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Abstract

Learning accurate, data-driven predictive models for multiple interacting agents following un-
known dynamics is crucial in many real-world physical and social systems. In many scenarios,
dynamics prediction must be performed under incomplete observations, i.e., only a subset of agents
are known and observable from a larger topological system while the behaviors of the unobserved
agents and their interactions with the observed agents are not known. When only incomplete obser-
vations of a dynamical system are available, so that some states remain hidden, it is generally not
possible to learn a closed-form model in these variables using either analytic or data-driven tech-
niques. In this work, we propose STEMFold, a spatiotemporal attention-based generative model,
to learn a stochastic manifold to predict the underlying unmeasured dynamics of the multi-agent
system from observations of only visible agents. Our analytical results motivate STEMFold design
using a spatiotemporal graph with time anchors to effectively map the observations of visible agents
to a stochastic manifold with no prior information about interaction graph topology. We empirically
evaluated our method on two simulations and two real-world datasets, where it outperformed exist-
ing networks in predicting complex multiagent interactions, even with many unobserved agents.
Supplementary: Supplementary with Analytical Proofs and Additional Results
Keywords: Unobservable Agents, Trajectory Prediction, and Incomplete Observations

1. Introduction

Understanding the unknown underlying dynamics governing a group of co-evolving agents and how
they influence each other’s behavior is a crucial task across various domains, including robotics
(Mavrogiannis and Knepper (2020), Abbeel and Ng (2004)), social networks (Alahi et al. (2016a),
Luber et al. (2010)), and transportation networks (Jahangiri and Rakha (2015), Wojtusiak et al.
(2012)). It poses a challenge to uncover hidden relations and predict dynamics based on observed
states, which is vital for downstream decision-making. An important task in discovering and under-
standing multi-agent dynamics is predicting the state of all agents over time (trajectory prediction).
Deep learning techniques such as latent interaction graphs (Kipf et al. (2018), Alet et al. (2019)),
attention-based methods for graphs (Vemula et al. (2017), Hoshen (2017), Kosaraju et al. (2019),
Huang et al. (2021)), recurrent neural networks (Rubanova et al. (2019b), Zhan et al. (2019)), and
neural message passing (Santoro et al. (2017a), Li et al. (2020)) have been developed to predict
emergent behavioral patterns in multi-agent systems. All the prior works assume that the dynamical
systems are fully observable, i.e. the number of agents in the system is known and the trajectories
can be sparsely or continuously sampled as shown in Figure 1A. However, many applications deal
with unobservable agents due to inherent restrictions on sensing and observation capabilities. Such
”Agent-Unobservable” systems will demonstrate a lower number of independent degrees of free-
dom compared to its true intrinsic dimension. Developing deep learning models that can predict
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the trajectory of multi-agent systems under the limited observability of agents continues to be a
challenging task. Table 1 offers an in-depth analysis with previous studies in multiagent modeling.

Scenario

Description of Problem

References

Complete observability with
known interaction topology

Complete observability with
unknown interaction topology

Complete observability with
Irregular sampling of
observations

Agent Unobervable: Only few
agents observable with sparse

Multi-agent systems where all
agents are observable at all
times, with a known
interaction topology

All agents are observable at
all times; however, the
interaction topology is not
predefined and must be
inferred from observational
data.

All agents are observable but
the observation events are
sporadic or irregular, leading
to temporal data sparsity.

Not all agents are observable,
with some never being

Watters et al. (2017)

Alahi et al. (2016b)
Banijamali (2022) Graber and
Schwing (2020) Kipf et al.
(2018) Alet et al. (2019) van
Steenkiste et al. (2018)
Santoro et al. (2017b)

Rubanova et al. (2019a) Zhu
et al. (2021) Huang et al.
(2020)Marisca et al. (2022)
Sun et al. (2019)

(Ours)

temporal sampling observed, coupled with sparse

temporal data collection.

