
Proceedings of Machine Learning Research vol 242:197–208, 2024

On the convergence of adaptive first order methods:
proximal gradient and alternating minimization algorithms

Puya Latafat PUYA.LATAFAT@KULEUVEN.BE
Department of Electrical Engineering (ESAT-STADIUS)
KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium

Andreas Themelis ANDREAS.THEMELIS@EES.KYUSHU-U.AC.JP
Faculty of Information Science and Electrical Engineering (ISEE)
Kyushu University, 744 Motooka, Nishi-ku 819-0395, Fukuoka, Japan

Panagiotis Patrinos PANOS.PATRINOS@ESAT.KULEUVEN.BE

Department of Electrical Engineering (ESAT-STADIUS)
KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium

Abstract
Building upon recent works on linesearch-free adaptive proximal gradient methods, this paper pro-
poses AdaPGq,r, a framework that unifies and extends existing results by providing larger stepsize
policies and improved lower bounds. Different choices of the parameters q and r are discussed and
the efficacy of the resulting methods is demonstrated through numerical simulations. In an attempt
to better understand the underlying theory, its convergence is established in a more general setting
that allows for time-varying parameters. Finally, an adaptive alternating minimization algorithm is
presented by exploring the dual setting. This algorithm not only incorporates additional adaptivity,
but also expands its applicability beyond standard strongly convex settings.
Keywords: Convex minimization, proximal gradient method, alternating minimization algorithm,
locally Lipschitz gradient, linesearch-free adaptive stepsizes

1. Introduction

The proximal gradient (PG) method is the natural extension of gradient descent for constrained and
nonsmooth problems. It addresses nonsmooth minimization problems by splitting them as

minimize
x∈�n

φ(x) := f(x) + g(x), (P)

where f is here assumed locally Lipschitz differentiable, and g possibly nonsmooth but with an
easy-to-compute proximal mapping, while both being convex (see Assumption 2.1 for details). It
has long been known that performance of first-order methods can be drastically improved by an
appropriate stepsize selection as evident in the success of linesearch based approaches.

Substantial effort has been devoted to developing adaptive methods. Most notably, in the context
of stochastic (sub)gradient descent, numerous adaptive methods have been proposed starting with
Duchi et al. (2011). We only point the reader to few recent works in this area Li and Orabona
(2019); Ward et al. (2019); Yurtsever et al. (2021); Ene et al. (2021); Defazio et al. (2022); Ivgi et al.
(2023). However, although applicable to a more general setting, such approaches tend to suffer from
diminishing stepsizes, which can hinder their performance.

Closer to our setting are recent works Grimmer et al. (2023); Altschuler and Parrilo (2023)
which consider smooth optimization problems, and propose predefined stepsize patterns. These
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methods obtain accelerated worst-case rates under global Lipschitz continuity assumptions. We
also mention the recent work Li and Lan (2023) in the constrained smooth setting which, while
also being bound to a global Lipschitz continuity assumption, uses an adaptive estimate for the
Lipschitz modulus and achieves an accelerated worst-case rate.

In this paper, we extend recent results pioneered in Malitsky and Mishchenko (2020) and later
further developed in Latafat et al. (2023b); Malitsky and Mishchenko (2023), where novel (self-)
adaptive schemes are developed. We provide a unified analysis that bridges together and improves
upon all these works by enabling larger stepsizes and, in some cases, providing tighter lower bounds.
Adaptivity refers to the fact that, in contrast to linesearch methods that employ a look forward
approach based on trial and error to ensure a sufficient descent in the cost, we look backward to
yield stepsizes only based on past information. Specifically, we estimate the Lipschitz modulus of
∇f at consecutive iterates xk−1, xk ∈ �n generated by the algorithm using the quantities

ℓk :=
⟨∇f(xk)−∇f(xk−1), xk − xk−1⟩

∥xk − xk−1∥2 and Lk :=
∥∇f(xk)−∇f(xk−1)∥

∥xk − xk−1∥ . (1.1)

Throughout, we stick to the convention 0
0 = 0 so that ℓk and Lk are well-defined, positive real

numbers. In addition, we adhere to 1
0 = ∞. Note also that

ℓk ≤ Lk ≤ Lf,V (1.2)

holds whenever Lf,V is a Lipschitz modulus for ∇f on a convex set V containing xk−1 and xk.
Despite the mere dependence of these quantities on the previous iterates, they provide a sufficiently
refined estimate of the local geometry of f . In fact, a carefully designed stepsize update rule not
only ensures that the stepsize sequence is separated from zero, but also that a sufficient descent-type
inequality can be indirectly ensured between (xk+1, xk) and (xk, xk−1) without any backtracks.

