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Abstract
We introduce the use of harmonic analysis to decompose the state space of symmetric robotic sys-
tems into orthogonal isotypic subspaces. These are lower-dimensional spaces that capture distinct,
symmetric, and synergistic motions. For linear dynamics, we characterize how this decomposition
leads to a subdivision of the dynamics into independent linear systems on each subspace, a property
we term dynamics harmonic analysis (DHA). To exploit this property, we use Koopman operator
theory to propose an equivariant deep-learning architecture that leverages the properties of DHA
to learn a global linear model of the system dynamics. Our architecture, validated on synthetic
systems and the dynamics of locomotion of a quadrupedal robot, exhibits enhanced generalization,
sample efficiency, and interpretability, with fewer trainable parameters and computational costs.
Keywords: Symmetric dynamical systems, Harmonic analysis, Koopman operator, Robotics

1. Introduction

The current state-of-the-art in modelling, control, and estimation of robotic systems relies on the La-
grangian model of rigid-body dynamics, which represents the system’s state as a point in the space
of generalized (or minimal) coordinates. This approach has fostered the development of efficient
algorithms that leverage the system’s kinematic structure to enable recursive computations which
are ubiquitous in methods for simulation, estimation, planning, and control in robotics (Feather-
stone, 2007). However, because the model’s dynamics are nonlinear, these methods need to cope
with the challenges of nonlinear optimization, often through iterative local (or state-dependent) lin-
earizations (Mayne, 1966; Li and Todorov, 2004). This can limit control policies to local minima,
hinder the convergence of optimization methods, and bias the estimation of unobserved quantities.

The Koopman operator framework can potentially address these limitations by deriving glob-
ally linear models of robot dynamics, albeit in an infinite-dimensional function space (Brunton et al.,
2022; Kostic et al., 2023). These models can be easily used with various estimation and control the-
ory techniques (Mauroy et al., 2020) and can capture dynamic phenomena that impact the system’s
evolution but are challenging to model analytically (Asada, 2023). However, building a robust data-
driven model approximation in finite dimensions is a substantial machine-learning challenge. This
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Figure 1: (a) Diagram of the discrete symmetry group G := K4 of the mini-cheetah robot (see animation).
Each symmetry g ∈ G relates states that evolve identically under physics laws; see evolution of states related
by gs. This results in the decomposition of the set of states Ω into g-transformed copies of the quotient set
Ω/G, encompassing all unique system states. (b) Isotypic decomposition of the robot’s space of generalized
position coordinates Q into isotypic subspaces: Q := ⊕4

i=1Qi. Each subspace, Qi describes a space of
symmetry-constrained synergistic motions. Consequently, any position configuration q(ω) ∈ Q, can be
decomposed into projections within these subspaces: q(ω) := ⊕4

i=1q
(i)(ω) (see animation). (c) Joint-

space Kinetic energy distribution across isotypic subspaces for two gait/motion trajectories in the real world:
jumping and trotting (see animation). Both gaits primarily evolve within one or two lower-dimensional
isotypic subspaces, with less significant subspaces engaged temporarily during disturbances.

study highlights the value of leveraging the state symmetries inherent in a system’s dynamics as
a geometric prior, enhancing the approximation of the operator. This approach improves sample
efficiency, generalization, and interpretability while reducing the number of trainable parameters
and computational cost. Although our emphasis is on robotics, the proposed framework is broadly
applicable to any dynamical system with discrete symmetry groups.

In robotics, the symmetries we aim to exploit are known as morphological symmetries (Ordonez-
Apraez et al., 2023). These are discrete symmetry groups that capture the equivariance of the robot’s
dynamics, arising from the duplication of rigid bodies and kinematic chains (see fig. 1-a). Inspired
by the use of harmonic analysis of discrete symmetry groups in physics (Dresselhaus et al., 2007),
we present the first application of these principles in robotics. Specifically, we employ the isotypic
decomposition (thm. 1) to partition the state space of symmetric robotic systems into isotypic sub-
spaces (see fig. 1-b). This allows us to represent any system motion (e.g., different locomotion gaits
or manipulation movements) as a superposition of simpler, symmetric, synergistic motions1; each
evolving in a distinct isotypic subspace (see fig. 1-c). Moreover, we demonstrate that the isotypic
decomposition leads to partitioning any (local or global) linear model of the system’s dynamics
into independent linear subsystems, each characterizing the dynamics of an isotypic subspace. This
offers numerous computational advantages and enhances the interpretability of the dynamics.

