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Abstract
The theory of covariance control and covariance steering (CS) deals with controlling the dispersion
of trajectories of a dynamical system, under the implicit assumption that accurate prior knowledge
of the system being controlled is available. In this work, we consider the problem of steering the
distribution of a discrete-time, linear system subject to exogenous disturbances under an unknown
dynamics model. Leveraging concepts from behavioral systems theory, the trajectories of this
unknown, noisy system may be (approximately) represented using system data collected through
experimentation. Using this fact, we formulate a direct data-driven covariance control problem
using input-state data. We then propose a maximum likelihood uncertainty quantification method
to estimate and bound the noise realizations in the data collection process. Lastly, we utilize robust
convex optimization techniques to solve the resulting norm-bounded uncertain convex program.
We illustrate the proposed end-to-end data-driven CS algorithm on a double integrator example
and showcase the efficacy and accuracy of the proposed method compared to that of model-based
methods.
Keywords: Data-driven control, distributional control, uncertainty quantification, system identifi-
cation, robust convex optimization.

1. Introduction
Controlling the uncertainty is paramount for the development of safe and reliable systems. Orig-
inating from the pioneering contributions of Hotz and Skelton (1987), the theory of covariance
control addresses the problem of asymptotically steering the distribution of a linear dynamical sys-
tem from an initial to a terminal distribution when the system dynamics are corrupted by additive
disturbances. When the time horizon is finite, the covariance control problem is often referred to
as covariance steering (CS). This domain has evolved substantially in recent years, expanding to
encompass more pragmatic scenarios. These extensions include incorporating probabilistic con-
straints on the state and the input (Pilipovsky and Tsiotras, 2021; Bakolas, 2016), the ability to
steer more complex distributions (Sivaramakrishnan et al., 2022), and adaptations for receding hori-
zon implementations (Saravanos et al., 2022) among many others. Covariance steering has also
been successfully applied to diverse contexts such as urban air mobility (Rapakoulias and Tsiotras,
2023), vehicle path planning (Okamoto and Tsiotras, 2019), high-performance, aggressive driving
(Knaup et al., 2023), spacecraft rendezvous (Renganathan et al., 2023), and interplanetary trajectory
optimization (Ridderhof et al., 2020).

A common underlying assumption in all the previous methods is the availability of a model
of the system dynamics, typically derived from physical first principles. Acquiring such a model
often involves either direct data acquisition or a synthesis of empirical data with first principles, a
process broadly categorized under system identification. These approaches, while effective, present
some notable challenges. First principles modeling demands extensive domain-specific knowledge
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and effort to accurately represent the system. System identification offers a balance between ac-
curacy and complexity but introduces complications in subsequent control design phases, such as
determining the optimal model for control law synthesis. This indirect data-driven control approach
leads to a complex bi-level optimization problem, involving both model identification and control
design, which is generally inseparable (Markovsky et al., 2023). Consequently, research efforts have
been devoted to the investigation of alternative strategies such as dual control (Feldbaum, 1963) and
combined identification for control (Gevers, 2005).

Our work deviates from these traditional methodologies by delving into direct data-driven con-
trol design. The proposed approach bypasses the necessity for a parametric system model, instead
deriving feedback control laws directly from empirical data. By applying principles from behavioral
systems theory, namely Willems’ Fundamental Lemma (Willems et al., 2004) we can effectively
characterize the trajectories of a Linear Time-Invariant (LTI) system using the Hankel matrix of the
input/state data (Markovsky and Dörfler, 2021; Willems et al., 2004). In cases when measurements
are accurate, and in the absence of noise, this procedure exactly characterizes the system behav-
ior, laying the groundwork for control design based on this data-driven paradigm. This method
has demonstrated its effectiveness, e.g., in solving the Linear Quadratic Regulator (LQR) problem
(De Persis and Tesi, 2020; Rotulo et al., 2020) without knowledge of the system matrices. It has
been further adapted to situations with noisy data via regularization strategies (Dörfler et al., 2022,
2023). These developments successfully bridge the gap between certainty-equivalence (CE) and
robust control paradigms. Additionally, recent advancements (Bisoffi et al., 2022; Pilipovsky and
Tsiotras, 2023a) have extended this data-driven method to the design of feedback controllers that are
robust to various forms of bounded disturbances and to uncertainties in the initial state distribution.

