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Abstract
The strategy of pre-training a large model on a diverse dataset, then fine-tuning for a particular
application has yielded impressive results in computer vision, natural language processing, and
robotic control. This strategy has vast potential in adaptive control, where it is necessary to rapidly
adapt to changing conditions with limited data. Toward concretely understanding the benefit of pre-
training for adaptive control, we study the adaptive linear quadratic control problem in the setting
where the learner has prior knowledge of a collection of basis matrices for the dynamics. This
basis is misspecified in the sense that it cannot perfectly represent the dynamics of the underlying
data generating process. We propose an algorithm that uses this prior knowledge, and prove upper
bounds on the expected regret after T interactions with the system. In the regime where T is small,
the upper bounds are dominated by a term that scales with either poly(log T ) or

√
T , depending

on the prior knowledge available to the learner. When T is large, the regret is dominated by a term
that grows with δT , where δ quantifies the level of misspecification. This linear term arises due
to the inability to perfectly estimate the underlying dynamics using the misspecified basis, and is
therefore unavoidable unless the basis matrices are also adapted online. However, it only dominates
for large T , after the sublinear terms arising due to the error in estimating the weights for the basis
matrices become negligible. We provide simulations that validate our analysis. Our simulations
also show that offline data from a collection of related systems can be used as part of a pre-training
stage to estimate a misspecified dynamics basis, which is in turn used by our adaptive controller.

1. Introduction
Transfer learning, whereby a model is pre-trained on a large dataset, and then finetuned for a specific
application, has exhibited great success in computer vision (Dosovitskiy et al., 2020) and natural
language processing (Devlin et al., 2018). Efforts to apply these methods to control have shown
exciting preliminary results, particularly in robotics (Dasari et al., 2019). The principle underpin-
ning the success of transfer learning is to use diverse datasets to extract compressed, broadly useful
features, which can be used in conjunction with comparatively simple models for downstream ob-
jectives. These simple models can be finetuned with relatively little data from the downstream task.
However, errors in the pre-training stage may cause this two-step strategy to underperform learning
from scratch when ample task-specific data is available. This tradeoff may be acceptable in settings
such as adaptive control, where the learner must rapidly adapt to changes with limited data.

Driven by the potential of pre-training in adaptive control, we study the adaptive linear quadratic
regulator (LQR) in a setting where imperfect prior information about the system is available. The
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adaptive LQR problem consists of a learner interacting with an unknown linear system

xt+1 = A⋆xt +B⋆ut + wt, (1)

with state xt, input ut, and noise wt assuming values in RdX , RdU , and RdX , respectively. The learner
is evaluated by its ability to minimize its regret, which compares the cost incurred by playing the
learner for T time steps with the cost attained by the optimal LQR controller. Prior work has studied
the adaptive LQR problem in the settings where A⋆, B⋆, or both A⋆ and B⋆ are fully unknown to
the learner and with either stochastic or bounded adversarial noise processes (Abbasi-Yadkori and
Szepesvári, 2011; Hazan et al., 2020; Cassel et al., 2020). In this work, we analyze a setting where
the learner has a set of basis matrices for the system dynamics; however,

[
A⋆ B⋆

]
is not in the

subspace spanned by this basis, leading to misspecification.

1.1. Related Work
Adaptive Control Originating from autopilot development for high-performance aircraft in the
1950s (Gregory, 1959), adaptive control addressed the need for controllers to adapt to varying alti-
tude, speed, and flight configuration (Stein, 1980). Interest in adaptive control theory grew over the
subsequent decades, notably advanced by the landmark paper by Åström and Wittenmark (1973),
who studied self tuning regulators. The history of adaptive control is documented in numerous texts
(Åström and Wittenmark, 2013; Ioannou and Sun, 1996; Narendra and Annaswamy, 2012).
Nonasymptotic Adaptive LQR The non-asymptotic study of the adaptive LQR problem was
pioneered by Abbasi-Yadkori and Szepesvári (2011). Subsequent works (Dean et al., 2018; Cohen
et al., 2019; Mania et al., 2019) developed computationally efficient algorithms with upper bounds
on the regret scaling with