Contributions In summary, our work relies on the following contributions: (i) we introduce the
use of harmonic analysis of discrete symmetry groups to robotics; (ii) we propose the concept of dy-
namics harmonic analysis (DHA), illustrating how local/global linear dynamics models decompose

1. These are the robotics analog of normal vibrational modes in molecular dynamics; see (Dresselhaus et al., 2007, 8.3)

2

https://github.com/Danfoa/MorphoSymm/blob/devel/docs/static/animations/mini_cheetah-Klein4-symmetries_anim_static.gif?utm_source=l4dc&utm_medium=l4dc&utm_campaign=l4dc
https://github.com/Danfoa/MorphoSymm/blob/devel/docs/static/dynamic_animations/mini-cheetah-dynamic_symmetries_forces.gif?utm_source=l4dc&utm_medium=l4dc&utm_campaign=l4dc
https://github.com/Danfoa/DynamicsHarmonicsAnalysis/blob/main/media/DynamicsHarmonicAnalysis_mini_cheetah_K4.md?utm_source=l4dc&utm_medium=l4dc&utm_campaign=l4dc
https://github.com/Danfoa/DynamicsHarmonicsAnalysis/blob/main/media/DynamicsHarmonicAnalysis_mini_cheetah_K4.md?utm_source=l4dc&utm_medium=l4dc&utm_campaign=l4dc
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into linear subsystems within isotypic subspaces (sec. 3); (iii) leveraging on DHA, we propose the
equivariant Dynamics Autoencoder (eDAE), a deep-learning architecture to approximate the Koop-
man operator (sec. 4), and report its strong performance on synthetic and robotics systems (sec. 5);
and (iv) we provide an open-access repository enabling the application of harmonic analysis to a
library of symmetric robots, the use of the eDAE architecture, and our experiments’ reproduction.

Related work For a data-driven approximation of Koopman operators Noé and Nuske (2013),
Lusch et al. (2018), and Kostic et al. (2023) introduce symmetry-agnostic deep learning algorithms,
which can be adapted to exploit DHA, as proposed in sec. 4. In the spirit of our work, Steyert
(2022) studies the operator’s structure for systems evolving on manifolds, i.e., featuring continuous
symmetry groups. For discrete symmetry groups, Salova et al. (2019) leverages the operator’s
block-diagonal structure after using harmonic analysis on a non-learnable dictionary of observable
functions to model Duffing oscillators. Lastly, Mesbahi et al. (2019); Sinha et al. (2020) provides a
theoretical analysis of the operator’s structure to model symmetric dynamical systems.

In robotics, the linear nature of Koopman operator models makes them compatible with standard
modelling, estimation, and control algorithms. This includes optimal and robust control (Korda
and Mezić, 2018; Folkestad and Burdick, 2021; Zhang et al., 2022), active learning (Abraham and
Murphey, 2019), and system identification and observer synthesis (Bruder et al., 2020; Surana,
2020). Yet, symmetries remain unexploited in these Koopman-based approaches.

2. Preliminaries

This section overviews background material on dynamical systems modelling, Koopman models,
and harmonic analysis needed to address the modelling of symmetric dynamical systems in sec. 3.

Modelling of dynamical systems In our analysis, distinguishing between a dynamical system and
its numerical model is crucial. A dynamical system abstracts evolving real-world phenomena, such
as a robot’s motion in an environment. Conversely, numerical models approximate the system’s
dynamics as the time evolution of points (representing the system’s state) in a vector space. A
dynamical system is typically denoted by a tuple (Ω,T,Φ∆t

Ω ), where Ω is the abstract set of system
states ω ∈ Ω, the set T represents time, and Φ∆t

Ω : Ω×T 7→ Ω is the evolution map, determining the
future state based on the present state and time. Given deterministic Newtonian mechanics governs
our target systems, we focus on deterministic, Markovian, discrete-time systems. Here, T = N0 and
Φ∆t

Ω depends solely on the time difference between consecutive timesteps ∆t, i.e., ωt+∆t := Φ∆t
Ω (ωt)

for any t ∈ T, ω ∈ Ω. Thus, we will denote a dynamical system by (Ω,Φ∆t
Ω ).

Defining a numerical model of a dynamical system involves identifying a state representation
vector-valued function x = [x1, . . . , xm] : Ω → X ⊆ Rm, where the components, xj : Ω →
R, j ∈ [1,m], are observable functions that measure a relevant scalar quantity from the state (e.g.,
kinetic energy, joint position/velocity). This enables the representation of the state as a point in the
model’s vector space x(ω) ∈ X . The system’s evolution, represented as a trajectory (x(ωt))t∈T,
can be approximated by an evolution map x(ω̃t+∆t) := Φ∆t

X (x(ωt)) + κ(ωt)Γt. Here, the predicted
state representation x(ω̃t+∆t) may differ from the true one x(ωt+∆t) due to modelling errors and/or
inaccessible observables. The influence of these factors is assumed to be captured by a mild white
noise stochastic perturbation Γt, scaled by κ(ωt) (Lasota and Mackey, 1994, chpt. 10.5). When
x : Ω → X is injective, the optimality of the model (X ,Φ∆t

