Proceedings of Machine Learning Research vol 242:1018-1032, 2024  6th Annual Conference on Learning for Dynamics and Control

Probabilistic ODE Solvers for Integration Error-Aware
Numerical Optimal Control

Amon Lahr AMLAHR @ETHZ.CH
ETH Ziirich

Filip Tronarp FILIP.TRONARP @ MATSTAT.LU.SE
Lund University

Nathanael Bosch NATHANAEL.BOSCH @ UNI-TUEBINGEN.DE
University of Tiibingen, Tiibingen Al Center

Jonathan Schmidt JONATHAN.SCHMIDT @ UNI-TUEBINGEN.DE
University of Tiibingen, Tiibingen Al Center

Philipp Hennig PHILIPP.HENNIG @ UNI-TUEBINGEN.DE
University of Tiibingen, Tiibingen Al Center

Melanie N. Zeilinger MZEILINGER @ETHZ.CH
ETH Ziirich

Editors: A. Abate, M. Cannon, K. Margellos, A. Papachristodoulou

Abstract

Appropriate time discretization is crucial for real-time applications of numerical optimal control,
such as nonlinear model predictive control. However, if the discretization error strongly depends
on the applied control input, meeting accuracy and sampling time requirements simultaneously can
be challenging using classical discretization methods. In particular, neither fixed-grid nor adaptive-
grid discretizations may be suitable, when they suffer from large integration error or exceed the
prescribed sampling time, respectively. In this work, we take a first step at closing this gap by uti-
lizing probabilistic numerical integrators to approximate the solution of the initial value problem, as
well as the computational uncertainty associated with it, inside the optimal control problem (OCP).
By taking the viewpoint of probabilistic numerics and propagating the numerical uncertainty in the
cost, the OCP is reformulated such that the optimal input reduces the computational uncertainty
insofar as it is beneficial for the control objective. The proposed approach is illustrated using a
numerical example, and potential benefits and limitations are discussed.

Keywords: numerical integration, nonlinear model predictive control, probabilistic numerics

1. Introduction

For direct optimal control, numerical integration methods are a crucial component for converting
a continuous-time system model of ordinary differential equations (ODEs) into accurate discrete-
time predictions based on which the input signal can be optimized. While negligible discretization
error can generally be achieved by choosing a sufficiently fine time discretization, it can be com-
putationally infeasible in the model predictive control (MPC) setting, where an optimal control
problem (OCP) is to be solved online, i.e., in receding horizon fashion and at a fixed sampling in-
terval. This is complicated by the fact that the accumulated discretization error at each time step
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may depend on the chosen input signal, directly due to the control input affecting the vector field,
or indirectly due to changing stiffness properties between different local solutions of the resulting
state trajectory.

For such challenging scenarios, standard grid discretization approaches may fail to achieve neg-
ligible integration error given a limited computational budget. First, a uniform time discretization
may lead to either unacceptable integration error for a coarse grid or excessive computational re-
quirements for a fine grid. Second, a fixed, non-uniform time discretization (Qin and Badgwell,
1997; Tgndel and Johansen, 2002; Cagienard et al., 2007; Shekhar and Manzie, 2015; Yu and
Biegler, 2016; Chen et al., 2020) may reduce discretization error without adding computational
overhead (Quirynen et al., 2015). The offline design of fixed, non-uniform grids has been consid-
ered by Lazutkin et al. (2018) and Wolff et al. (2022). Lishkova et al. (2022) consider multi-rate
time discretization for dynamical systems with varying time scales within the MPC. Still, the dis-
cretization accuracy of these approaches may vary as they do not consider the dependence of the
integration error on the applied input. Third, adaptive mesh refinement methods can achieve a
pre-specified integration accuracy by choosing smaller step sizes (Betts and Huffman, 1998; Binder
et al., 2000; Schlegel et al., 2005), selecting higher-order local interpolants (Babuska and Suri, 1990;
Darby et al., 2011), or relocating grid points (Tanartkit and Biegler, 1997; Zhao and Tsiotras, 2011).
As refinement criteria, besides minimizing estimates of the integration error, the adjoint sensitivi-
ties can also be used to guide the refinement process towards lower open-loop costs (Tanartkit and
Biegler, 1997; Paiva and Fontes, 2015). The former has been applied to MPC by, e.g., Gao et al.
(2023), the latter, by Lee et al. (2018) and Paiva and Fontes (2018). Tailored to the receding-horizon
strategy, Paiva and Fontes (2017) and Potena et al. (2018) propose to save computation time by en-
forcing a higher discretization accuracy only for the initial part of the time horizon. Nevertheless,
due to the variable number of integration steps, the applicability of mesh refinement methods for on-
line applications with a fixed sampling time can be complicated by their unpredictable solve times.
Alternative to rendering the discretization error negligibly small by a suitable discretization strategy,
Kogel and Findeisen (2015) propose to robustify the prediction against the worst-case integration
error by employing a robust MPC strategy based on a Lipschitz bound of the dynamics subject to
all possible input values; however, this might lead to unnecessarily conservative predictions.