√
T . Simchowitz and Foster (2020) provide lower bounds which show

that the rate
√
d2UdXT is optimal when the system is entirely unknown. The dependence of the lower

bounds on system theoretic constants is refined by Ziemann and Sandberg (2022), enabling Tsiamis
et al. (2022) to show the regret may depend exponentially on dX for specific classes of systems. If
either A⋆ or B⋆ are known, then the regret bounds may be improved to poly(log T ) (Cassel et al.,
2020; Jedra and Proutiere, 2022). Alternative formulations of the adaptive LQR problem consider
bounded non-stochastic disturbances (Hazan et al., 2020; Simchowitz et al., 2020) and minimax
settings (Rantzer, 2021; Cederberg et al., 2022; Renganathan et al., 2023). In contrast to existing
work studying the adaptive LQR problem from a nonasymptotic perspective, we consider bounded
misspecification between a representation estimate for the dynamics and the data generating process.
Multi-task Representation Learning The source of mispecification we consider is inspired by
theoretical work studying multi-task representation learning in the linear regression setting (Du
et al., 2020; Tripuraneni et al., 2020). These papers have been followed by a collection of work
studying the use of multi-task representation learning in the presence of data correlated across time,
which arises in system identification (Modi et al., 2021; Zhang et al., 2023b) and imitation learning
(Zhang et al., 2023a). All of these works show that by pre-training a shared representation on a set
of source tasks, the sample complexity of learning the target task may be reduced.

1.2. Contributions
We introduce a notion of misspecification between an estimate for the basis of the dynamics and the
data generating process. We then propose an adaptive control algorithm that uses this misspecified
basis, and subsequently analyze the regret of this algorithm. This leads to the following insights:
• Our results generalize the understanding of when logarithmic regret is possible in adaptive LQR

beyond the cases of known A⋆ or B⋆ studied by Cassel et al. (2020); Jedra and Proutiere (2022).
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• When misspecification is present, the regret incurs a term that is linear in T . The coefficient for
this term decays gracefully as the level of misspecification diminishes. As a result, small misspec-
ification means the regret is dominated by sublinear terms in the low data regime of interest for
adaptive control. These terms are favorable to those possible in the absence of prior knowledge.

We validate our theory with numerical experiments, and show the benefit using a dynamics repre-
sentation determined by pre-training on offline data from related systems for adaptive control.

1.3. Notation
The Euclidean norm of a vector x is denoted ∥x∥. For a matrix A, the spectral norm is denoted ∥A∥,
and the Frobenius norm is denoted ∥A∥F . We use † to denote the Moore-Penrose pseudo-inverse.
The spectral radius of a square matrix is denoted ρ(A). The minimum eigenvalue of a symmetric,
positive definite matrix A is denoted λmin(A)For f, g : D → R, we write f ≲ g if for some c > 0,
f(x) ≤ cg(x) ∀x ∈ D. We denote the solutions to the discrete Lyapunov equation by dlyap(A,Q)
and the discrete algebraic Riccati equation by DARE(A,B,Q,R).

2. Problem Formulation
2.1. System model
We consider the system (1) where the noise wt has independent identically distributed elements that
are mean zero and σ2-sub-Gaussian for some σ2 ∈ R with σ2 ≥ 1. We additionally assume that the
noise has identity covariance: E

[
wtw

⊤
t

]
= I .1 We suppose the dynamics admit the decomposition[

A⋆ B⋆
]
= vec−1(Φ⋆θ⋆), (2)

where Φ⋆ ∈ RdX(dX+dU)×dθ specifies the model structure, and has orthonormal columns. Mean-
while, θ⋆ ∈ Rdθ specifies the parameters. The operator vec−1 maps a vector in RdX(dX+dU) into a
matrix in RdX×(dX+dU) by stacking length dX blocks of the the vector into columns of the matrix,
working top to bottom and left to right. We can write this as a linear combination of basis matrices:

[
A⋆ B⋆

]
=

dθ∑
i=1

θ⋆i

[
ΦA,⋆
i ΦB,⋆

i

]
, where

[
ΦA,⋆
i ΦB,⋆

i

]
= vec−1Φ⋆

i ,

and Φ⋆
i is the ith column of Φ⋆. This decomposition of the data generating process is a natural

extension of the low-dimensional linear representations considered in Du et al. (2020) to the setting
of multiple related dynamical systems with shared structure determined by Φ⋆. It captures many
practically relevant settings, such as when A⋆ and B⋆ depend on a few physical parameters θ⋆, and
Φ⋆ describes the structure through which these physical parameters enter the dynamics.