Table 1: Systematic classification of observation scenarios in multi-agent systems.

In this paper, we present STEMFold, a multi-agent behavior modeling framework to learn a
stochastic temporal manifold to predict the trajectory of multi-agent systems by utilizing a dynamic
spatiotemporal graph attention mechanism specifically tailored for systems where only a subset of
agents is observable at any given time. Our analytical findings demonstrate that constructing a spa-
tiotemporal graph using visible nodes in a multi-agent system results in a superior manifold mapping
of the observation space, leading to enhanced performance in predicting the trajectories of visible
agents. Empirically, we demonstrate that our network is capable of learning meaningful representa-
tions for multi-agent systems, utilizing two simulated and two real-world datasets. Our model offers
improved long-term prediction even when a substantial number of agents are unobservable in these
diverse scenarios.

2. Spatial-Temporal Attention Model
2.1. Problem Description

We consider a multi-agent system with M homogeneous or heterogeneous agents, out of which
only NV agents could be observed (Observable Agents) at any time and the rest (M — N) agents are
unobserved (Hidden Agents). The number of agents could vary depending on the system and we
assume that we do not know the total number of agents and hidden agents present in the system.
We could only observe the spatial-temporal state sequences of the observable agents. We model
the observable agents as a graph G = (O, R) where nodes O = {01,092, 03,...0n} represents
the observed agents with R = {(i, j) } representing the interactions among them. We model the
interactions among the agents as graph edges. These functional interactions among agents could be
inferred from the physical proximity of the agents or the structure of the system they are placed in.
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Figure 1: A) Problem landscape in prior works. ’a’ & ’b’ depict problems addressed in previous
works, while ’¢’ illustrates the unique problem tackled in our work. B.) Model overview. Firstly,
the encoder computes the initial latent states for edges and nodes based on the observed sequence
of agent observations and adjacency matrix sequence. This computation occurs in two steps: Step
1 involves attention-based representation learning over the dynamic spatiotemporal graph. Step 2
focuses on sequence attention, to learn posterior over the initial latent state. Afterward, the neural
ODE framework propagates the latent state through time, and subsequently, the decoder generates
predicted observations for the agents.

We model the interactions R = {(i,j)} as a weighted adjacency matrix A € R¥*N with a; ; > 0
representing an edge going from i*" node to the j*" with interaction strength given by the value of
a; ;. For each agent, we denote spatio-temporal sequences as o; = {0’} where t € {t1,t2,....tq}
and o! € RP denotes the spatial feature of object i at time ¢. The observation sequences are only
available for the observed agents and we have no contextual or state information about the hidden
agents. We denote the the set of historical state sequence as X' = ong” ,t =1,..., N and we aim
to estimate p(XTr+1:Th+s| X 1Tk RYTh) to forecast agent trajectories given historical observations

up to ¢t = T}, where T' = T}, + T’y and T’y denotes the forecasting horizon.

2.2. Model Description

Our method STEMFold is designed to learn representations from spatiotemporal observations of
multi-agent systems with interaction graphs sampled from a larger, unknown topological system.
The model constructs a parameterized, stochastic latent manifold by aggregating temporal repre-
sentations from multiple agent observations, each weighted according to node-specific attention
coefficients. The overall framework is depicted in Figure 1 and it consists of three parts that are
trained jointly. (1) An encoder module that maps the observations to the manifold and learns the
initial latent point for all the nodes while taking into account the interactions among entities. (2)
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Figure 2: Illustration of the spatiotemporal attention layer in action: On the left side, there’s a
spatiotemporal graph with each node having an associated time series. In the center(b), you can
observe how this layer functions to update the target representation. Finally, the module is passed
through the self-attention layer to get the initial latent distribution.