Similarly to Kogel and Findeisen (2015), rather than accepting a possibly large integration error
depending on the optimal input trajectory, or ensuring a specific error tolerance at the cost of un-
predictable solve times, in this work we modify the input in response to non-negligible integration
errors. Instead of a robust treatment, we propose to utilize probabilistic ODE solvers to predict
the integration error as a function of the applied input. Encoding the trade-off between accurately
solving the ODE and minimizing the control objective in a stochastic OCP formulation, uncer-
tainty reduction can thus be actively targeted by the solver insofar as it is beneficial for the control
objective. Viewing the proposed approach through the lens of probabilistic numerics thereby nat-
urally exposes the implicit assumption of zero discretization error for classical direct transcription
methods, as well as provides a dual-control interpretation of the proposed approach in terms of the
informativeness of the numerical data processed by the probabilistic ODE solver.

To this end, we revisit the continuous-time OCP formulation and give an introduction to proba-
bilistic ODE solvers in Section 2. In Section 3, we modify the OCP to allow for incorporating the
integration error quantification provided by the probabilistic ODE solver, discussing the potential as
well as limitations of the proposed approach. In Section 4, we illustrate the proposed method with
a numerical example.
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2. Problem formulation

We consider the continuous-time OCP

T
Jmin /0 o(a(t), u(t))dt (1a)
s.t. z(0) =z (1b)
B(t) = F(t2(t), u(t), V¢ € [0, 7] (10)

where the aim is to find an open-loop input trajectory u(t) minimizing the cost functional (1a),
subject to nonlinear dynamics given by the initial value problem (IVP) (1b), (I1c). The solution of
the IVP is assumed to be unique and (p+ 1)-times continuously differentiable; this is achieved, e.g.,
when the vector field f is globally Lipschitz continuous and when f and u are p-times continuously
differentiable, see, e.g., (Hennig et al., 2022, Thm. 36.6). The stage cost is considered quadratic
and positive definite, i.e., ¢(z(t), u(t)) = 3 (2(t) "Wy (t) + u(t) " Wy,u(t)), with positive definite
matrices W, € R X" and W,, € R™u*x"u,

Remark 1 A quadratic and positive definite terminal cost ¢¢(x(T)) = x(T)" Pz(T) has been
omitted from the cost (1a) in the following exposition without loss of generality.

Remark 2 In principle, our proposed method also allows for path constraints h(x(t),u(t)) < 0
to be considered in the optimal control problem. Approaches for including constraints in the OCP
formulation are discussed in Section 3.