We assume that both Φ⋆ and θ⋆ are unknown; however, we have an estimate Φ̂ ∈ RdX(dX+dU)×dθ ,
also with orthonormal columns, for Φ⋆. Such an estimate may be obtained by performing a pre-
training step on offline data from a collection of systems related to (1) by the shared matrix Φ⋆

in (2). Due to the noise present in the offline data, this estimate will be imperfect, resulting in
misspecification.2 To quantify the level of misspecification between this estimate and the underlying
data generating process, we use the following subspace distance metric.

Definition 1 ((Stewart and Sun, 1990)) Let Φ⋆
⊥ complete the basis of Φ⋆ such that

[
Φ⋆ Φ⋆

⊥
]

is

an orthogonal matrix. Then the subspace distance between Φ⋆ and Φ̂ is d(Φ⋆, Φ̂) ≜
∥∥∥Φ̂⊤Φ⋆

⊥

∥∥∥ .
1. Noise that enters the process through a non-singular matrix H can be addressed by rescaling the dynamics by H−1.
2. Sample complexity bounds for learning Φ̂ are provided by Zhang et al. (2023b), so this step is not studied here.
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Note that the above distance is small when the range of the matrices Φ̂ and Φ⋆ is similar.3

As long as d(Φ⋆, Φ̂) is sufficiently small and the dimension dθ < dX(dX + dU), the estimate Φ̂
allows the learner to fit a model with less data than would be required to estimate

[
A⋆ B⋆

]
from

scratch. This benefit comes at the cost of a bias in the learner’s model that grows with d(Φ⋆, Φ̂).

2.2. Learning objective
The goal of the learner is to interact with system (1) while keeping the cumulative cost small, where
the cumulative cost is defined for matrices Q ⪰ I and R = I as4

CT ≜
T∑
t=1

ct, where ct ≜ x⊤t Qxt + u⊤t Rut. (3)

To define an algorithm that keeps the cost small, we first introduce the infinite horizon LQR cost:

J (K) ≜ lim sup
T→∞

1

T
EK CT , (4)

where the superscript of K on the expectation denotes that the cost is evaluated under the state
feedback controller ut = Kxt. To ensure that there exists a controller such that (4) has finite cost,
we assume (A⋆, B⋆) is stabilizable. Under this assumption, (4) is minimized by the LQR controller
K∞(A⋆, B⋆), where K∞(A,B) ≜ −(B⊤P∞(A,B)B + R)−1B⊤P∞(A,B)A, and P∞(A,B) ≜
DARE(A,B,Q,R). We define the shorthands P ⋆ ≜ P∞(A⋆, B⋆) and K⋆ ≜ K∞(A⋆, B⋆). To
characterize the infinite horizon LQR cost of an arbitrary stabilizing controller K, we additionally
define the solution PK to the lyapunov equation for the closed loop system under an arbitrary K
such that ρ(A⋆+B⋆K) < 1: PK ≜ dlyap(A⋆+B⋆K,Q+K⊤RK). For a controller K satisfying
ρ(A⋆ +B⋆K) < 1, J (K) = tr(PK). We have that PK⋆ = P ⋆.

The infinite horizon LQR controller provides a baseline level of performance that our learner
cannot surpass in the limit as T → ∞. Borrowing the notion of regret from online learning, as in
Abbasi-Yadkori and Szepesvári (2011), we quantify the performance of our learning algorithm by
comparing the cumulative cost CT to the scaled infinite horizon cost attained by the LQR controller
if the system matrices

[
A⋆ B⋆

]
were known:

RT ≜ CT − TJ (K⋆). (5)

In light of the above reformulation, the goal of the learner is to interact with the system (1) to
maximize the information about the relevant parameters for control while simultaneously regulating
the system to minimize RT . A reasonable strategy to do so is for the learner to use its history of
interaction with the system to construct a model for the dynamics, e.g. by determining estimates Â
and B̂. It may then use these estimates as part of a certainty equivalent (CE) design by synthesizing
controllers K̂ = K∞(Â, B̂). Prior work has shown that if the model estimate is sufficiently close
to the true dynamics, then the cost of playing the controller K̂ exceeds the cost of playing K⋆ by a
quantity that is quadratic in the estimation error (Mania et al., 2019; Simchowitz and Foster, 2020).