X ), over a given prediction horizon
H ∈ T, is quantified by its predictive error (Mezić, 2021), i.e.,
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ORDOÑEZ-APRAEZ KOSTIC TURRISI NOVELLI MASTALLI SEMINI PONTIL

errH(x,Φ∆t
X ) =

∫
Ω

errω0,H(x,Φ∆t
X )dω0, given errω0,H(x,Φ∆t

X ) :=

H∑
h=1

||x(ω̃h∆t)− x(ωh∆t)||2. (1)

Note that while modelling error can be locally minimal for specific ω0 (r.h.s eq. (1)), optimal models
exhibit uniformly small errors across all states and horizons (l.h.s eq. (1)).

Linear models and the Koopman operator A linear model (Z,K∆t) is a dynamics model where
the temporal evolution of state representations is characterized by an autonomous linear system,
z(ω̃t+∆t) = Φ∆t

Z (z(ω)) := K∆tz(ω), ω ∈ Ω,∆t ∈ T. Here, z = [z1, . . . ] : Ω 7→ Z is the
state representation function, and K∆t : Z 7→ Z is a matrix evolving state representations in time
by ∆t. The linearity of these models ensures the existence of analytical solutions to the temporal
dynamics of each state observable and guarantees the interpretability of the predictions through
modal decomposition, making them fundamental to dynamical systems and control theory.

Although most dynamical systems of interest in robotics have been historically modeled with
nonlinear analytic dynamics, one can also devise an optimal linear model in an infinite-dimensional
space. This idea, originating from the seminal work of Koopman and Markov (Lasota and Mackey,
1994), proposes to represent the state as a point/function in a space of functions FZ , and model
the dynamics with a linear operator K∆t, defined by the flow Φ∆t

Ω and a time step ∆t ∈ T, which
takes any function z(·) ∈ FZ to z(Φ∆t

Ω (·,∆t)). Whenever the image of K∆t is in the same space,
K∆t : FZ 7→ FZ is a well-defined linear operator known as the Koopman operator, defined by

[K∆t z](ωt) := z(Φ∆t
Ω (ωt)), z ∈ FZ , ω ∈ Ω. (2)

The requirement for the space FZ to be invariant under the flow Φ∆t
Ω is the characteristic that often

renders it infinite-dimensional. As we discuss in sec. 4, machine learning can aid in finding finite-
dimensional approximations of FZ and K∆t (Lusch et al., 2018; Kostic et al., 2023).

Symmetry groups and their representations In the context of a dynamical systems, symmetries
are defined as bijections on the state set Ω. The action of a symmetry transformation g on any state
ω ∈ Ω is defined by a map ( ▷ ) : G × Ω → Ω to a symmetric state g ▷ ω ∈ Ω (see fig. 1-a). A set
of symmetry transformations forms a group G = {e, g1, g2, . . . }, that is closed under composition:
g1 ◦ g2 ∈ G for all g1, g2 ∈ G, and inversion: g−1 ∈ G | g ∈ G such that g−1 ◦ g = e, where e
denotes the identity transformation and (◦) is the binary composition operation on G.

As we study symmetries of numerical models in both finite-dimensional (Euclidean) spaces and
infinite-dimensional function spaces, we assume H to be a separable Hilbert space to accommodate
both scenarios. This enable us to rely on the conventional concepts of inner product, orthogonality,
and countably many basis elements (see appendix I.1). Consequently, symmetry transformations
on H are defined via a unitary group representation ρH : G → U(H), mapping each g ∈ G to a
unitary matrix/operator ρH(g) ∈ U(H) : H → H. Thus, the action of any g ∈ G on a point h ∈ H
is expressed as g ▷ h := ρH(g)h ∈ H. When ρH exists, we say that H is a symmetric space.

A map f : H 7→ H′ between two symmetric spaces is denoted G-equivariant if f(ρH(g)h) =
ρH′(g)f(h), and G-invariant if f(h) = f(ρH(g)h), for all g ∈ G. While the action of a symmetry
transformation on H is basis independent, the representation of g ∈ G depends on the chosen basis
of H. Therefore, applying a change of basis Q ∈ U(H) results in a new point representation h◦ =
Qh, and a new group representation ρH,◦(·) = QρH(·)Q∗. Here, both representations describe the
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same transformation: ρH(g)h ⇐⇒ ρH,◦(g)h◦. Consequently, representations related by a basis
change are termed equivalent, denoted ρH ∼ ρH,◦. Lastly, writing ρH ∼ ρH1

⊕ ρH2
implies that H

decomposes into orthogonal subspaces H1 and H2, and ρH has block-diagonal structure.