This paper introduces a novel approach to data-driven covariance control design in systems sub-
jected to additive, potentially unbounded, Gaussian disturbances. Given that the collected data is
influenced by noise, the resulting optimization program incorporates the unknown noise realiza-
tion from the input/output dataset. We tackle this problem by first estimating the noise realization
sequence and the underlying noise covariance matrix using maximum likelihood methods, while
also establishing norm bounds for the estimation error. We then employ the concept of the robust
counterpart of an uncertain convex program to enhance the tractability of the resulting convex opti-
mization program. We illustrate the proposed framework on a double integrator system and compare
the performance and robustness of the data-driven controller with that of a model-based controller.

2. Problem Statement

2.1. Notation

Real-valued vectors are denoted by lowercase letters, u ∈ Rm, matrices are denoted by upper-
case letters, V ∈ Rn×m, and random vectors are denoted by boldface letters, w ∈ Rp. χ2

p,q denotes
the inverse cumulative distribution function (CDF) of the chi-square distribution with p degrees of
freedom and quantile q. The Kronocker product is denoted as ⊗ and the vectorization of a matrix
A is denoted as vec(A) = [a⊺1, . . . , a

⊺
M ]⊺, where ai is the ith column of A. Given two matrices A

and B having the same number of columns, the matrix [A;B] denotes the stacking of the two ma-
trices columnwise. The set N[a,b] with a < b, denotes the set of natural numbers between a, b ∈ N.
We denote the two-norm by ∥ · ∥ and the matrix Frobenius norm by ∥ · ∥F. Lastly, we denote a
discrete-time signal z0, z1, . . . , zT−1 by {zk}T−1

k=0 .
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2.2. Data-Driven Covariance Steering

We consider the following discrete-time, stochastic, time-invariant system

xk+1 = Axk +Buk +Dwk, k ∈ N[0,N−1], (1)

where x ∈ Rn,u ∈ Rm, and w ∼ N (0, Id) for all k = 0, 1, . . . , N − 1, where N represents the
time horizon. We assume the noise is i.i.d. at each time step and is uncorrelated with the initial state,
that is, E[wkw

⊺
j ] = E[x0w

⊺
k] = 0, for all j ̸= k. The system matrices A,B,D are assumed to be

constant, but unknown. The initial uncertainty in the system resides in the initial state x0, which is
a random n-dimensional vector drawn from the normal distribution

x0 ∼ N (µi,Σi), (2)

where µi ∈ Rn is the initial state mean and Σi ∈ Rn×n ≻ 0 is the initial state covariance. The
objective is to steer the trajectories of (1) from the initial distribution (2) to the terminal distribution

xN = xf ∼ N (µf ,Σf ), (3)

where µf and Σf ∈ Rn×n ≻ 0 are the desired state mean and covariance at time N , respectively.
Without loss of generality, we may assume that µf = 0. The cost function to be minimized is

J(u0, . . . , uN−1) := E
[N−1∑

k=0

x⊺
kQkxk + u⊺

kRkuk

]
, (4)

where Qk ⪰ 0 and Rk ≻ 0 for all k = 0, . . . , N − 1. Let D := {x(d)k , u
(d)
k , x

(d)
T }T−1

k=0 be a dataset
collected from the system with an experiment over the time horizon T . In general, N ̸= T .

Problem 1 (Data-Driven CS Controller Design) Given the unknown linear system (1), find the
optimal control sequence {uk}N−1

k=0 that minimizes the objective function (4), subject to the initial
(2) and terminal (3) state distributions using the dataset D.