Lemma 1 (Theorem 3 of Simchowitz and Foster (2020)) Define ε ≜ 1
2916∥P ⋆∥10 . If∥∥[Â B̂

]
−
[
A⋆ B⋆

]∥∥2
F
≤ ε, then J (K̂)− J (K⋆) ≤ 142 ∥P ⋆∥8

∥∥[Â B̂
]
−
[
A⋆ B⋆

]∥∥2
F

.

3. This distance may be small when
∥∥∥Φ̂− Φ⋆

∥∥∥ is not. However, small
∥∥∥Φ̂− Φ⋆

∥∥∥ implies small subspace distance.
4. Generalizing to arbitrary Q ≻ 0 and R ≻ 0 can be performed by scaling the cost and changing the input basis.
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Algorithm 1 Certainty Equivalent Control with Continual Exploration
1: Input: Stabilizing controller K0, initial epoch length τ1, number of epochs kfin, exploration

sequence σ2
1, σ

2
2, σ

2
3, . . . σ

2
kfin

, state bound xb, controller bound Kb

2: Initialize: K̂1 ← K0, τ0 ← 0, T ← τ12
kfin−1.

3: for k = 1, 2, . . . , kfin do
4: for t = τk−1 + 1, . . . , τk do
5: if ∥xt∥2 ≥ x2b log T or

∥∥∥K̂k

∥∥∥ ≥ Kb then Abort and play K0 forever

6: Play ut = K̂kxt + σkgt, where gt ∼ N (0, I)

7: θ̂k ← LS(Φ̂, xτk−1+1:τk+1, uτk−1+1:τk) ▷ Algorithm 2

8:
[
Âk B̂k

]
← vec−1

(
Φ̂θ̂k

)
9: K̂k+1 ← K∞(Âk, B̂k)

10: τk+1 ← 2τk

2.3. Algorithm description
Our proposed algorithm, Algorithm 1, is a CE algorithm akin to that proposed in Cassel et al.
(2020). The algorithm takes a stabilizing controller K0 as an input. Starting from this controller,
Algorithm 1 follows a doubling epochs strategy. At the end of each epoch, it uses the data collected
during the epoch along with the estimate for Φ̂ to obtain an estimate for θ̂ by solving a least squares
problem (as detailed in Algorithm 2). The estimated parameters θ̂ are combined with the estimate
Φ̂ to obtain the dynamics estimate

[
Â B̂

]
. This estimate is used to synthesize a CE controller

K̂ = K∞(Â, B̂). In the next epoch, the learner plays the resultant controller with exploratory noise
added. Before playing each input, the algorithm checks whether the state or the controller exceed
bounds determined by algorithm inputs xb and Kb. If they do, it aborts the certainty equivalent
scheme, and plays the initial stabilizing controller for all time. Doing so enables bounding of the
regret during unlikely events where the CE controller fails. The key difference from the CE algo-
rithms proposed in prior work is that the system identification step solves a least squares problem
defined in terms of the estimate Φ̂ to estimate the unknown parameters.

Algorithm 2 Least squares: LS(Φ̂, x1:t+1, u1:t+1)

1: Input: Model structure estimate Φ̂, state data x1:t+1, input data u1:t

2: Return: θ̂=Λ†
(∑t

s=1Φ̂
⊤
([

xs
us

]
⊗IdX

)
xs+1

)
, whereΛ =

∑t
s=1Φ̂

⊤

([
xs
us

][
xs
us

]⊤
⊗IdX

)
Φ̂.

3. Regret Bounds
We now present our bounds on the expected5 regret incurred by Algorithm 1. Further discussion
and complete proofs may be found in Lee et al. (2023).

Consider running Algorithm 1 for T = τ12
kfin−1 timesteps, where τ1 is the initial epoch length

and kfin is the number of epochs. To bound the regret incurred by this algorithm, we decompose the
regret into that achieved by the algorithm under a high probability success event, and that incurred

5. In contrast to high probability regret bounds, expected regret provides an understanding of what happens in the
unlikely events where controller performs poorly.
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during a failure event under which the state or controller bound in line 5 of Algorithm 1 are violated.
To ensure the failure event occurs with a small probability, we make the following assumption on
the state and controller bounds, which uses the shorthand ΨB⋆ ≜ max{1, ∥B⋆∥}.