Isotypic decomposition and its basis Our use of harmonic analysis is linked with the decision to
work in a specific basis for the modelling space H, the isotypic basis. In this basis, the unitary group
representations ρH decomposes into a block-diagonal sum of multiple copies (multiplicities) of the
group’s k unique irreducible representations (irrep) {ρ̄i}ki=1. These are the indivisible building
blocks of any group representation of G. Each ρ̄i : G → U(H̄i), describes a unique symmetry
pattern, characterized by a subset of symmetry transformations within the broader group structure.
The space H̄i associated to each irrep is the smallest finite-dimensional space capable of expressing
the irrep symmetry pattern. For instance, our groups G are often subgroups of the orthogonal
group. Thus, we frequently work with irreps ρ̄tr that describe a reflection symmetry, requiring a
1-dimensional space H̄tr ∼ R to act on, or with irreps ρ̄2π/a that describe rotations by an angle
2π/a, requiring a 2-dimensional space H̄2π/a ∼ R2 ∼ C to act on. These representations are called
irreducible because the spaces H̄i have no non-trivial invariant subspace to the actions of G. That
is, if V is a subspace of H̄i and ρ̄i(g)V ⊂ V for every g ∈ G, then either V = {0} or V = H̄i.

The value of the isotypic basis lies in the fact that it allows decomposing the modelling space H
into an orthogonal sum of isotypic subspaces. Each subspace reflects a unique symmetry pattern of
one of the group’s irreps, hence the term iso-typic or same-type. This is a pivotal result in abstract
harmonic analysis, succinctly captured by the Peter-Weyl Theorem, see (Knapp, 1986, thm 1.12)
and (Golubitsky et al., 2012, Thm-2.5).

Theorem 1 (Isotypic Decomposition) Let G be a compact symmetry group and H a symmetric
separable Hilbert space with a unitary group representation ρH : G → U(H). Then we can identify
k ≤ |G| irreducible representations ρ̄i : G → U(H̄i) and change of basis Q ∈ U(H) such that
ρH ∼ ρH1

⊕ ρH2
⊕ · · · ⊕ ρHk

, and each ρHi
∼

⊕mi
j=1 ρ̄i is composed of at most mi countably many

copies of the irreducible representation ρ̄i. This allows to decompose H into orthogonal subspaces:
H = H1 ⊕⊥ H2 ⊕⊥ · · · ⊕⊥ Hk. Where each Hi :=

⊕mi
j=1Hi,j , composed of mi subspaces

isometrically isomorphic to H̄i, is denoted as an isotypic subspace.

3. Symmetries of dynamical systems

In the context of dynamical systems, a symmetry is a state transformation that results in another
functionally equivalent state under the governing dynamics. From a modelling perspective, sym-
metries provide a valuable geometric bias, as identifying the dynamics of a single state suffices to
capture the dynamics of all of its symmetric states (see fig. 1-a).

Definition 1 (Symmetric dynamical systems) A dynamical system (Ω,Φ∆t
Ω ) is G-symmetric, if G

is a symmetry group of the set of states Ω, and the system’s evolution map is G-equivariant, i.e.,

Φ∆t
Ω (g ▷ ω, t) = g ▷ Φ∆t

Ω (ω, t), ∀ g ∈ G, t ∈ T, ω ∈ Ω. (3)

The symmetry group of Ω defines an equivalence relationship between any state ω ∈ Ω and its set
of symmetric states, denoted Gω = {g ▷ ω|g ∈ G}. Given the G-equivariance of the dynamics
Φ∆t

Ω , this equivalence implies that a set of symmetric states Gω will evolve along a unique trajectory
of motion, up to a symmetry transformation g ∈ G (see fig. 1-a). When the symmetry group is
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discrete (or finite), the state set Ω decomposes into a union of symmetry-transformed copies of the
quotient set Ω/G, containing the system’s unique states, that is Ω = ∪g∈G{g ▷ Ω/G} (see fig. 1-a).

Modelling symmetric dynamical systems When designing a numerical model Φ∆t
X for a symmet-

ric dynamical system, it is crucial to ensure that the modelling space X inherits the group structure
of Ω. This can be achieved by making the space invariant under the action of G, i.e., x(g ▷ (·)) ∈ X
for all g ∈ G. Thus, enabling the existence of a group representation ρX : G → U(X ). The
significance of this design choice lies in the fact that the equivalence between symmetric states is
translated into the corresponding equivalence of their representations in the modelling space:

Gω := {g ▷ ω, ∀ g ∈ G} ⇐⇒ Gx(ω) := {g ▷ x(ω) := ρX (g)x(ω) = x(g ▷ ω), ∀ g ∈ G}, ∀ ω ∈ Ω
(4)

The symmetric structure of X allows its decomposition into g-transformed copies of a quotient
space X/G. This is a practical tool in data-driven applications, mitigating the effects of the curse
of dimensionality (Higgins et al., 2022). As the following result shows, it also narrows the search
space for the evolution map Φ∆t

X to the space of G-equivariant ones.