The ultimate deliverable of this manuscript is the general adaptive framework outlined in Algo-
rithm 2.1. A special case of it is here condensed into a two-parameter simplified algorithm.

AdaPGq,r Fix x−1 ∈ �n and γ0 = γ−1 > 0. With ℓk and Lk as in (1.1), starting from
x0 = proxγ0g(x

−1 − γ0∇f(x−1)), iterate for k = 0, 1, . . .

γk+1 = γk min

{√
1
q + γk

γk−1
,

√
1− r

q

[γ2
kL

2
k+2γkℓk(r−1)−(2r−1)]

+

}
(1.3a)

xk+1 = proxγk+1g
(xk − γk+1∇f(xk)) (1.3b)

Theorem 1.1 Under Assumption 2.1, for any q > r ≥ 1
2 the sequence (xk)k∈� generated by

AdaPGq,r converges to some x⋆ ∈ argminφ. If in addition q ≤ 1
2(3 +

√
5), then

γk ≥ γmin :=

√
1− r

q

max {1,q}
1

Lf,V
holds for all k ≥ 2

⌈
log1+ 1

q

(
1

γ0Lf,V

)⌉
+
,

where Lf,V is a Lipschitz modulus for ∇f on a convex and compact set V that contains (xk)k∈�.
Moreover, mink≤K(φ(xk)−minφ) ≤ U1(x⋆)∑K+1

k=1 γk
holds for everyK ≥ 1, where U1(x

⋆) is as in (2.4).

The above worst-case sublinear rate depends on the aggregate of the stepsize sequence, provid-
ing a partial explanation for the fast convergence of the algorithm observed in practice. AdaPGq,r
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and Theorem 1.1 are particular instances of the general framework provided in Section 2, see Re-
mark 2.2 and Theorem 2.7 for the details. Specific choices of the parameters q, r nevertheless allow
AdaPGq,r to embrace and extend existing algorithms:

• r = 1
2 and q = 1. Then, γk+1 = γkmin

{√
1 + γk

γk−1
, 1√

2[γ2kL
2
k−γkℓk]+

}
coincides with the

update in (Latafat et al., 2023b, Alg. 2.1) with second term improved by a
√
2 factor.

• Owing to the relation γ2kL
2
k − γkℓk ≤ γ2kL

2
k, the case above is also a proximal extension of

(Malitsky and Mishchenko, 2023, Alg. 1) which considers γk+1 = min
{
γk
√

1 + γk
γk−1

, 1√
2Lk

}
when g = 0, and which in turn is also a strict improvement over the previous work Malitsky and
Mishchenko (2020).

• r = 3
4 and q = 3

2 . Then, γk+1 = γkmin

{√
2
3 + γk

γk−1
, 1√

[2γ2kL
2
k−1−γkℓk]+

}
recovers the update

rule (Malitsky and Mishchenko, 2023, Alg. 2) (in fact tighter because of the extra −γkℓk term).

The interplay between the parameters can then be understood by noting that
√

1
q +

γk
γk−1

allows the
algorithm to recover from a potentially small stepsize, which can only decrease for a controlled
number of iterations and will then rapidly enter a phase where it increases linearly until a certain
threshold is reached, see the proof of Theorem 2.7. A smaller q allows for a more aggressive recov-
ery, but comes at the cost of more conservative second term. As for r, values in the range [1/2, 1],
such as in the combinations reported in Table 1, work well in practice.

1− r/q q r γminLf,V
1/4 10/9 5/6 3/2

√
1/10 ≈ 0.47

2/5 8/5 24/25 1/2
1/2 5/3 5/6

√
3/10 ≈ 0.55

1/2 3/2 3/4 1/
√
3 ≈ 0.57

1/2 1 1/2 1/
√
2 ≈ 0.71

3/5 5/2 1
√
6/5 ≈ 0.49

Table 1. Suggested options for q and r in AdaPGq,r.
Green cells strike a nice balance between aggressive
increases and large lower bounds (γmin) for the step-
size sequence, while the orange cell yields the largest
theoretical lower bound. Here, Lf,V is a local Lipschitz
modulus for ∇f as in Theorem 1.1.