Assumption 1 We assume that xb ≥ 400 ∥PK0∥
2ΨB⋆σ

√
dX + dU and Kb ≥

√
2 ∥PK0∥.

We make additional assumptions about the remaining arguments supplied as inputs to the algo-
rithm in two cases: one where no additional assumptions about the dynamics are made (Section 3.1),
and one where we assume the system structure estimate is such that the initial controller and the op-
timal controller provide sufficient excitation to identify the unknown parameters (Section 3.2).

3.1. Certainty equivalent control with continual exploration
To ensure an estimate satisfying the condition in Lemma 1 is attainable, the gap between the model
structure estimate and the ground truth cannot be too large, leading to the following assumption.

Assumption 2 Let ε be as in Lemma 1 and K0 be an initial stabilizing controller. Define β1 ≜

Cbias,1σ
4 ∥PK0∥

12Ψ8
B⋆ ∥θ⋆∥2 (dX + dU)

√
dθ
dU

for a sufficiently large universal constant Cbias,1. We

assume our representation error satisfies d(Φ̂,Φ⋆) ≤ ε2

4β2
1
.

The requirement above arises from the way that misspecification enters our bounds on the estimation
error

∥∥[Â B̂
]
−
[
A⋆ B⋆

]∥∥2
F

. See the definition of Eest,1 in Section 3.3.
In this setting, we run Algorithm 1 with exploratory inputs injected to ensure identifiability of

the unknown parameters. Doing so provides the regret guarantees in the following theorem.

Theorem 2 Consider applying Algorithm 1 with initial stabilizing controller K0 for T = τ12
kfin−1

timesteps for some positive integers kfin, and τ1. Suppose that for some γ ≥ 1, the exploration

sequence is given by σ2
k = max

{ √
dU/dθ√
τ12k−1

, γd(Φ̂,Φ⋆)1/2
}
∀k ≥ 1.6 Suppose the state bound xb

and the controller bound Kb satisfy Assumption 1 and that Φ̂ satisfies Assumption 2. Let ε be as in
Lemma 1. There exists a universal positive constant Cwarmup such that if τ1 = τwarmup log

2 T for

τwarmup ≥ Cwarmupσ
4 ∥PK0∥

3max

{
Ψ2

B⋆(dX + dU), x
2
b ,− log(

1− 1
∥P⋆∥

) ∥P ⋆∥ ,
(√

dθdU/ε
)
2

}
,

then the expected regret satisfies

E[RT ] ≤ c0 log
2(T ) + c1

√
dθdU

√
T log T + c2

√
d(Φ̂,Φ⋆)T,

where c0 = poly(dX, dU, ∥PK0∥ ,ΨB⋆ , τwarmup, xb,Kb), c1 = poly(∥PK0∥ ,ΨB⋆ , σ) and c2 =
poly(dU, dX, dθ, ∥PK0∥ ,ΨB⋆ , ∥θ⋆∥ , σ, γ).

The constants c0 and c2 in the above bound depend on system dimensions, system-theoretic
quantities, and algorithm parameters including the state and controller bounds, the initial epoch
length, and the initial controller. In contrast, the constant c1, does not depend on system dimension.
It is presented as such to emphasize that the dimensional dependence of the order

√
T term is√

dθdU. This elucidates the dependence on the system and parameter dimensions in the regime

6. The γ allows the sequence to be defined with a bound on the level of misspecification, rather than precise knowledge.

6
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where the
√
T term is dominant. Consider the result in the absence of misspecification: d(Φ̂,Φ⋆) =

0. In this case, the dominant term grows with
√
dθdU

√
T log T . As long as dθ ≤ dXdU, this

is smaller than the dependence of
√

d2UdX which appears in the lower bounds for the regret of
learning to control a system with entirely unknown A⋆ and B⋆ (Simchowitz and Foster, 2020). If
the misspecification is nonzero, then the regret bound incurs an additional term that grows linearly
with T . However, as long as d(Φ̂,Φ⋆) is sufficiently small, there exists a regime of T for which the√
T term dominates, and using the misspecified basis provides a benefit over learning from scratch.