Proposition 2 (Optimal models of G-symmetric systems) Let Φ∆t
Ω be a G-symmetric dynamical

system and Φ∆t
X an optimal model (eq. (1)). If X is a G-symmetric space, Φ∆t

X is G-equivariant.

Proof Let Gω denote an arbitrary set of symmetric states and Gx(ω) represent their symmetric
representations on X . Consider a non G-equivariant evolution map, denoted as Φ̄∆t

X . Such map will
yield varying prediction errors for the states in Gω. Consequently, it is possible to identify the state
with the minimum prediction error, ĝ ▷ ω ∈ Gω, given ĝ = argming∈G errg▷ω,H(x, Φ̄∆t

X ), as per
eq. (1). Subsequently, we can construct a new map that replicates the predicted evolution of ĝ ▷ ω
for all symmetric states, defined as Φ∆t

X (x(g ▷ ω)) := (g ◦ ĝ−1) ▷ Φ̄∆t
X (x(ĝ ▷ ω)), ∀ g ∈ G. It

is important to note that errg▷ω,H(x,Φ∆t
X ) ≤ errg▷ω,H(x, Φ̄∆t

X ) holds for all g ∈ G. By iteratively
applying this process for all ω ∈ Ω/G, the resulting map will exhibit G-equivariance.

Consistent with def. 1, we denote models (X ,Φ∆t
X ) that possess a G-symmetric modelling state

space X and a G-equivariant evolution map as G-symmetric models. A familiar example is the
Lagrangian model of rigid-body dynamics. Since, for G-symmetric robotic systems (e.g., the mini-
cheetah in fig. 1), the modelling space X = Q× TqQ, defined by the space of generalized position
Q and velocity TqQ coordinates, is a symmetric vector space (Ordonez-Apraez et al., 2023, III).
The symmetry of the space is characterized by the group representation ρX := ρQ ⊕ ρTqQ, which
describes the transformations shown in fig. 1-a. Furthermore, the evolution map Φ∆t

X , defined by the
standard Euler-Lagrange equations of motion, features G-equivariance (Lanczos, 2012, VII.2).

A key property of (non-linear or linear) G-symmetric models is the decomposition of the mod-
elling state space into k isotypic subspaces X = ⊕k

i=1Xi (refer to thm. 1). This enables the pro-
jection of entire motion trajectories (x(ωt))t∈T onto each isotypic subspace x(ωt) := x(1)(ωt)⊕⊥

· · ·⊕⊥x(k)(ωt). Since each Xi is a lower-dimensional space with a reduced number of symmetries,
the trajectory’s decomposition entails its characterization as a superposition of distinct synergistic
motions (x(i)(ωt))t∈T | x(i)(ωt) ∈ Xi, each constrained to feature the subset of symmetries of Xi

(see fig. 1-b). This understanding is instrumental in characterizing different system behaviors, such
as different locomotion gaits or manipulation tasks, through their lower-dimensional projections
onto each isotypic subspace, as detailed in fig. 1-c.

For G-symmetric linear dynamics models (Z,K∆t), the isotypic decomposition (thm. 1) of
Z = ⊕k

i=1Zi = ⊕k
i=1⊕mi

j=1Zi,j and the associated group representation ρZ = ⊕k
i=1ρZi

=

6
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⊕k
i=1⊕mi

j=1ρ̄i imply the dynamics’ decomposition into k linear subsystems K∆t = ⊕k
i=1K∆t,i.

Each subsystem is G-equivariant, ρZi
(g)K∆t,i = K∆t,iρZi

(g), ∀ g ∈ G, and evolves the state
projections into isotypic subspaces independently. Moreover, each subsystem is block-decomposed
into scalar multiples of the identity map Ii : R|ρ̄i| 7→ R|ρ̄i|, such that

K∆t =

ñ
K∆t,1

. . .
K∆t,k

ô
, K∆t,i =

ï
c1,1Ii ... c1,diIi
··· ··· ···

cdi,1Ii ... cdi,diIi

ò
, ci,j ∈ R, di := |Zi|/|ρ̄i|,∀ i ∈ [1, k] (5)

The block-diagonal structure of K∆t, and the block-structure of each K∆t,i are geometric con-
straints that originate from Schur’s Lemma (lemma 1), a standard result in harmonic analysis. These
properties, essentially stated in Golubitsky et al. (2012, Thm 3.5) for finite-dimensional spaces, can
be generalized to Hilbert spaces, leading to the following result:

Theorem 3 (Isotypic decomposition of symmetric linear models)
Let (Z,K∆t) be a G-symmetric linear model, G be a finite group, and Z = ⊕k

i=1Zi be the space
isotypic decomposition. Then K∆t is block-diagonal K∆t = ⊕k

i=1K∆t,i, where each K∆t,i : Zi 7→ Zi

is a G-equivariant linear map characterizing the independent dynamics of each isotypic subspace.