A generative neural-ode model characterized by ODE functions for latent states for nodes to learn
the latent dynamics of the system. (3) A decoder that generates the node predictions for the visible
agents conditioned on the latent state.
Dynamic spatiotemporal graph with Temporal Anchors The core component of STEMFold is
the dynamic temporal graph that learns and propagates the structural temporal information from ob-
served observations. Rather than developing an encoder to distill temporal features from the original
subgraph (Watters et al. (2017)), our approach constructs a temporal graph derived directly from the
agents’ observations. A temporal node is instantiated for every i" agent whenever an observation is
made at time ¢, and we define a temporal relation, denoted by » € R{(i, j) }, between agents. Every
h node in the graph is characterized by a unique feature vector, denoted as 0; ; = [x; ¢, v; ¢|, Which
is a concatenation of the agent’s spatial location (x; ) and velocity (v; ;). Each node is then assigned
with time anchors a; = t; — to; where ¢; represents the node’s observation time. This calculated
temporal position encapsulates the chronological information, allowing for the nuanced depiction
of temporal relationships within the graph. The depiction of temporal relationships is further re-
fined through the construction of edges, based on an edge matrix where each element represents
the temporal disparity between two nodes, ¢ and j, formalized as r;; = a; — a;. The existence of
an edge and its attributes are contingent upon this time difference, with an edge being formulated
and assigned the value of the time difference if it is within a predefined threshold, the maximum
allowable gap. Subsequently, we will denote this temporal graph as G.
Stochastic Manifold with Temporal Graph Hierarchical Attention Given a certain set of trajec-
tories of observable agents, there may be multiple different settings of hidden agents (e.g., different
numbers, different states) that lead to the same observations of the observable agents leading to
stochasticity in the prediction. This inherent stochasticity in prediction is tackled by employing
a stochastic latent state model, designed to learn the distribution of possible agent configurations.
The model, informed by observations and updated beliefs, generates a latent state that accurately
encapsulates the specific system configuration at hand. Once the initial setup of these agents is de-
termined, their trajectory progression becomes deterministic, characterized by a single modality. To
effectively map the latent manifold within the spatiotemporal graph G, we utilize a graph attention-
based neural message passing technique. This method’s core objective is to assimilate aggregated
representations based on the observed data Xf:Th of the 7*" multi-agent and the observations of its
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neighboring agents Xf:Th, where j € N (i). The learned representation for the i‘" node at the "

(@

layer is denoted as hg . We initialize the representation encoding with temporal positional encod-

ing q' as: h;(o) = 0(Winitloit| Atstart]) +q* (Atstart). Here, o(.) is a nonlinear activation function
and || is a concatenation operation for tensors. This process is depicted in the left sketch of Figure
2 where this initialization process is shown for a sample graph with three visible nodes. We then
update the initialized representations by spatial-temporal attention operations Huang et al. (2021)
for each node using graph neural message passing. Similar to Vaswani et al. (2017), we define query
as the token for which we need a new representation, a key as a feature for the source token, and
the value as the representation or message of the token to be passed. The interaction representation
message Message,_, . € R% from the s source node to the 7" receiver node is computed as:

Message! ! = Wvﬁg’(l_l), fzfj(l_l) = oW RSV Atgan]) + ¢ (Atgtant) (1)

Here, W, and W, are linear transformation weight matrices. Next, we find the attention scores
for the messages:

Attn'~!, = goftmax{(wkeyﬁg(l—l))T(uneryhg(l—l))

1
: ﬁ} (2)

Then, all the temporal messages are aggregated to update the node-level context features:

D = 1z £ 37 (AttnlT, - Message!”L,) (3)
SGNT

This is shown in Figure 2b, where the graph convolution network is used to update the (I — 1)
layer’s representations.

Loss function and Training The encoder, decoder, and generative model are trained together
by maximizing the evidence lower bound (ELBO), as illustrated below where the first term is the
prediction loss for visible nodes, and the second term is the KL divergence.