2.3. Problem Reformulation

Borrowing from the work of Liu et al. (2023), we adopt the control policy

uk = Kk(xk − µk) + vk, (5)

where Kk ∈ Rm×n is the feedback gain that controls the covariance of the state and vk ∈ Rm is
the feed-forward term that controls the mean of the state. Under the control law (5), it is possible
to re-write Problem 1 as a convex program, which can be solved to optimality using off-the-shelf
solvers (Löfberg, 2004). With no constraints present, the state distribution remains Gaussian at all
time steps, completely characterized by its first two moments. Consequently, we may decompose
the system dynamics (1) into the mean dynamics and covariance dynamics. Substituting the control
law (5) into the dynamics (1) yields the decoupled mean and covariance dynamics

µk+1 = Aµk +Bvk, (6a)
Σk+1 = (A+BKk)Σk(A+BKk)

⊺ +DD⊺. (6b)
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In the sequel, and similar to the recent work by Rapakoulias and Tsiotras (2023), we treat the
moments of the intermediate states {Σk, µk}Nk=0 over the steering horizon as decision variables in
the resulting optimization problem.

Similar to the dynamics in (6), the cost function can be decoupled as J = Jµ(µk, vk) +
JΣ(Σk,Kk), where

Jµ :=
N−1∑
k=0

(
µ⊺
kQkµk + v⊺kRkvk

)
, (7a)

JΣ :=
N−1∑
k=0

(
tr(QkΣk) + tr(RkKkΣkK

⊺
k )
)
. (7b)

Lastly, the boundary conditions take the form

µ0 = µi, µN = µf , (8a)
Σ0 = Σi, ΣN = Σf , (8b)

where Σi,Σf ≻ 0. Problem 1 is now recast as the following two sub-problems.

Problem 2 (Data-Driven Mean Steering (DD-MS)) Given the mean dynamics (6a), find the op-
timal mean trajectory {µk}Nk=0 and feed-forward control {vk}N−1

k=0 that minimize the mean cost (7a)
subject to the boundary conditions (8a) using the dataset D.

Problem 3 (Data-Driven Covariance Steering (DD-CS)) Given the covariance dynamics (6b),
find the optimal covariance trajectory {Σk}Nk=0 and feedback gains {Kk}N−1

k=0 that minimize the
covariance cost (7b) subject to the boundary conditions (8b) using the dataset D.

Note that both the mean and covariance steering problems rely on the system matrices A and
B through the system dynamics (6). Thus, the two problems stated above, are not yet amenable
to a data-driven solution. In the following section, we review the main concepts from behavioral
systems theory that will allow us to parametrize the decision variables in Problems 2 and 3 in terms
of the dataset D.

3. Data-Driven Parameterization

We use the concept of persistence of excitation, along with Willems’ Fundamental Lemma (Willems
et al., 2004) to parameterize the decision variables of the control policy. First, recall the following
definitions from De Persis and Tesi (2020).

Definition 1 Given a signal {zk}T−1
k=0 where z ∈ Rσ, its Hankel matrix is given by

Zi,ℓ,j :=


zi zi+1 . . . zi+j−1

zi+1 zi+2 . . . zi+j
...

...
. . .

...
zi+ℓ−1 zi+ℓ . . . zi+ℓ+j−2

 ∈ Rσℓ×j , (9)

where i ∈ N0 and ℓ, j ∈ N. For shorthand of notation, if ℓ = 1, we will denote the Hankel matrix
by

Zi,1,j ≡ Zi,j := [zi zi+1 . . . zi+j−1]. (10)
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Definition 2 The signal {zk}T−1
k=0 : [0, T − 1] ∩ Z → Rσ is persistently exciting of order ℓ if the

matrix Z0,ℓ,T−ℓ+1 has rank σℓ.