As the OCP (1) generally does not admit an analytical solution, we employ the direct transcrip-
tion method to obtain a numerical approximation. For ease of exposition, we choose the single-
shooting formulation of the OCP and eliminate the state variables. Therefore, the input function
is parameterized by a parameter vector 6 := (01,...,0y_1) in terms of a time-dependent input
policy u(t) = mp(t) defined on the subintervals ¢ € [t;,t;41) of the grid {t;}Y, C [0, 7], with
0 =19 < ... <ty =T. By splitting the cost integral into the same subintervals as well as enforc-
ing the path constraints only on the same grid, we obtain the direct single-shooting discretization
of (1),

N-1
min D, (xg(:), mol- 2
i Z;(ao o()) )
where z4(t;) denotes the exact solution to the continuous-time IVP (1b), (1¢) given the control input
function u(t) = my(t), and the stage cost ® : R"* x R™ — R is given as

B(a()u() = [ ola(o).u)at )

Lastly, the exact solution of the IVP (1b), (1c) as well as computation of the integral (3) are
approximated in order to obtain a tractable OCP formulation. In this paper, the cost integral is
approximated by the Riemann discretization of the quadratic stage cost, that is

Bi(r(), () ~ dilalte) u(t) =

where At; = t;11 — t;. For the ODE solution, in the following we investigate classical and proba-
bilistic approximation methods through the lens of probabilistic numerics (Hennig et al., 2022).

(w(t) TWar(t) + u(t) Wou(t)), @)
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Classical ODE solvers

The solution of the IVP (1b), (1c) as part of the optimization problem is typically performed using
classical numerical integration methods, such as Runge—Kutta or collocation methods (Hairer et al.,
1993). For the most part, these methods construct a point estimate

f@(ti) ~ xg(ti) (5)

by extrapolating a p-th order polynomial based on the initial condition at the last time step of the
approximated solution, as well as p > 1 evaluations of the ODE vector field. Crucially, the extrap-
olation is performed under the assumption of a perfectly known initial condition, complicating the
propagation of integration error across multiple integration steps (Schober et al., 2014).

In this paper, we employ probabilistic ODE solvers to obtain a numerical approximation of
the ODE solution as part of the OCP (1). To this end, in the following section we present a brief
introduction to probabilistic ODE solvers.

Probabilistic ODE solvers

Probabilistic numerics refers to a class of methods that attempt to quantify errors in numerical
computations probabilistically (Hennig et al., 2015; Oates and Sullivan, 2019; Hennig et al., 2022).
Thus, the output of a probabilistic solver to a numerical problem is a probability distribution over
candidate solutions rather than a single point. Probabilistic solvers can roughly be put into two
categories: methods that represent the probability distribution over candidate solutions implicitly
via stochasticity (Teymur et al., 2016, 2018; Conrad et al., 2017; Abdulle and Garegnani, 2020),
and methods that represent the distribution over solution candidates explicitly, via the Bayesian
formulation (Cockayne et al., 2019; Schober et al., 2014; Kersting and Hennig, 2016a; Schober
et al., 2019; Tronarp et al., 2019b, 2021; Kersting, 2021). This classification is not rigid: Indeed,
there are methods that draw on ideas from both concepts (Chkrebtii et al., 2016).

In the Bayesian framework, a solver is constructed by first defining a prior distribution on the
quantity of interest, x(¢), and then defining a likelihood reflecting the constraints on z(t) implied
by the numerical problem. In particular, for Bayesian ODE solvers, the likelihood is usually defined
by subsampling the dynamics constraint (1c), though this can be extended to other information
operators, such as sensor data, algebraic constraints and higher-order derivative information (Bosch
et al., 2022). The aim is thus, given some prior on z(t), to compute a posterior distribution of the
form

p (2(t) | ©(0) = o, {@(t:) = f(ts, 2(t:), u(ts)) i) » (6)

where, for notational simplicity, we present the formulas using the same time discretization for the
numerical ODE solver and the cost discretization. In this paper we consider the Gaussian state
estimation approach to probabilistic ODE solvers, as introduced by Kersting and Hennig (2016b);
Tronarp et al. (2019b); Schober et al. (2019); see also Hennig et al. (2015) for a thorough introduc-
tion. We briefly describe this approach in the following and formulate the numerical IVP solution
as a Bayesian state estimation problem.

