian noise added to the discriminator
in training ( 02=2.5 tends to work well across the board), the disagreement penalty o (we keep
«=10) and the behaviour cloning regularization parameter (3=10). We note the algorithm is quite
resilient to the choice of the latter two, but the former is integral to successful discriminator training
and hence accurate rewards.

2. Demonstration sets are published along with code
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Figure 2: Training curve of success rate of our  Figure 3: Empirical estimates of elements from
approach, CMIL, vs. baselines. performance gap bound.

Empirical verification of theoretical results We aim to validate empirically the claims of The-
orem 2 and to qualitatively evaluate the discriminator as an approximation of the reward. Theo-
rem 2 states that the performance gap between the expert and the current policy is upper bounded
by the sum of (i) the distribution match between the expert and the policy learned in the model,
and (ii) the error of the model. We can approximate the distribution matching component as
Dy(p%,) — D¢(ﬁ”M), where p™ is the empirical state-action distribution. On the other hand, we
approximate the model mismatch component via an admissible error estimator as in Eq. 9, which
we also calculate. We plot those two quantities (normalized min=0, max=1), as well as the oracle
reward performance gap, in fig. 3.

Noting the plots for the Franka Kitchen, we see the discriminator is a strong upper bound to
the performance gap, while providing a reasonably accurate (dense) reward approximation. On the
other hand, in the ShadowHand environment, we see the discriminator diverging initially and then
converging back to the performance gap. In both environments, the uncertainty estimator has a
similar behavior, indicating that the model mismatch is stably decreasing.

7. Conclusion

In this work we argue that policy optimization algorithms designed for online RL are not well suited
to the IRL/AIL setting as they carry out excessive exploration and induce additional distributional
shifts. We focus on the model-based case, and argue that conservative models used for offline RL
are better suited to the AIL setting. We pose imitation learning as a fine-tuning problem, rather than
a purely RL one, and we draw theoretical connections to offline RL and conservative fine-tuning
algorithms. We provide a conservative optimization bound, as well as a practical algorithm and
evaluate it on challenging manipulation tasks. The proposed algorithm achieves faster and more
stable performance as compared to previous imitation learning approaches. In future work we plan
to evaluate our method on further domains.
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