Given the dataset D, let the corresponding Hankel matrices for the input sequence, state se-
quence, and shifted state sequence (with ℓ = 1) be U0,T := [u

(d)
0 u

(d)
1 . . . u

(d)
T−1], X0,T :=

[x
(d)
0 x

(d)
1 . . . x

(d)
T−1], and X1,T := [x

(d)
1 x

(d)
2 . . . x

(d)
T ]. The next result characterizes the rank of the

stacked Hankel matrices of the input and output data, and is central to our approach to formulate a
tractable data-driven covariance steering problem.

Assumption 1 We assume that the data is persistently exciting, i.e., the Hankel matrix of input/state
data is full row rank

rank

[
U0,T

X0,T

]
= n+m. (11)

Remark 1 In this work, the full rank condition in (11) is an assumption, rather than a derived
condition based on notions of persistency of excitation. Indeed, when the system is purely determin-
istic, (11) holds if and only if the input {uk}T−1

k=0 is persistently exciting of order n+1, a result now
called the fundamental Lemma Willems et al. (2004). However, in the present case, it can be shown
that if in addition the disturbance realization W0,T ≜ [w

(d)
0 , . . . ,w

(d)
T−1] is persistently exciting of

order n+ 1, then Assumption 1 holds Bisoffi et al. (2022).

Assumption 1 implies that any arbitrary input-state sequence can be expressed as a linear com-
bination of the collected input-state data. Furthermore, as shown in the next section, this idea has
been used by De Persis and Tesi (2020) to parameterize arbitrary feedback interconnections as well.
In the following section, based on the work of Rotulo et al. (2020), we parameterize the feedback
gains in terms of the input-state data and reformulate Problem 3 as a semi-definite program (SDP).

3.1. Direct Data-Driven Covariance Steering

Assuming the signal {uk}T−1
k=0 is persistently exciting of order n+1, we can express the feedback

gains as follows [
Kk

In

]
=

[
U0,T

X0,T

]
Gk, k = 0, . . . , N − 1, (12)

where Gk ∈ RT×n are newly defined decision variables that provide the link between the feedback
gains and the input-state data.

Theorem 1 Using the data-driven parameterization of the feedback gains (12), Problem 3 may be
relaxed as the convex program

min
Σk,SkYk

J̄Σ =

N−1∑
k=0

(
tr(QkΣk) + tr(RkU0,TYkU

⊺
0,T )

)
, (13a)

such that, for all k = 0, . . . , N − 1,

C
(1)
k :=

[
Σk S⊺

k
Sk Yk

]
⪰ 0, (13b)

C
(2)
k :=

[
Σk+1 − Σξ (X1,T − Ξ0,T )Sk

S⊺
k(X1,T − Ξ0,T )

⊺ Σk

]
⪰ 0, (13c)

G
(1)
k := Σk −X0,TSk = 0, , G

(2)
k := ΣN − Σf = 0, (13d)
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where Ξ0,T := [ξ0, . . . , ξT−1] ∈ Rn×T is the Hankel matrix of the (unknown) disturbances, and
ξk ∼ N (0,Σξ), where Σξ := DD⊺ for all k = 0, . . . , T − 1.

Proof Please see Appendix A (Pilipovsky and Tsiotras, 2023b).

3.2. Indirect Data-Driven Mean Steering
Given the mean dynamics (6a) in terms of the open-loop control vk, Assumption 1 can also be used
to provide a system identification type-of-result using the following theorem.

Theorem 2 Suppose the signal u(d)k is persistently exciting of order n + 1. Then, system (6a) has
the following equivalent representation

µk+1 = (X1,T − Ξ0,T )

[
U0,T

X0,T

]† [
vk
µk

]
. (14)

Proof See De Persis and Tesi (2020) for details.