3.2. Certainty equivalent control without additional exploration
In this section, we analyze the regret attained under the additional assumption that the process noise
fully excites the relevant modes of the system under K⋆ and K0. This may be guaranteed as follows.

Assumption 3 Let Φ̂ be the estimate for dynamics representation, and let α be a number satisfying

α ≥ 1

3∥P ⋆∥3/2
. We assume that λmin

(
Φ̂⊤

([
I
K

] [
I
K

]⊤
⊗ IdX

)
Φ̂

)
≥ α2 for K = K0,K

⋆.

The above assumption captures a setting where playing either the initial controller K0 or the
optimal controller K⋆ provides persistence of excitation without any exploratory input. This can be

seen by noting that the matrix Φ̂⊤

([
I
K

] [
I
K

]⊤
⊗ IdX

)
Φ̂ is a lower bound (in Loewner order) for

the covariance matrix formed by taking the expectation of Λ/t in Algorithm 2 when us = Kxs.
Under the above assumption, we may run Algorithm 1 without an additional exploratory input

injected. As in Section 3.1, we require that the representation error is small enough to guarantee the
closeness condition in Lemma 1 may be satisfied with our estimated model.

Assumption 4 Let ε be as in Lemma 1, K0 be a stabilizing controller, and α be a positive number
such that Assumption 3 holds. We assume our representation error satisfies d(Φ̂,Φ⋆) ≤

√
ε

2β2
,

where β2 ≜ Cbias,2
ε∥PK0∥

9
Ψ8

B⋆∥θ⋆∥2(dX+dU)

dθ min{α2,α4} and Cbias,2 is a sufficiently large universal constant .

This requirement again arises from dependence of the estimation error bounds on the misspecifica-
tion. See the definition of Eest,2 in Section 3.3. Under these assumptions, our regret bound may be
improved to that in the following theorem.

Theorem 3 Consider applying Algorithm 1 with initial stabilizing controller K0 for T = τ12
kfin

timeteps for some positive integers kfin, and τ1. Additionally suppose the exploration sequence is
zero for all time: σ2

k = 0 for k = 1, . . . , kfin. Suppose the state bound xb and the controller
bound Kb satisfy Assumption 1, and that Φ̂ satisfies Assumption 3 and Assumption 4. Let ε be as in
Lemma 1. There exists a positive universal constant Cwarmup such that if τ1 = τwarmup log T , for

τwarmup ≥ Cwarmupσ
4 ∥PK0∥

3Ψ2
B⋆ max

{
(dX + dU), x

2
b ,− log(

1− 1
2∥P⋆∥

) ∥P ⋆∥ , dθ/(2εα2)

}
,

then the expected regret satisfies

E[RT ] ≤ c1 log
2(T ) + c2d(Φ̂,Φ

⋆)2T,

where c1 = poly(dX, dU, dθ, ∥PK0∥ ,ΨB⋆ , ∥θ⋆∥ , σ, α−1, τwarmup,Kb, xb) and
c2 = poly(dX, dU, dθ, ∥PK0∥ ,ΨB⋆ , ∥θ⋆∥ , α−1).

7
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When the misspecification is zero, the expected regret grows with log2 T . Prior work (Cassel
et al., 2020; Jedra and Proutiere, 2022) has shown that such rates are possible if either A⋆ or B⋆

are known to the learner. See Lee et al. (2023) for details about how to obtain logarithmic regret in
these settings using Theorem 3. The above result expands on prior work by generalizing conditions
for prior knowledge that are sufficient to achieve logarithmic regret.

With misspecification present, the above theorem has a term growing linearly T . In contrast
to Theorem 2, the coefficient for this term is proportional to the level of misspecification squared,
which is smaller than the square root dependence in Theorem 2. This result shows that if some
coarse system knowledge depending on a few unknown parameters is available in advance and
the unknown parameters are easily identifiable in the sense of Assumption 3, then there exists a
substantial regime of T for which the regret incurred is much smaller than that attained by learning
to control the system from scratch with fully unknown A⋆ and B⋆ (where the regret scales as

√
T ).