Bayesian ODE solvers jointly model our belief about the ODE solution z(t) together with its
first p derivatives with an extended state

2 (t)) | ™
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Restricted to the discretization grid {t;} f\io, the prior is fully described by the density
p(X(tov) | 6, %) H p (X (ti1) | X(t:),0, %) p(X(0) | 0, ) @®)

with the initial and transition densities

p(X(0) | 6, k) = §(Xo), ©)
p(X(tiv1) | X(t:),0,5) = N (X (tiv1); A(AL) X (i), kQ(AL;)) (10)

respectively, where A(At;) and Q(At;) are given by the exact discretization of the transition and
diffusion matrix of the continuous-time integrated Wiener process prior (see, e.g., Kersting et al.,
2020, for the formulas), and « is a hyper-parameter scaling the prior uncertainty. Note that choos-
ing the prior based on a given linear system can improve the numerical efficiency for semi-linear
dynamics (Bosch et al., 2023). The initial condition of the extended state X is chosen such that it
satisfies the given initial condition of the IVP (1b), (1c) for all derivative components exactly, and
can be computed efficiently via Taylor-mode automatic differentiation (Krédmer and Hennig, 2020).

The likelihood model is given by the differential equation. More precisely, we condition the

prior process on noise-free observations z; := &(t;) — f(ti, z(ti),u(t;)) =0, =1,..., N, which
can equivalently be described in terms of the extended state as

where the matrices Ep, E; € R" >+ are selection matrices extracting z(t) and (t), respec-
tively, from X ().

A probabilistic estimate of the ODE solution and its derivatives is then obtained by computing
the posterior density p(X (to.n) | Z(t1.5), 0, k) according to the following filtering problem:

p(X(to) | 0, %) = 6(Xo), (12a)

p(X(t:) | X(ti-1),0,k) = N(X(t:); A(Ati—1) X (ti-1), kQ(At;—1)), (12b)

p(Z(t;) | X(t:),0,k) = N(Z(t;); E1 X (t;) — f(EoX (ti), me(ti)), 0), (12c¢)

fori = 1,..., N. For linear (affine) vector fields, exact inference can be performed using a RTS

smoother (Rauch et al., 1965), but in the general nonlinear case exact inference is intractable. We
therefore resort to efficient linearization-based approximate inference methods such as the Extended
Kalman Filter (EKF) or the (Iterated) Extended Kalman Smoother ((I)EKS). Finally, we obtain the
Gaussian posterior time marginals

Yorob (%) = N (w4 Eo&p(t:), kEoAg(t:) Eg ) = p(EoX (i) | Z(t1.n), 0, k), (13)

where the formulas for the smoothing mean &y(t;) and covariance Ay(t;) obtained by the (I)EKS
can be found in appendix A.1; the calibration of x, in appendix A.2.

Remark 3 (Convergence rates and smoothness of control input) When the true solution to the
IVP (1b), (1c) is of smoothness p + 1, for a p-times integrated Wiener process prior probabilis-
tic ODE solvers are expected to enjoy a global convergence rate of O(0P) (Kersting et al., 2020;
Tronarp et al., 2021), where § = maX{Ati}fi 61. The smoothness of the solution is limited by the
smoothness of the vector field (Arnold, 1992), which in turn is limited by the design of the control
signal. Thus, it might be necessary to select a sufficiently smooth control function to guarantee the
desired convergence order.
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3. Probabilistic ODE solvers for optimal control problems

In order to utilize the posterior uncertainty estimate of the approximate IVP solution returned by
the probabilistic ODE solver, the OCP formulation needs to be adapted. We obtain a well-defined,
deterministic cost expression by minimizing the expectation of the cost quadrature with respect to
the probabilistic belief over the ODE flow, i.e., by solving ming V' (6), where

N-1
V(0) = Eapyy [ D ci)i(xiﬂm(ti))] , (14)
i=0
N-1 A
=) Eg [‘1%(501‘7779(751))} ; (15)
=0
N-1
= /@i(xi,ﬂg(ti))’y(xi)dxi. (16)
i=0

Using the analytical expectation of the quadratic cost in (4), we propose to approximate the solution
to (2) with respect to the numerical approximation of the IVP solution by solving the OCP

N-1
) At; P
min 32 55+ (IEofottlfy, + oty + fo-tr {WoEbo(t)Eq }) (1)

where &(t;) and Ag(t;) are the smoothing mean and covariance of the EKS, and &y is the prior
diffusion scale calibrated according to Appendix A.2, as a function of the inputs 6.