As a final contribution, an adaptive variant of the alternating minimization algorithm (AMA) of
Tseng (1991) is proposed that addresses composite problems of the form

minimize
x∈�n

ψ1(x) + ψ2(Ax). (CP)

AMA is particularly interesting in settings where ψ1 is either nonsmooth or its gradient is compu-
tationally demanding. Its convergence was established in Tseng (1991) by framing it as the dual
form of the splitting method introduced in Gabay (1983), and acceleration techniques have also
been adapted to this setting Goldstein et al. (2014). In contrast to existing methods, ours not only
incorporates an adaptive stepsize mechanism but also relaxes the strong convexity assumption to
mere local strong convexity, see Assumption 3.1 for details. Due to space limitations, some proofs
are deferred to the preprint version Latafat et al. (2023a).
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2. A general framework for adaptive proximal gradient methods

In this section we consider plain proximal gradient iterations of the form

xk+1 = proxγk+1g

(
xk − γk+1∇f(xk)

)
, (2.1)

where (γk)k∈� is a sequence of strictly positive stepsize parameters. The main oracles of the method
are gradient and proximal maps (see (Beck, 2017, §6) for examples of proximable functions). When-
ever g is convex, for any γ > 0 it is well known that proxγg is firmly nonexpansive (Bauschke and
Combettes, 2017, §4.1 and Prop. 12.28), a property stronger than Lipschitz continuity. We here
show that even when the stepsizes are time-varying as in (2.1) a similar property still holds for the
iterates therein. This fact is a refinement of (Malitsky and Mishchenko, 2023, Lem. 12) that follows
after an application of Cauchy-Schwarz and that will be used in our main descent inequality.

Lemma 2.1 (FNE-like inequality) Suppose that g is convex and that f is differentiable. Then, for
any (γk)k∈� ⊂ �++ and with Hk := id− γk∇f , proximal gradient iterates (2.1) satisfy

∥xk+1 − xk∥2 ≤ ρk+1⟨Hk(x
k−1)−Hk(x

k), xk − xk+1⟩ ≤ ρ2k+1∥Hk(x
k−1)−Hk(x

k)∥2. (2.2)

Throughout, we study problem (P) under the following assumptions.

Assumption 2.1 (Requirements for problem (P))

A1 f : �n → � is convex and has locally Lipschitz continuous gradient.

A2 g : �n → � is proper, lsc, and convex.

A3 There exists x⋆ ∈ argmin f + g.

The main adaptive framework, involving two time-varying parameters qk, ξk, is given in Algo-
rithm 2.1. The shorthand notation 1γkℓk≥1 equals 1 if γkℓk ≥ 1 and 0 otherwise, while for t ∈ �
we denote [t]+ := max {0, t}.

Algorithm 2.1 General adaptive proximal gradient framework
REQUIRE starting point x−1 ∈ �n, stepsizes γ0 = γ−1 > 0

parameters 1
2 < qmin ≤ qmax, 0 < ξmin ≤ 2qmin − 1,

INITIALIZE x0 = proxγ0g(x
−1 − γ0∇f(x−1)), ρ0 = 1, q0 ∈ [qmin, qmax], ξ0 ≥ ξmin

REPEAT FOR k = 0, 1, . . . until convergence

2.1.1: Let ℓk and Lk be as in (1.1), and choose qk+1, ξk+1 such that

ξk+1 ≥ ξmin, rk+1 :=
qk+1

1+ξk+1
≥ 1

2 , qmin ≤ qk+1 ≤ min {qmax, qk + 1γkℓk≥1}

2.1.2: γk+1 = γkmin

{√
1+qkρk
qk+1

,
√

rk+1

qk+1

ξk
[γ2kL

2
k+2γkℓk(rk+1−1)−(2rk+1−1)]

+

}
2.1.3: Set ρk+1 =

γk+1

γk
and update xk+1 = proxγk+1g

(xk − γk+1∇f(xk))
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Remark 2.2 (relation to AdaPGq,r). Whenever qk ≡ qmin = qmax =: q and ξk ≡ ξmin =: ξ, the
conditions in Algorithm 2.1 reduce to q > 1

2 , r = q
ξ+1 ≥ 1

2 , and ξ = q
r − 1 > 0; equivalently,

q > r ≥ 1
2 as in Theorem 1.1.