3.3. Proof sketch
Our main result proceeds by first defining a success events for which the certainty equivalent control
scheme never aborts, and generates dynamics estimates

[
Âk B̂k

]
which are sufficiently close to

the true dynamics
[
A⋆ B⋆

]
at all times.The success events for Section 3.1 and Section 3.2 are

Esuccess,1 = Ebound ∩ Eest,1 and Esuccess,2 = Ebound ∩ Eest,2 respectively, where

Ebound =
{
∥xt∥2 ≤ x2b log T ∀t = 1, . . . , T

}
∩
{∥∥∥K̂k

∥∥∥ ≤ Kb ,∀k = 1, . . . , kfin

}
,

Eest,1 =
{∥∥[Âk B̂k

]
−
[
A⋆ B⋆

]∥∥2
F
≤ Cest,1

σ2
√
dθdU ∥PK0∥√

τk
log T + β1

√
d(Φ̂,Φ⋆)

}
,

Eest,2 =
{∥∥[Âk B̂k

]
−
[
A⋆ B⋆

]∥∥2
F
≤ Cest,2

σ2dθ
τkα2

log T + β2d(Φ̂,Φ
⋆)2
}
,

and Cest,1 and Cest,2 are positive universal constants.
We use the success events to decompose the expected regret as in Cassel et al. (2020): E[RT ] =

R1 +R2 +R3 − TJ (K⋆), where for Esuccess = Esuccess,1 or Esuccess = Esuccess,2,

R1 = E

[
1(Esuccess)

kfin∑
k=2

Jk

]
, R2 = E

[
1(Ecsuccess)

T∑
t=τ1+1

ct

]
, and R3 = E

[
τ1∑
t=1

ct

]
, (6)

are the costs due to success, failure, and the first epoch respectively. Here, Jk are the epoch costs
defined as Jk =

∑τk+1

t=τk
ct. In the settings of both Section 3.1 and Section 3.2, R3 is given by

τ1 tr
(
PK0(I + σ2

1B
⋆(B⋆)⊤)

)
, while R2 is controlled using the upper bounds on the state and con-

troller to obtain a bound on the cost, which is then multiplied by the small probability of the failure
event. To control R1, we show that under the success event, the closeness condition Lemma 1 is
satisfied. As a result, the cost of each epoch Jk is (τk − τk−1)J (K⋆) in addition to a term pro-
portional to (τk − τk−1)

(∥∥[Âk B̂k

]
−
[
A⋆ B⋆

]∥∥2
F
+ σ2

k

)
. Using the estimation error bounds of

events Eest,1 and Eest,2 along with the choices for σ2
k in the two settings, we find that the quan-

tity R1 − TJ (K⋆) is proportional to
√
T log T +

√
d(Φ̂,Φ⋆)T in the setting of Section 3.1, and

log2 T + d(Φ̂,Φ⋆)2T in the setting of Section 3.2. Combining terms provides the expected regret
bounds in Theorems 2 and 3.
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(a) Continual exploration
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(b) No exploration
Figure 2: We plot the regret of Algorithm 1 with Φ̂ describing a lumped parameter model (right), or

a lumped parameter model and extended such that the condition Assumption 3 is violated
(left). In both settings the representations are perturbed, resulting in a misspecification
between the true representation Φ⋆ and the representation estimate Φ̂. The regret is com-
pared to that incurred by running Algorithm 1 with a fully unknown A⋆ and B⋆.

4. Numerical Example
To validate the trends predicted by our bounds, we run Algorithm 1 on the system (1) where A⋆

and B⋆ are obtained by linearizing and discretizing the cartpole dynamics defined by the equations
(M +m)ẍ +mℓ(θ̈ cos(θ) − θ̇2 sin(θ)) = u, and m(ẍ cos(θ) + ℓθ̈ − g sin(θ)) = 0, for cart mass
M = 1, pole mass m = 1, pole length ℓ = 1, and gravitiy g = 1. Discretization uses Euler’s
approach with stepsize 0.25. The disturbance signal is generated as wt ∼ N (0, 0.01I).

We consider various inputs for the representation estimate Φ̂ and the exploration sequence
σ2
1, . . . , σ

2
kfin

. The remaining parameters are discussed in Lee et al. (2023).
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Figure 1: Regret of Algorithm 1 with var-
ious choices for Φ̂.