Remark 4 For a more accurate solution of the filtering problem (12) the IEKS estimate of the
filtering problem (12) can be used by including the IEKS fixed-point equations into (17), see ap-
pendix A. 1.

The reformulation of the deterministic cost in (2) as an expectation over the probabilistic belief
of the ODE solution lends itself to the following interpretation from the viewpoint of probabilistic
numerics. Clearly, by assigning a Dirac measure to the exact IVP solution at time ¢,

'Yexact(xi) = 5(-% - x&(ti)), (18)

minimizing the expected cost in equation (16) with 7y(xz;) set to Yexact(;) still recovers the exact
solution to (2). Yet, when computing an approximation to the IVP solution, we can use the same ex-
pression, but instead replace the exact state with the approximation computed by a classical method
or a probabilistic ODE solver. For classical ODE solvers, it becomes evident that likewise assigning
the Dirac density shifted by the computed point estimate 2y (¢;) =~ xg(t;), i.e.,

'Yclas(:ni) = 5($z — @e(tz’)), (19)

leads to a classical direct single-shooting formulation of the continuous-time OCP, where the point
estimate Z¢(t;) for the IVP is simply inserted into the cost (4). This formalizes the standard assump-
tion of zero discretization error employed by classical direct transcription methods. By including
the (approximate) posterior uncertainty description (13) provided by the probabilistic ODE solver,
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i.e., propagating the computational uncertainty from the approximate IVP solution in the cost of the
OCP (2), this assumption can thus be (partly) relaxed.

Since the uncertainty estimate of the probabilistic ODE solver depends on the input trajectory,
an optimal solution to (17) captures the trade-off between obtaining an optimal mean prediction
and reducing the computational uncertainty associated with it. Reduction of the computational un-
certainty can be achieved by choosing a state-input trajectory that leads to a bigger uncertainty
reduction in terms of the posterior covariance Agy(¢;) in (17). In that sense, the computed optimal
inputs can exhibit a dual-control effect (Bar-Shalom and Tse, 1974; Mesbah, 2018), in particular,
for nonlinear ODEs. The connection of the proposed approach to dual control becomes clear when
viewed through the lens of probabilistic numerics: Interpreting the ODE constraint (11) as (numer-
ical) data observed within the prediction horizon, the proposed approach can be seen as a stochastic
output-feedback MPC acting on the extended state X (¢) in (7) conditioned on the data. However,
compared to the setting of most dual control approaches that incorporate the fact that (physical) data
is going to be observed in the future, the (numerical) data in this setting is known a priori.

The potential of the proposed method in real-time applications with limited computational bud-
get strongly depends on the computational overhead added by solving (17) with a probabilistic
ODE solver instead of solving (2) with a classical ODE solver. Concerning the choice of ODE
solver, while both classical and probabilistic ODE solvers share the same linear time complexity,
the complexity in the state dimension for a vanilla probabilistic ODE solver implementation is cubic,
compared to the linear complexity for most classical solvers. By assuming independence between
different state dimensions (which classical solvers generally do since correlations are not modeled),
probabilistic ODE solvers can enjoy linear space complexity as well (Krdmer et al., 2022). Still,
to which extent the independence assumption and the implied linearization strategy (Kramer et al.,
2022, Sec. 2.2) affects the dynamics-dependent uncertainty reduction targeted in this paper requires
further investigation. Concerning the choice of OCP formulation, optimizing over covariance ma-
trices generally incurs a significant computational overhead, either due to increased nonlinearity
or increased state dimension of the condensed or non-condensed OCP formulation, respectively.
Going forward, computational efficiency of the proposed OCP formulation will thus have to be
addressed in order for the uncertainty-aware approach to be competitive with the uncertainty re-
duction achieved by a (fixed) finer time discretization of a “certainty-equivalent” method given the
same computational budget. This paper focuses on highlighting the potential of using probabilistic
integrators for integration error-aware control, motivating the development of more efficient imple-
mentations in future work.