In what follows, for x ∈ domφ we adopt the notation

Pk(x) := φ(xk)− φ(x). (2.3)

Our convergence analysis revolves around showing that under appropriate stepsize update and pa-
rameter selection the function

Uk(x) := 1
2∥xk − x∥2 + γk(1 + qkρk)Pk−1(x) +

ξk
2 ∥xk − xk−1∥2, (2.4)

monotonically decreases along the iterates for all x ∈ argminφ. The main inequality, outlined in
Theorem 2.3, extends the one in (Latafat et al., 2023b, Eq. (2.8)) by blending it with Lemma 2.1.
This combination is achieved by adding and subtracting a multiple of the residual scaled by a newly
added parameter ξk. The proof is otherwise adapted from that of (Latafat et al., 2023b, Lem. 2.2),
and is included in full detail in the preprint version.

Theorem 2.3 (main PG inequality) Consider a sequence (xk)k∈� generated by PG iterations
(2.1) under Assumption 2.1, and denote ρk+1 :=

γk+1

γk
. Then, for any x ∈ domφ, qk, ξk ≥ 0

and νk > 0, k ∈ �,

Uk+1(x) ≤ Uk(x)− γk(1 + qkρk − qk+1ρ
2
k+1)Pk−1(x)− 1

2∥xk − xk−1∥2
{
1 + ξk − 1

νk

− ρ2k+1(νk+1 + ξk+1)
[
γ2kL

2
k + 2γkℓk

( qk+1

νk+1+ξk+1
− 1

)
−
(
2

qk+1

νk+1+ξk+1
− 1

)]}
,

(2.5)

where Uk(x) is as in (2.4). In particular, with νk ≡ 1, if φ(x) ≤ infk∈� φ(xk) (for instance, if
x ∈ argminφ), and

0 < ρ2k+1 ≤ min

1+qkρk
qk+1

, ξk

(1+ξk+1)

[
γ2kL

2
k+2γkℓk

(
qk+1

1+ξk+1
−1

)
+

(
1−2

qk+1
1+ξk+1

)]
+

 (2.6)

(with ξk > 0) holds for every k, then the coefficients of Pk−1(x) and ∥xk − xk−1∥2 in (2.5) are
negative, Uk+1(x) ≤ Uk(x) and thus (Uk(x))k∈� converges and (xk)k∈� is bounded.

Consistently with what was first observed in Malitsky and Mishchenko (2020), inequality (2.6)
confirms that stepsizes should both not grow too fast and be controlled by the local curvature of
f . We next show that, under a technical condition on qk, all that remains to do is ensuring that
the stepsizes do not vanish, which is precisely the reason behind the restrictions on the parameters
qk and ξk prescribed in Algorithm 2.1, as Theorem 2.7 will ultimately demonstrate. The technical
condition turns out to be a controlled growth of qk, needed to guarantee that a sequence ϱk+1 ≈√

1+qkϱk
qk+1

will eventually stay above 1.
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Theorem 2.4 (convergence of PG with nonvanishing stepsizes) Consider the iterates generated
by (2.1) under Assumption 2.1, with γk+1 = γkρk+1 complying with (2.6). If qk+1 ≤ 1 + qk holds
for every k and infk∈� γk > 0, then:

(i) The (bounded) sequence (xk)k∈� has exactly one optimal accumulation point.

(ii) If, in addition, (qk)k∈� and (ξk)k∈� are chosen bounded and bounded away from zero, then
the entire sequence (xk)k∈� converges to a solution x⋆ ∈ argminφ, and Uk(x⋆) ↘ 0.

We now turn to the last piece of the puzzle, namely enforcing a strictly positive lower bound on
the stepsizes. The following elementary lemma provides the key insight to achieve this.

Lemma 2.5 Let f be convex and differentiable, and consider the iterates generated by Algorithm 2.1.
Then, for every k ∈ � such that γkℓk < 1 it holds that

γk+1 ≥ min

{
γk

√
1

qmax
+ ρk,

√
ξminrmin
qmax

1
Lk

}
. (2.7)

Proof We start by observing that the assumptions on f guarantee that 0 ≤ ℓk ≤ Lk. The (squared)
second term in the minimum of step 2.1.2 can be lower bounded as follows

rk+1

qk+1

ξk
[γ2kL

2
k+2γkℓk(rk+1−1)+(1−2rk+1)]+

≥ ξmin
qmax

rmin

[γ2kL
2
k+2γkℓk(rmin−1)+(1−2rmin)]+

= ξmin
qmax

rmin

[γ2kL
2
k−γkℓk+(γkℓk−1)(2rmin−1)]

+

≥ ξminrmin

qmaxγ2kL
2
k
, (2.8)

where the first inequality follows from the fact that the left-hand side is increasing with respect
to rk+1, and the second inequality follows since rmin ≥ 1/2. In turn, the claimed inequality (2.7)
follows from the fact that qk+1 ≤ qk ≤ qmax whenever γkℓk < 1, see step 2.1.1.