ELBO(9,¢) = Ezo~g,(z0|x)[10g po(X)] — KL[gp(Z2°|X)||p(2°)] “4)

2.3. Analytical Results

Let G(V(t), E(t)) be the graph with nodes V' (¢) and edges E(t) at time . Let G’ be a subgraph of
G with observed nodes x1(t), z2(t), ..., xn(t). The temporal graph 7" can be defined as a multiset
of the states of graph G’ at different time points, represented as: 77 = {G'(t1), G'(t2),...,G'(t.)}
where each G'(t;) is a member of the multiset representing the state of graph G’ at time ¢;, and
additional temporal edges are added between nodes in G'(¢;) and G'(t;41) foralli = 1,2,...,r—1
to represent the temporal connections between the different states of graph G’. Here, a multiset is a
generalized notion of a set that allows multiple instances of its elements. We first state the following
two theorems:

Theorem 1: The Fisher information of the embedding of the multiset X; is greater than the Fisher
information of the embedding of each individual element x;(t)

Intuitive Proof: (For proof refer to Supp. Sec. 2.2 Theorem I): Fisher Information, denoted
as 1(0) for a parameter 6, measures the expected amount of information that an observable random

variable X carries about §: 1() = E {(% log f(X;0)) 2} , where f(X; 0) is the probability density
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function of X. When computing Fisher Information for X;, we account for the joint distribution
of all z;(¢) within X;. This joint distribution inherently includes correlations among z;(t). Since
Fisher Information is additive for independent samples, the information from a multiset is at least
the sum of the information from individual elements, assuming independence. However, when
elements are not independent, the correlations contribute additional information. This is because
the joint variability and the relationships among elements provide extra *insights’ into 6.

Theorem 2: Given the reduced temporal graph T' , the corresponding reduced spatial graph G’,
and the static spatial graph G, if the Fisher information of the embedding of T' exceeds the Fisher
information of the embedding of G', i.e., I(T") > I(G') then it follows that the covariance of the
reduced temporal graph, Cov(T"), is less than the covariance of the reduced spatial graph, Cov(G'),
represented as: Cov(T") < Cov(G") (For proof refer to Supp. Theorem 2)

Short Proof (For full proof refer to Sec. 2.2 Supp. Theorem 2): Given the reduced temporal
graph 7" and the corresponding reduced spatial graph G’, derived from a complete graph G, we
assert that higher Fisher information in 7" (denoted as I(7")) compared to G’ (denoted as I(G"))
implies a lower covariance in 7”. Utilizing the Cramér-Rao Lower Bound (Ben-Haim and Eldar
(2009)), which suggests a tighter bound on the covariance of any unbiased estimator with higher
Fisher information, and considering that 7", encapsulating temporal dynamics, inherently contains
more information than the spatial snapshot G’, it follows that I(7”) > I(G’). Hence, the inverse
relationship between Fisher Information and covariance (CRLB) leads to Cov(7") < Cov(G'),
demonstrating that 7" is a more precise estimator for the complete graph G than G'.

Based on the above two theorems, we can deduce that if Cov(7”) and Cov(G’) are the estimators
of parameters 6 of the full spatial graph Cov(G) then: Cov(7”) < Cov(G’) i.e. the covariate
of the temporal graph Cov(7”) is a better estimator of the complete graph Cov(G) than Cov(G”).
Hence, constructing a temporal graph from the spatial graph of visible nodes in a multi-agent system
where some nodes are unobservable all the time yields a superior representation of the entire system
compared to the reduced spatial graph, subsequently enhancing the performance of visible agent
trajectory prediction.

3. Empirical Evaluation

Datasets We validate the effectiveness of our proposed approach by conducting experiments on four
distinct datasets: datasets involving agents connected by springs and charged particles (Kipf et al.
(2018)), the CMU motion capture dataset (cmu), and the basketball dataset (Yue et al. (2014)). The
first two datasets are simulated, where each sample consists of N particles interacting within a 2D
box without any external forces. To introduce hidden agents, we randomly conceal M agents out
of the total N agents in the system after completing all the simulations. As for the motion dataset,
we specifically select walking sequences from the CMU motion capture dataset. Each sample in
this dataset comprises 31 trajectories, where each trajectory corresponds to a single joint of the
subject. Similar to the simulated dataset, we randomly hide joints for the subject. On the other
hand, the basketball dataset contains trajectories of 5 agents out of 10 agents with 50% observability
preprocessed into 49 frame data. Figure 3 shows motion and basketball dataset setup.