This result has two primary applications in robot dynamics modelling. The first involves decompos-
ing local linear models resulting from local (or state-dependent) linearizations of nonlinear dynam-
ical models. These are widely used in the iLQR (Li and Todorov, 2004) and DDP (Mayne, 1966)
algorithms, which are instrumental for trajectory optimization (Tassa et al., 2014; Mastalli et al.,
2020), and state estimation (Alessandri et al., 2003; Kobilarov et al., 2015; Martinez et al., 2024).
For these methods, the model decomposition facilitates the parallel optimization of the k local linear
sub-models, presenting a promising direction for future research. The second application pertains
to the approximation of G-symmetric Koopman models, which we discuss next.

Dynamic harmonic analysis For a G-symmetric dynamical system Φ∆t
Ω , an injective state repre-

sentation x : Ω 7→ Z , and G-symmetric modelling space Z , the Koopman operator K∆t (eq. (2))
is G-equivariant and globally optimal by construction. Hence, by thm. 3, it decomposes into k
Koopman operators characterizing the dynamics of each isotypic subspace. Furthermore, for each
eigenpair (λ, ψ) of K∆t and every g ∈ G, the symmetric function ψg := ψ(g ▷ (·)) : Ω 7→ C is also
an eigenfunction of K∆t in the same eigenspace,

λψg(ω) = λψ(g ▷ ω) = [K∆t ψ](g ▷ ω) = ψ(Φ∆t
Ω (g ▷ ω)) = ψ(g ▷ Φ∆t

Ω (ω)) = [K∆t ψg](ω), (6)

implying that the Koopman eigenspaces are G-symmetric spaces. Thus, applying the isotypic de-
composition to each eigenspace (thm. 1) captures the relation of the temporal evolution of eigen-
functions with distinct symmetries (encoded by the irreps) via Koopman eigenvalues. This global
decomposition of the dynamics in isotypic subspaces and its symmetry-aware spectral decomposi-
tion is referred to as dynamics harmonic analysis (DHA). As we show in secs. 4 and 5, DHA can be
leveraged to learn data-driven approximations of the G-equivariant Koopman operator.

4. G-symmetric data-driven Koopman models

The Koopman operator formalism, while practically unfeasible, has inspired numerous data-driven
models aiming to approximate the infinite-dimensional operator in finite-dimensions (Brunton et al.,
2022). This process relies on a dataset of observations of state trajectories D = {(x(ωt))

H
t=0, . . . }
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on a modelling space X ⊆ Rm. Where x = [x1, ..., xm] : Ω 7→ X is a state representation
composed of physical observable functions xi : Ω 7→ R that are measured or estimated from the
state (e.g., position, momentum, energy). Then, the objective is to find a (latent) state representation
vector-valued function z = [z1, ..., zℓ] : Ω → ‹Z ⊆ Rℓ, that spans a finite-dimensional space of
functions F‹Z := {zα(·) :=

∑ℓ
i=1 αizi(·) = ⟨z(·),α⟩, | α ∈ Rℓ} (see appendix I.1), on which

the Koopman operator K∆t is approximated by a matrix K∗
∆t ∈ Cℓ×ℓ, given by (K∆tzα)(·) ≈

zK∗
∆tα

(·) := ⟨z(·),K∗
∆tα⟩ = ⟨K∆tz(·),α⟩ (Kostic et al., 2022). Where F‹Z represent the finite-

dimensional approximation of the space of functions FZ on which K∆t is defined (see eq. (2)), and
α = [α1, . . . ] ∈ Rℓ is the coefficient vector representation of zα in a basis of F‹Z .

Among different approaches to building Koopman data-driven models, we focus on the Dynam-
ics Auto-Encoder (DAE) architecture (Lusch et al., 2018). This model parameterizes the matrix
approximating the Koopman operator K∗

∆t as a trainable linear map, and the (latent) state represen-
tation z(·) := (fϕ ◦ x)(·) : Ω 7→ ‹Z with an encoder neural network fϕ. A decoder f−1

ϕ : ‹Z 7→ X
is also defined to reconstruct states in the physical observable space. The cost function for DAE is
composed of a reconstruction loss (encouraging injectivity of z) and a state prediction error in both
physical observable X and latent ‹Z spaces (encouraging the minimization of the modelling error):

L(ωt, H) =
∑H

h=0 ||x(ωt+h∆t)− f−1

ϕ (Kh
∆tz(ωt))||2︸ ︷︷ ︸

Reconstruction and errωt,H(x,Φ∆t
X )

+ γ||z(ωt+h∆t)−Kh
∆tz(ωt)||2︸ ︷︷ ︸

errωt,H(z,K∆t)

Where γ balances the modelling errors in ‹Z and X , and the prediction horizon is assumedH ≪ |D|.