This lemma already hints at a potential lower bound for the stepsize, since boundedness of
the sequence (xk)k∈� ensures lower boundedness of the second term in the minimum. As for the
first term, as long as qk is upper bounded, the stepsize can only decrease for a controlled number
of iterations. This arguments will be formally completed in the proof of Theorem 2.7, where the
following notation will be instrumental.

Definition 2.6 Let ε > 0. With ϱ1 =
√
ε and ϱt+1 =

√
ε+ ϱt for t ≥ 1, we denote

tε := max {t ∈ � | ϱ1, . . . , ϱt < 1} and m(ε) :=
∏tε
t=1 ϱt.

Notice that m(ε) ≤ 1 and equality holds iff ε ≥ 1 (equivalently, iff tε = 0). For ε ∈ (0, 1), tε is
a well-defined strictly positive integer, owing to the monotonic increase of ϱt and its convergence to
the positive root of the equation ϱ2 − ϱ− ε = 0. In particular, m(ε) ≤ ϱ1 =

√
ε and identity holds

if tε = 1, that is,
√
ε+

√
ε ≥ 1 (and ε < 1). This leads to a partially explicit expression{

tε = 1 and m(ε) =
√
min {1, ε} if ε ≥ 3−

√
5

2 ≈ 0.382

1 < tε ≤
⌈

1
ε(2−ε)

⌉
and

√
εtε < m(ε) <

√
ε otherwise.

(2.9)
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The bound on tε in the second case is obtained by observing that

1 > ϱtε = ϱtε − ϱ2tε + ε+ ϱtε−1 = · · · =
tε∑
t=1

(ϱt− ϱ2t ) + (tε− 1)ε ≥ (tε− 1)ε(1− ε) + (tε− 1)ε,

where we used the fact that ε ≤ ϱt ≤ 1− ε and thus ϱt − ϱ2t ≥ ε(1− ε) for t = 1, . . . , tε − 1. We
also remark that the lower bound in the simplified setting of Theorem 1.1 pertains to the case when
tε = 1, since ε = 1

q falls under the first case above.

Theorem 2.7 (convergence of Algorithm 2.1) Under Assumption 2.1, the sequence (xk)k∈� gen-
erated by Algorithm 2.1 converges to a solution x⋆ ∈ argminφ and (Uk(x⋆))k∈� ↘ 0. Moreover,
there exists k0 ≤ 2

⌈
log1+ 1

qmax

(
1

γ0Lf,V

)⌉
+

such that

γk ≥ γmin := m(1/qmax)
√

ξminrmin
qmax

1
Lf,V

∀k ≥ k0,

where rmin := infk∈� rk ≥ 1
2 , m( · ) is as in Definition 2.6 (see also (2.9)), and Lf,V is a Lipschitz

modulus for ∇f on a compact convex set V that contains (xk)k∈�.

Proof The conditions prescribed in step 2.1.1 entail that the requirements of Theorem 2.4(ii) are
met, so that the proof reduces to showing the claimed lower bound on (γk)k∈�. Boundedness of the
sequence (xk)k∈� established in Theorem 2.3 ensures the existence of Lf,V > 0 as in the statement.
In particular, recall that ℓk ≤ Lk ≤ Lf,V holds for all k ∈ �, cf. (1.2). Lemma 2.5 then yields that

γkℓk < 1 ⇒ γk+1 ≥ min

{
γk

√
1

qmax
+ ρk,

√
ξminrmin
qmax

1
Lf,V

}
. (2.10)

We first show that γk0Lf,V ≥
√

ξminrmin
qmax

holds for some k0 ≥ 0 upper bounded as in the statement.