Baselines Since we do not have any existing prior work on this work, we consider state-of-the-art
models from Table 1 with complete observability and unknown interaction topology. We evaluate
against two recurrent neural network (RNN) baselines, Single RNN and Joint RNN, which utilizes
shared-weight LSTMs for each object and a concatenated LSTM for all objects’ states prediction,
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Figure 4: Visualizations depicting predictive trajectories for a system with 10 agents with 75%
hidden agents. Dotted lines represent predicted trajectories, while solid lines represent observed
trajectories.

Table 2: MSE Error (x10~2) for 30*” step in predicting trajectories for spring interactions.

Total Agents Springs 10 Springs 20 Springs 30
Unobserved Agents 20% 30% 40% 50% 60% 75% 80% 83.33%

Single RNN (Schmidt (2019)) 320+ 1.83 388+£233 385+£237 451+£271 4334£2797 4.81+349 3.61 £2.68 3.60+2.68
FC Graph (Watters et al. (2017)) 6.2+200 591+£201 597+212 5014223 4.01+206 275+126 2.64+141 2.55+126
JointRNN (Schmidt (2019)) 1.23+096 1.62+120 1.77+£1.28 210+150 233+1.73 238+130 246+1.67 231+148
D-NRI (Graber and Schwing (2020)) 1.49+£0.75 1.85+091 234+133 249+185 230+138 277+1.64 197+128 2.06=+1.36
STEMFold (ours) 020 £0.16 0.62+0.23 0.65+0.32 0.78+0.39 096+0.58 091+047 0.96+0.59 0.97 £ 0.51

respectively. We also implement Fully Convolutional Graph Messaging, using a message-passing
network decoder similar to (Watters et al. (2017)) over a fully connected graph of visible agents.
Furthermore, we consider DNRI (Graber and Schwing (2020)), which combines graph neural net-
works and variational inference, introducing a latent variable model that captures temporal evolution
with irregular sampling through an RNN component.

Experimental Settings In our experiments, we studied
particles with varying visibility and observed their trajec-

tories within [tg, t]. Our model was designed to learn and e o ° $ :
predict their trajectories for a future interval [t,41,tn]. N\ ® e
We used a 64-dimensional GNN with two layers in its tem- "~ NN Se"si’ <
poral attention module and a 128-dimensional temporal X >
context attention module. For solving differential equa- FRTRTE— o Mocap

tions, we applied a Runge-Kutta solver in a single-layer
graph network with a 128-dimensional node representa-
tion. The time values ¢; and ¢ty were set to 30 and 60
for simulated and motion datasets, and 49 for the basket-
ball dataset. We evaluated trajectory accuracy using mean
squared error (MSE).

Results Figure 4 displays the qualitative results predicting the spring system’s behavior, portraying
the model’s efficacy with 75% hidden, unobservable agents. Within the graph, nodes colored in
black symbolize hidden agents, and those in color represent observable ones. Notably, in the sys-
tem with 75% unobservable agents, agent number 4 demonstrates a unique case—it maintains no
connections with visible agents and is exclusively linked to seven hidden ones. Impressively, even
in such a challenging scenario, our model proficiently exploits the spatiotemporal observations of
visible agents to predict their trajectories with high accuracy. In Figure 5, a visual representation of

Figure 3: Basketball and CMU Mocap
Dataset
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Figure 5: MSE Error values vs time for spring trajectories for Motion Dataset
system with 75% unobservable agents.