Remark 5 (Path and terminal constraints) Due to the assumed Gaussian density distribution re-
turned by linearization-based solvers such as the (I)EKS, discretized path-constraints and termi-
nal constraints h(x(t;),u(t;)) < 0,4 = 0,..., N of the original open-loop problem have to be
reformulated probabilistically, based on the probabilistic belief about the IVP solution. Compu-
tationally efficient approaches include linearization-based constraint tightenings on the posterior
mean (Van Hessem and Bosgra, 2006; Kouvaritakis et al., 2010; Cannon et al., 2011), or penal-
ties on the expected constraint violation (Messerer et al., 2023); see also Mesbah (2016) for an
overview.
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Figure 1: OCP solutions (dashed lines) compared to ground-truth simulations (solid lines) for the
classical (blue) and proposed (orange) approach for Nj,, = 40 (left: state x1(t), top right: cost
value, bottom right: applied input). The input computed by the proposed approach actively reduces
computational uncertainty (shaded) for a lower expected cost in (17), which leads to a more accurate
cost prediction and a lower ground-truth cost (4).

4. Numerical example

To illustrate the properties of the algorithm, we apply it to a numerical example'. For the proba-
bilistic ODE solver, we use the JAX (Bradbury et al., 2018) implementation of a probabilistic ODE
solver based on an EKS provided by the package probdi f feq (Krdmer, 2023). The OCP (17) is
implemented in JAX in condensed form using a low-rank variant of the BFGS (Nocedal and Wright,
2006) optimizer with bounds (L-BFGSB) optimizer, as implemented in the jaxopt package (Blon-
del et al., 2022). To test the incorporation of the uncertainty in the IVP solution separately from the
integrator choice, the proposed approach is compared to a point estimate obtained as the mean pre-
diction of the same probabilistic integrator, which is equivalent to solving (17) without considering
the computational uncertainty, i.e., setting Ag(¢;) = 0 in (17). Hence, we denote as “proposed” and
“classical” the proposed approach and proxy for the classical approach, respectively. The predicted
state trajectories of both approaches are compared to a ground-truth simulation with the respective
optimal control input, obtained by simulating the ODE using the IDAS (Cao et al., 2003; Hindmarsh
et al., 2005) adaptive integration method with a relative error tolerance set to 10719,

We consider the logistic ODE with an added input, 1 (t) = (1 — 2o(t))221(t) — 22(t) + u(t),
Z2(t) = x1(t), with an initial condition z(0) = (3,1) and cost matrices W, = 5013, W,, = 1.
The problem is discretized into N = 20 control intervals for a time horizon of 7' = 5. Using a
piece-wise affine parameterization of the input function, the probabilistic integrator is applied with
integration order p = 1.

The simulation results for NVj,; = 40 integration steps is shown in Figure 1. It can be seen that
the input computed by the proposed approach (top right image) reduces the uncertainty estimate,

1. The source code for the numerical experiments is available at doi:10.3929/ethz-b-000673668.
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Figure 2: Predicted and ground-truth cost for an increasing number of integration points. For a low
number of integration points, the proposed approach achieves a lower actual cost by adapting the
input for a more accurate numerical discretization.

leading to a more precise cost estimate (left image), which, in this case, also leads to a lower total
actual cost (bottom right image). Note that, to show the uncertainty reduction achieved by the
proposed approach, the 20-confidence interval of the integrators’ marginal uncertainty estimate is
also plotted for the classical approach, even though it only considers the mean estimate.