To this end, suppose that γkLf,V <
√

ξminrmin
qmax

for k = 0, 1, . . . ,K. The bounds ξk ≥ ξmin and

qk ≤ qmax enforced in step 2.1.1 imply that 1
2 ≤ rmin ≤ rk ≤ qmax

1+ξmin
for any k. In particular,

ξminrmin
qmax

≤ ξminrk
qmax

≤ ξmin
1+ξmin

< 1 holds for every k. Then, γkℓk ≤ γkLf,V <
√

ξminrmin
qmax

< 1, and

(2.10) hold true for all such k, leading to γk+1 ≥ γk
√

1/qmax + ρk for k = 0, . . . ,K − 1. Since
ρ0 ≥ 1, it follows that ρk+1 = γk+1/γk ≥

√
1/qmax + 1 for k = 0, . . . ,K − 1. Thus,

1 > armin
qmax

> (γKLf,V)
2 ≥

(
1 + 1

qmax

)
(γK−1Lf,V)

2 ≥ · · · ≥
(
1 + 1

qmax

)K
(γ0Lf,V)

2,

from which the existence of k0 bounded as in the statement follows.
Let k ≥ k0 be an index such that γkLf,V ≥

√
ξminrmin
qmax

, and suppose that γk+tLf,V <
√

ξminrmin
qmax

for t = 1, . . . , T . As before, the inequalities in (2.10) hold true for all such iterates, leading to

ρk+t ≥
√

1
qmax

+ ρk+t−1, t = 1, . . . , T + 1, and in particular ρk+1 ≥
√

1
qmax

.

It then follows from the definition of m(ε) and tε as in Definition 2.6 with ε = 1
qmax

that γk+t =
γk+t−1ρk+t can only decrease for at most t ≤ tε iterations (that is, T ≤ tε), at the end of which

γk+t =
(∏t

i=1 ρk+i
)
γk ≥ m( 1

qmax
)γk ≥ m( 1

qmax
)
√

ξminrmin
qmax

1
Lf,V

(def)
= γmin,

and then increases linearly up to when it is again larger than
√

ξminrmin
qmax

1
Lf,V

, proving that γk ≥ γmin

holds for all k ≥ k0.
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3. A class of adaptive alternating minimization algorithms

Leveraging an interpretation of AMA as the dual of the proximal gradient method, an adaptive
variant is developed for solving (CP) under the following assumptions.

Assumption 3.1 (requirements for problem (CP))

A1∗ ψ1 : �
n → � is proper, closed, locally strongly convex, and 1-coercive;

A2∗ ψ2 : �
m → � is proper, convex and closed;

A3∗ A ∈ �m×n and there exists x ∈ relint domψ1 such that Ax ∈ relintψ2.

Under these requiremets, problem (CP) admits a unique solution x⋆, and by virtue of (Rockafel-
lar, 1970, Thm.s 23.8, 23.9, and Cor. 31.2.1) also its dual

minimize
y∈�m

ψ∗
1(−A⊤y) + ψ∗

2(y) (D)

has solutions y⋆ characterized by y⋆ ∈ ∂ψ2(Ax
⋆) and −A⊤y⋆ ∈ ∂ψ1(x

⋆), and strong duality
holds. In fact, Assumption 3.1.A1∗ ensures that the conjugate ψ∗

1 is a (real-valued) locally Lipschitz
differentiable function (Goebel and Rockafellar, 2008, Thm. 4.1). We note that the weaker notion
of local strong monotonicity of ∂ψ1 relative to its graph would suffice, and that this minor departure
from the reference is used for simplicity of exposition. Problem (D) can then be addressed with
proximal gradient iterations y+ = proxγg(y − γ∇f(y)) analized in the previous section, with
f := ψ∗

1(−A⊤y) and g := ψ∗
2 . In terms of primal variables x and z, these iterations result in the

alternating minimization algorithm. We here reproduce the simple textbook steps. First, observe that

x = ∇ψ∗
1(−A⊤y) ⇔ −A⊤y ∈ ∂ψ1(x) ⇔ 0 ∈ A⊤y + ∂ψ1(x) = ∂[⟨A · , y⟩+ ψ1](x).

Hence, by strict convexity, x = argmin {ψ1 + ⟨A · , y⟩}. By the Moreau decomposition,

proxγg(y − γ∇f(y)) = proxγψ∗
2
(y + γAx) = y + γAx− γ proxψ2/γ(γ

−1y +Ax).

AMA iterations thus generate a sequence (yk)k∈� given in (3.1), where

Lγ(x, z, y) := ψ1(x) + ψ2(z) + ⟨y,Ax− z⟩+ γ
2∥Ax− z∥2

is the γ-augmented Lagrangian associated to (CP).