Table 3: MSE Error (x10~2) for 30" step in predicting trajectories for charged interactions.

Total Agents Charged 10 Charged 20 Charged 30
Unobserved Agents 20% 30% 40% 50% 60% 75% 80% 83.33%

Single RNN (Schmidt (2019)) 0.54+048 0.53+049 077+£0.54 0.78+0.63 0.83+0.69 0.78+0.54 0.88+0.65 1.14+£0.73
FC Graph (Watters et al. (2017)) 1174052 1.01£049 121+£0.60 091+0.76 149+0.76 1.65+0.72 1.71+0.85 233 +1.14
JointRNN (Schmidt (2019)) 0.59+0.59 0.60+0.64 0.79+£0.69 0.78+0.75 0.84+082 088+0.71 1.03+0.82 1.28+1.03
D-NRI (Graber and Schwing (2020)) 0.78 £0.49 0.61 £0.49 0.82+0.51 083 +£0.60 0.75+0.62 1.00+£0.66 1.11+0.85 1.34+0.93
STEMFold (ours) 043 +042 047 +048 0.59+£0.69 0.58+0.65 059+07 072+05 0.74+0.72 0.94 £ 0.68

the evolution error in dynamics is depicted for the above system, projecting 30 steps into the future.
The STEMFold model outperforms all the baseline models in predicting future trajectories while
maintaining both low error levels and minimal variance.

Table 2 and Table 3 present the 30" step mean-squared error for trajectory prediction in both
the spring and charged systems. We conducted experiments on four systems, specifically 5 agents,
10 agents, 20 agents, and 30 agents, respectively. For each system, we gradually hid agents and
trained our framework accordingly. Our network consistently outperforms all the baselines for
both systems, affirming the efficacy of our framework’s design in learning representation. Even
when a large portion of the interaction graph is unobserved, our model exhibits minimal prediction
errors in experiments involving 20 or 30 agents with only 4 or 5 agents visible. Figure 6 shows
the prediction results for motion datasets with a different set of joints randomly hidden to train
the network. Similar to the spring and charged datasets, our network consistently outperforms the
baseline models. It is noteworthy, however, that in this dataset, baseline models such as RNN and
FC Graph exhibit markedly improved performance compared to their counterparts in the spring and
charged datasets. This enhanced performance can be attributed to the inherent geometric constraints
of joints moving in synchronization with the overall body’s trajectory, facilitating more accurate
predictions of each joint’s trajectory. This contrast is evident when compared to the spring and
charged datasets, where an agent’s motion is predominantly influenced by its neighboring agents,
with no overarching constraints guiding the entire system’s movements.

Prediction of Highly Stochastic Systems Basketball is highly stochastic due to its dynamic nature
and the interactions between players that are influenced by numerous unpredictable factors, such
as their opponents’ actions, their own team’s strategies, and spontaneous in-game events. Figure 7
displays the outcomes of the basketball dataset, where only 50% of the agents are observable. To
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Table 4: Ablation study: MSE error for three STEMFold model variants for different configurations for spring dataset.

Total Agents Spring 5 Spring 10 Spring 20 Spring 30
Unobserved Agents 0% 20% 40% 60% 30% 40% 50% 60% 70% 80% 75% 80% 83.33% 87.33%
SF-all connected 1.2 06 045 049 067 076 093 0.63 058 0.67 0.58 0.60 0.81 0.59
SF w/o attention 022 048 1.04 060 060 104 070 084 072 073 073 0.75 1.08 1.37

SF w/o temporal Encoding 0.28 0.25 034 05 128 0.87 038 041 049 0.68 043 045 0.9 0.56
STEMFold original 021 025 033 043 027 026 031 037 045 057 039 042 0.47 0.54

SF-all connected: STEMFold with visible agents fully connected, SF w/o attention: SF without attention mechanism, SF w/o temporal
encoding: network with temporal encoding removed, Orignal: network with attention mechanism, temporal encoding and visible graph
linkings

further make the task challenging, we introduce temporal sparsity through random sparse sampling
to encoder observations and utilize them for trajectory prediction, following the methodology out-
lined in Sun et al. (2019). Our observations reveal that in scenarios involving concealed agents and
limited temporal observability in the basketball dataset, our model surpasses the baseline models in
performance.