The Equivariant DAE (eDAE) When modelling G-symmetric dynamical systems (def. 1), the
DAE architecture can be adapted to leverage the symmetry priors. First, to exploit the theoretical
isotypic decomposition of the space of observable functions FZ (prop. 2 and thm. 1), we must
ensure that F‹Z is a G-symmetric function space, such that it can be decomposed in isotypic sub-
spaces F‹Z := ⊕k

i=1 F‹Zi
. This can be achieved by restricting the state representation z : Ω → ‹Z

to be a G-equivariant map, such that both ‹Z and F‹Z are G-symmetric spaces (see appendix I.1.2).
In practice, this is done by constraining the encoder to be a G-equivariant neural network, such that:

g ▷ z(ωt) = ρ‹Z(g)(fϕ ◦ x)(ω) = fϕ(ρX (g)x(ω)) = fϕ(x(g ▷ ω)) = z(g ▷ ωt), ∀ g ∈ G, ω ∈ Ω. (7)

Where the group representation in the physical observable space ρX is assumed to be known from
prior knowledge, and the latent group representation ρ‹Z is defined to be equivalent to the direct sum
of ℓ/|G| copies of the group regular representation, following (Knapp, 1986, thm. 1.12).

Then, to exploit the theoretical G-equivariance of K∆t (prop. 2 and thm. 3), we parameterize
K∆t as a G-equivariant matrix, ρ‹Z(g)K∆t = K∆tρ‹Z(g), ∀ g ∈ G. Furthermore, if the latent
group representation is defined on the isotypic basis ρ‹Z = ⊕k

i=1ρ‹Zi
= ⊕k

i=1⊕mi
j=1ρ̄i (see thm. 1),

then the matrix K∆t decomposes in block-diagonal form K∆t = ⊕k
i=1K∆t,i, where each K∆t,i

is a G-equivariant matrix characterizing the dynamics on the isotypic subspace ‹Zi. This constraint
on the learnable parameters of K∆t is relevant geometric prior as it (i) ensures the learned latent
dynamics model is G-symmetric, (ii) exploits the orthogonality between distinct isotypic subspaces
(eliminating spurious correlations between dimensions of ‹Z), and (iii) constraints the minimum
dimension of the eigenspaces of each isotypic subspace operator K∆t,i to match the dimension of
the subspace irreducible representation dimension |ρ̄i| (eq. (5)). This ensures that eigenfunctions of
each isotypic subspace FZi are appropiatedly approximated in groups of symmetric functions by
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Figure 2: Test set prediction mean square error (MSE) of learned Koopman models (DAE and
eDAE) for synthetic systems with symmetry groups C5 and C10, varying state dimension |X |, latent
model space dimension |Z|, and noise variance σ. Solid lines and shaded areas represent the mean,
maximum, and minimum prediction error among 4 training seeds. (a) MSE vs. training samples.
(b) MSE over varying state dimensions. (c) MSE over varying dimensionality of the latent model
space. (d) MSE over varying noise variance σ.

their coefficient eigenvectors representations Gv(i) = {g ▷ v(i) | K∆t,iv
(i) = λ(i)v(i), v(i) ∈ ‹Zi},

with temporal dynamics governed by an eigenvalue λ(i); refer to appendix I.1.2.

5. Experiments and results

We conduct two experiments comparing equivariant and non-equivariant Koopman models using
DAE and eDAE architectures. We set γ =

√
|X |/|Z| in all experiments to balance the error across

dimensions of X and Z . Lastly, to test modelling error and generalization, we use testing datasets
with trajectories uniformly sampled across all state space quotient sets Ω/G (see fig. 1-a).

Synthetic symmetric dynamical systems with finite state symmetry groups This experiment
models synthetic nonlinear G-symmetric systems with arbitrary groups G. The systems are con-
strained stable linear systems with stochastic perturbations x(ωt+∆t) = A∆tx(ωt)+ϵt, ,Cωt ≥ c,
where x(ω) ∈ X ⊆ Rm is the system state’s numerical representation, A∆t ∈ Rm×m the lin-
ear dynamics matrix, ϵ ∈ Rm a white-noise stochastic process with standard deviation σ, and
C ∈ Rnc×m, c ∈ Rnc the parameters of nc inequality hyper-plane constraints. These systems are
G-symmetric if A∆t is G-equivariant ρX (g)A∆t = A∆tρX (g), ∀ g ∈ G and any constraint is also
enforced for all symmetric states Ck,: g ▷ x(ω) ≥ ck, ∀ k ∈ [1, nc], g ∈ G.