AdaAMAq,r Fix y−1 ∈ �m and γ0 = γ−1 > 0. With ℓk and Lk as in (3.2), starting fromx
−1 = argminx∈�n

{
ψ1(x) + ⟨y−1, Ax⟩

}
z0 = argminz∈�m Lγ0(x

−1, z, y−1)
y0 = y−1 + γ0(Ax

−1 − z0),
iterate for k = 0, 1, . . .

xk = argmin
x∈�n

{
ψ1(x) + ⟨yk, Ax⟩

}
( = argmin

x∈�n
L0(x, z

k, yk)) (3.1a)

γk+1 = γk min

{√
1
q + γk

γk−1
,

√
1− r

q

[(1−2r)+γ2
kL

2
k+2γkℓk(r−1)]

+

}
(3.1b)

zk+1 = proxψ2/γk+1
(γ−1

k+1y
k +Axk) ( = argmin

z∈�m
Lγk+1(x

k, z, yk)) (3.1c)

yk+1 = yk + γk+1(Ax
k − zk+1) (3.1d)
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The chosen iteration indexing reflects the dependency on the stepsize γk: xk depends on yk

but not on γk+1, whereas zk+1 does depend on it. Moreover, this convention is consistent with the
relation ∇f(yk) = −Axk. Local Lipschitz estimates of ∇f as in (1.1) are thus expressed as

ℓk = −⟨Axk −Axk−1, yk − yk−1⟩
∥yk − yk−1∥2 and Lk =

∥Axk −Axk−1∥2
∥yk − yk−1∥2 . (3.2)

Being dually equivalent algorithms, convergence of AdaAMAq,r is deduced from that of AdaPGq,r.

Theorem 3.1 Under Assumption 3.1, for any q > r ≥ 1
2 the sequence (xk)k∈� generated by

AdaAMAq,r converges to the (unique) primal solution of (CP), and (yk)k∈� to a solution of the
dual problem (D).

4. Numerical simulations

Performance of AdaPGq,r with five different parameter choices from Table 1 is reported through
a series of experiments on (i) logistic regression, (ii) cubic regularization for logistic loss, (iii)
regularized least squares. The two former simulations use three standard datasets from the LIBSVM
library Chang and Lin (2011), while for Lasso synthetic data is generated based on (Nesterov, 2013,
§6); for further details the reader is referred to (Latafat et al., 2023b, §4.1) where the same problem
setup is used. When applicable, the following algorithms are included in the comparisons.1

PG-lsb Proximal gradient method with nonmonotone backtracking
Nesterov Nesterov’s acceleration with constant stepsize 1/Lf (Beck, 2017, §10.7)
adaPG (Latafat et al., 2023b, Alg. 2.1)
adaPG-MM Proximal extension of (Malitsky and Mishchenko, 2020, Alg. 1)

The backtracking procedure in PG-lsb is meant in the sense of (Beck, 2017, §10.4.2), (see
also (Salzo, 2017, LS1) and (De Marchi and Themelis, 2022, Alg. 3) for the locally Lipschitz
smooth case), without enforcing monotonic decrease on the stepsize sequence. To improve per-
formance, the initial guess for γk+1 is warm-started as bγk, where γk is the accepted value in the
previous iteration and b ≥ 1 is a backtracking factor. For each simulation we tested all values of
b ∈ {1, 1.1, 1.3, 1.5, 2} and only reported the best outcome.

5. Conclusions

This paper proposed a general framework for a class of adaptive proximal gradient methods, demon-
strating its capacity to extend and tighten existing results when restricting to certain parameter
choices. Moreover, application of the developed method was explored in the dual setting which led
to a class of novel adaptive alternating minimization algorithms.

Future research directions include extensions to nonconvex problems, variational inequalities,
and simple bilevel optimization expanding upon Malitsky (2020) and Latafat et al. (2023c). It would
also be interesting to investigate the effectiveness of time-varying parameters in our framework for
further improving performance and worst-case convergence rate guarantees.

1. https://github.com/pylat/adaptive-proximal-algorithms-extended-experiments
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Figure 1: First row: regularized least squares, second row: ℓ1-regularized logistic regression, third
row: cubic regularization with Hessian generated for the logistic loss problem evaluated
at zero. For the linesearch method PG-lsb, in each simulation only the best outcome for
b ∈ {1, 1.1, 1.3, 1.5, 2} is reported.
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