Importance of Temporal Encoding and Attention Our network comprises two core components:
the dynamic spatio-temporal graph and the temporal graph attention. We conducted an ablation
study to delve into each module’s significance. In the first model variant, we trained the model
without prior edge relationship knowledge, resulting in a fully connected temporal graph. The tem-
poral graph attention module consists of two key elements: attention and temporal encoding. For the
other two variants, we examined models that lacked either attention or temporal encoding. In these
variations, we didn’t incorporate attention to nodes over time, and we omitted node temporal im-
portance through temporal encoding. We assessed these models’ performance by measuring mean
squared error (MSE) across various scenarios in spring simulations. Our original model consistently
outperformed all alternative variations, as demonstrated in Table 4.

Analysing Systems with Heterogeneous Agent Characteristics In this section, we explore het-
erogeneous agents, with variability in agent dynamics with each agent, as a heterogeneous entity,
possessing distinct and unknown agent parameters. In contrast to our earlier homogeneous agent
experiments, here all the agents exhibit heterogeneity in the dynamics. For these experiments, we
explore three types of heterogeneous agents with three dynamics parameter sets. During simula-
tions, each spring heterogeneous agent’s coupling parameter is randomly selected from these sets
with uniform probability. Figure 8 presents the error metrics for baseline models across different
heterogeneous agent configurations with 50% observability, particularly when all agents are consid-
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ered heterogeneous. We observe that baseline models struggle to capture the intricate dynamics of
this setup, resulting in significantly higher error rates compared to our proposed model.

Influence of Hidden Agent on Visible Agent Predictions In this study, we establish connections
among all visible agents, thereby forming a fully connected subgraph comprised solely of visible
agents for the spring system with 50% observability. Subsequently, we incrementally augment
the number of edges between hidden and visible agents, ranging from » = 1 to r = 5. Here,
r denotes the number of visible agents each hidden agent is connected to. Notably, there are no
interconnections between any two hidden agents. This is illustrated in Figure 9.

Figure 10 illustrates the prediction error for the models on the spring system with 50% observ-
ability. It is evident that as the number of connections between hidden and visible agents increases
from 2 to 5, STEMFold consistently outperforms, maintaining minimal prediction error and vari-
ance. In contrast, the baseline models exhibit a decline in predictive accuracy as the number of
hidden-visible agent edges increases. Interestingly, when r = 1—signifying that each hidden agent
is connected to only one visible agent, the observed error is higher compared to scenarios where
each hidden agent is connected to two or more visible agents. This can be attributed to the absence
of hidden agents between any two visible agents, resulting in a betweenness centrality of zero for
all visible agent pairs with respect to a hidden agent. In contrast, for other configurations, at least
one hidden agent exists between any pair of visible agents. This structural difference enables our
network to adeptly uncover hidden influences through representation learning on spatiotemporal
graphs. For additional insights and ablation studies, please refer to Supp. Section 3.

4. Conclusion

In this work, we have presented a framework for integrating spatiotemporal information from multi-
agent observations with multiple co-evolving and interacting agents unobserved. In order to capture
the underlying hidden representations of the evolution of dynamics, we propose a dynamic temporal
graph to encode the observations to a latent manifold and use a neural ode to propagate the latent
interaction dynamics forward. In the future, we would like to estimate the dynamics and intrinsic
dimensions of the unobservable agents in the system. We would also like to consider large-scale
interacting systems with heterogeneous agents where the interaction relations dynamically evolve
over time. While this paper focuses on prediction tasks, an exciting future direction could involve
controlling multi-agent systems with hidden agents.
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