No Misspecification: In Figure 1, we plot the regret
of Algorithm 1 in the absence of misspecification, i.e.
d(Φ̂,Φ⋆) = 0. We consider several instances for the
representation: one for fully unknown A⋆ and B⋆, one
which encodes a setting where the A⋆ matrix is known
up to an unknown scaling, and one which captures a
lumped parameter model where the discretized and lin-
earized cartpole structure is known up to scale, but the
values of the entries which vary with cart mass, pole
mass, and pole length are unknown. We additionally
consider extending the lumped parameter representation by adding a basis vector that ensures the
condition in Assumption 3 is violated. For the representation capturing fully unknown A⋆ and B⋆,
and the extended lumped parameter representation, the condition in Assumption 3 is not satisfied, so
we run Algorithm 1 with exploration noise scaling as σ2

k ∝
1√
2k

, and incur
√
T regret, as predicted

by Theorem 2. The extended lumped parameter representation incurs regret at a slower rate than the
setting when the system is fully unknown. This is predicted by Theorem 2 due to the fact that the
extended lumped parameter model has dθ = 6 < 20 = dX(dX + dU), so the coefficient on the

√
T

term is smaller. For the remaining settings, Assumption 3 is satisfied, so we run the algorithm with
no additional exploration and incur logarithimic regret, as predicted in Theorem 3.
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Artificial Misspecification: In Figure 2, we compare the regret from the fully unknown setting to
the regret with a misspecified lumped parameter representation. Figure 2(a) considers the lumped
parameter representation that is extended such that Assumption 3 is violated. Therefore the learner
must continually inject noise to the system in order to explore. We artificially create misspecifica-
tion by adding small perturbations to the true representation such that d(Φ̂,Φ⋆) > 0. We see that in
the low data regime, the regret incurred is less than that incurred when the model is fully unknown.
When the misspecification level is 0.05, the bias in the identification due to the misspecification
causes the regret to rapidly overtake the regret from the fully unkown setting. When the misspec-
ification is small, the regret remains less than that from the fully unknown setting for the entire
horizon of T values that are plotted. Figure 2(b) considers the lumped parameter setting without
the extension, for which Assumption 3 is satisfied. As in Figure 2(a), we add a perturbation to the
representation to create misspecification. In this setting, we consider much larger perturbations,
such that d(Φ̂,Φ⋆) is 0.1, 0.15, or 0.20. For all three such situations, the regret begins much smaller
than that of the fully unknown model, but overtakes it as T becomes large.
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Figure 3: Regret of Alg. 1 with Φ̂ learned
offline from related systems.

Learned Representation: In Figure 3, we consider
a setting motivated by multi-task learning, in which a
representation is learned using offline data from sev-
eral systems related to the system of interest. In par-
ticular, we collect trajectories of length 1200 from five
discretized and linearized cartpole systems generated
with various values of the parameters (M,m, ℓ). The
resulting data is in turn used to fit a a representation
Φ̂.7 Once the representation is obtained, we run Al-
gorithm 1 in the absence of exploratory input. We see
that the regret incurred is much lower than the setting in which the dynamics are fully unknown
for the small data regime, but overtakes it as T becomes large. This aligns with the results from
the artificial misspecification experiment. By computing the distance between the learned and true
lumped parameter representations, we find that d(Φ̂,Φ⋆) = 0.2041.

5. Conclusion
We studied adaptive LQR in the presence of misspecification between the learner’s simple model
structure for the dynamics, and the true dynamics. Our proposed algorithm performs well in both
experiments and theory as long as this misspecification is sufficiently small. Our analysis shows
a phase shift in the problem that depends on whether the learner’s prior knowledge enables iden-
tification of the unknown parameters without additional exploration, thus allowing regret that is
logarithmic in T . There are many interesting avenues for future work, including extending the anal-
ysis to settings where a collection of nonlinear basis functions for the dynamics are misspecified,
e.g., by modifying the model studied in Kakade et al. (2020). Another direction is to analyze the set-
ting where the learner’s simple model is updated online by sharing data from a collection of related
systems, as in recent work on federated learning in dynamical systems (Wang et al., 2023).

7. See Lee et al. (2023) for details.
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