These synthetic systems let us assess symmetry exploitation in learning Koopman models for
arbitrary groups G, system’s dimensionality |X |, latent state dimensionality |Z|, and noise standard
deviation σ. The results show that the eDAE architecture provides superior models with better
sample efficiency and generalization (fig. 2-a), reduced sensitivity to the dimensionality of X (fig. 2-
b) and Z (fig. 2-c), and improved noise robustness (fig. 2-d).

Modelling quadruped closed-loop dynamics In this experiment, we investigate using a Koop-
man model for robot dynamics while quantifying the impact of symmetry exploitation. The focus is
on modelling the closed-loop dynamics of the mini-cheetah quadruped robot’s locomotion on mildly
uneven terrain. The training data comprises a few motion trajectories executed by a G-equivariant
model predictive controller that tracks a desired target base velocity with a fixed trotting periodic
gait (Amatucci et al., 2022). As a result, the closed-loop dynamics are G-equivariant (Ordonez-
Apraez et al., 2023, eq. (3-4)) and stable, with a limit-cycle trajectory describing the gait cycle and
transient dynamics governed by the controller’s correction for tracking errors. The state of the sys-
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Figure 3: The test prediction mean square error (MSE) of Koopman models (DAE, DAEaug, eDAE)
modelling the closed-loop dynamics of locomotion of the mini-cheetah robot. We compare models
exploiting the system’s full symmetry group G = K4 × C2 and the subgroup G = K4. Solid lines
and shaded areas show the mean, max, and min prediction error among 4 training seeds. (a) MSE vs.
training samples. (b) MSE vs. prediction horizon. (c) MSE for varying latent space dimensionality
|Z|. (d) MSE of measurable state observables in original units.

tem is numerically represented as x(ωt) = [qjs,t, q̇js,t, zt,ot,verr,t,werr,t] ∈ Ω ⊆ R37, composed
of the joint-space generalized position qjs ∈ Qjs ⊆ R12, and velocity q̇js ∈ TqQjs ⊆ R12 coordi-
nates, base height zt ∈ R1, base orientation quaternion o ∈ R4, and the error in the desired linear
and angular base velocities verr,t ∈ R3 and werr,t ∈ R3, respectively.

The symmetry group of the robot is G = K4×C2, of order 8 (see symmetric states). This group
implies the decomposition of the system’s state set into 8 copies of the quotient set of unique states
Ω /G (sec. 3), and the isotypic decomposition of the physical modelling space X and the space
of observable functions FZ into at most 8 isotypic subspaces (thms. 1 and 3). Therefore, for this
dynamical system exploiting the symmetry prior is crucial to mitigate the curse of dimensionality
(Higgins et al., 2022) and biases of the training dataset (which is collected from trajectories originat-
ing from one of the 8 quotient sets; see animation). The results demonstrate superior performance
of the G-equivariant Koopman models (eDAE) over the models trained with data-augmentation
DAEaug, and without symmetry exploitation (DAE) in terms of sample-efficiency (fig. 3-a), fore-
casting error (fig. 3-b-d), and robustness to hyper-parameters variation (fig. 3-c). Furthermore, mod-
els exploiting the entire symmetry group K4×C2 consistently outperform those exploiting only the
subgroup K4. The G-symmetric eDAE models excel due to their ability to capture both transient
and stable locomotion dynamics from an initial configuration ω0, and to generalize to symmetric
states Gω0, potentially unseen during training; refer to fig. 1-a and animation. Moreover, by utiliz-
ing DHA, these models can decompose the learned latent linear dynamics into the linear dynamics
of each isotypic subspace, thereby accurately capturing the distinct roles (and relevance) of isotypic
subspaces in locomotion dynamics (see fig. 1-b,c).

6. Conclusions

We introduced the use of harmonic analysis for decomposing and understanding the dynamics of
symmetric robotic systems. By partitioning the state space into isotypic subspaces, we have shown
how complex motions can be characterized as the superposition of lower-dimensional, symmetric
and synergistic motions. This entails the decomposition of (local and global) linear models of the
system’s dynamics into independent models for each subspace. Leveraging this, we learn a data-
driven global linear model using a novel equivariant deep-learning architecture to approximate the
Koopman operator. The method’s practical validity is evidenced by presenting the first successful
attempt to learn a liner model of the closed-loop dynamics of a quadruped robot’s locomotion.
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