Figure 2 shows the predicted and ground-truth cost values at time 7" for an increased number
of integration points. Thereby, to isolate the effects of the ODE discretization from the cost dis-
cretization, the number of control intervals is kept constant while the number of total integration
steps within each control interval is varied. In the range Nj,; € {20, 40}, the proposed approach
leads to a lower actual cost, which is also in better agreement with the predicted cost; for Vi, > 60,
the slightly underconfident uncertainty estimate leads to a marginally higher predicted cost for the
proposed approach, albeit similar actual costs, while both approaches converge as the numerical ac-
curacy increases. While the proposed approach achieves a better agreement of predicted and actual
cost, as well as a lower actual cost for the coarser grids, for Vi, = 20 it can be seen that there is still
a considerable difference between the predicted and actual cost value. Closer investigations indicate
that this discrepancy may be attributed to an overconfident uncertainty calibration; the development
of improved uncertainty quantification strategies is reserved for future work.

5. Conclusion and Outlook

In this paper, we have investigated the idea of probabilistic numerics to propagate the numerical
uncertainty, incurred by the approximate discretization of the IVP to predict the dynamics inside the
OCP, in the cost prediction. Quantifying the input-dependent integration error using probabilistic
ODE solvers, the computed input can achieve lower ground-truth cost in the presence of computa-
tional uncertainty as it automatically determines a trade-off between solving the IVP accurately and
obtaining a lower nominal cost prediction with respect to the approximate IVP solution, which has
been demonstrated in a numerical example. For future work, a computationally efficient implemen-
tation is to be addressed to achieve these performance benefits in real-time applications with limited
computational budget.
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Appendix A. Technical details on probabilistic ODE solvers
A.1. Extended Kalman Smoother equations

In the following, we present the equations used for approximating the solution to the smoothing
problem (12). Thereby we mostly omit the subscript 6 to avoid excessive notation. The EKF
filtering pass starts from p(tg) = Xo, X(t9) = 0 and iterates forward in time over the equations

p(t; ) = A(At 1) pu(ti-1), (20a)
kO(t) = k(A(At_1)S(ti—1) AT (Ati1) + Q(Ati1)), (20b)
C(ti) = By — Eg J¢(ti, 3(t;), ma(t:)), (20c)
b(t;) = [(ti, 2(t:), mo(ti)) — Jf(ti, 2(ts), mo(Li))2(t:) (20d)
kS(t:) = KC(t)(t;)CT (1), (20e)
K(t;) =X(t;)CT (t)S™ 1 (t:), (20f)
p(ti) = pulty) + K(t:) (b(t:) — Cti)u(t;)), (20g)
kD) = k(2(t) — K(t)S(t) K ' (t:)), (20h)

where J; denotes the Jacobian of f with respect to x. The RTS smoothing pass starts from the
filtering mean and covariance, {(tn) = p(tn), A(tn) = X(tn), and iterates backwards as follows:

G(ti) = B(t) AT (Atir1)S 7 (), (200)
KP(t;) = K(S(t) — G(t:)S(t,)G ' (), (20j)
E(ti) = p(ti) + G(t) (E(tiv1) — 1)), (20k)
KA (t:) = K(G(t:)A(ti1)G T (t:) + P(t:). (201)

For the EKS, the linearization point Z(¢;) = Eou(t; ) is the predictive mean of the EKF; for the
IEKS, the smoothing mean Z(t;) = Ep&(t;) of the previous iteration. Note that covariances are
invariant to scaling of x (Tronarp et al., 2019a,b). Therefore, the filter can be run for x = 1 and the
resulting covariances can be post-multiplied once an appropriate value has been determined.

A.2. Calibration

To return meaningful uncertainty estimates, the scaling parameter x needs to be estimated. We
follow the approach described by Tronarp et al. (2019b) and Bosch et al. (2021) and choose & as
the quasi-maximum likelihood estimate (MLE). In view of (20), this estimate can be obtained by
solving

N
fo = argmax ) _log N'(b(t:); C(t:)u(t; ). xS(t:)) 2D
® i=1
N
= Nz ST (b(t) — Cltau(t)) TSt (b(t:) — Clta)u(t;)). (22)
T =1
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