Using Theorem 2, we can express Problem 2 as the following convex problem

min
µk,vk

Jµ =
N−1∑
k=0

(µ⊺
kQkµk + v⊺kRkvk), (15a)

such that, for all k = 0, . . . , N − 1,

Fµ(Ξ0,T )µk + Fv(Ξ0,T )vk − µk+1 = 0, µN − µf = 0, (15b)

where Fµ ∈ Rn×n and Fv ∈ Rn×m result from the partition of

F := (X1,T − Ξ0,T )

[
U0,T

X0,T

]†
=

[
Fv(Ξ0,T ) Fµ(Ξ0,T )

]
. (16)

Given knowledge of Ξ0,T , the solution of (15) yields an indirect design for the feed-forward control
that solves the mean steering problem. In (Pilipovsky and Tsiotras, 2023a) it was shown that, in the
absence of noise, the previous optimization problem can be solved as a convex program.

4. Uncertainty Quantification
4.1. Maximum Likelihood Estimation of Noise Realization
The optimization problem (13) as well as (15) depend on the unknown noise realization. In this
section, we propose a maximum likelihood estimation (MLE) scheme to estimate the noise realiza-
tion from the collected data. First, we encode the stochastic linear system dynamics by enforcing
a consistency condition on the realization data. To this end, we first notice that there exists a noise
realization such that the dynamics (1) satisfy

X1,T = AX0,T +BU0,T + Ξ0,T . (17)

For notational convenience, define the augmented Hankel matrix S := [U0,T ;X0,T ] ∈ R(m+n)×T ,
from which we may re-write (17) as X1,T = [B A]S+Ξ0,T . Additionally, noting that the pseudoin-
verse satisfies the property SS†S = S, (17) is equivalently written as X1,T − Ξ0,T = [B A]SS†S,
which, using the relation X1,T − Ξ0,T = [B A]S, yields

(X1,T − Ξ0,T )(IT − S†S) = 0. (18)
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Equation (18) is a model-free condition that must be satisfied for all noisy linear system data real-
izations, and hence is a consistency relation for any feasible set of data. Given the constraint (18),
the MLE problem then becomes

max
Ξ0,T ,Σξ

JMLE(Ξ0,T ,Σξ | D) ≜
T−1∑
k=0

log ρξ(ξk), s.t. (X1,T − Ξ0,T )(IT − S†S) = 0, (19)

where ρξ(x) is the probability density function (PDF) of the noise random vector ξ.

Theorem 3 Assuming Σξ ≻ 0, the MLE optimization problem (19) may be solved as the following
difference-of-convex (DC) program

min
Ξ0,T ,Σξ,U

[
1

2
tr(U)−

(
−T

2
log detΣξ

)]
(20a)

s.t. (X1,T − Ξ0,T )(IT − S†S) = 0,

[
Σξ Ξ0,T

Ξ⊺
0,T U

]
⪰ 0. (20b)

The previous DC program may be solved using a successive convexification procedure known as
the convex-concave procedure (CCP), which is guaranteed to converge to a feasible point (Yuille
and Rangarajan, 2001; Lipp and Boyd, 2016). Oftentimes, the disturbance matrix D is known
beforehand, as is the case when one knows how the disturbances affect the system state variables.
In such cases, Σξ = DD⊺ is no longer a decision variable, and the MLE problem (19) may be
solved analytically as given by the following Corollary 1.

Corollary 1 Suppose Σξ is known. Then the MLE problem (19) has the exact solution

Ξ⋆
0,T = X1,T (IT − S†S). (21)

4.2. Uncertainty Error Bounds
We are interested in deriving bounds to ensure robust satisfaction (with high probability) of the

terminal CS constraints (13c) for the DD-CS problem. To this end, we use the statistical properties
of Ξ0,T and generate an ellipsoidal uncertainty set based on some degree of confidence δ ∈ [0.5, 1).
For simplicity, assume Σξ ≻ 0 is known. First, we re-write the MLE problem (19) in terms of the
vectorized parameters to be estimated ξ := vec(Ξ0,T ) = [ξ⊺0 , . . . , ξ

⊺
T−1]

⊺ ∈ RnT as

min
ξ

JMLE(ξ | D) =
1

2
ξ⊺(IT ⊗ Σ−1

ξ )ξ s.t. C(ξ) := (Γ⊗ In)ξ − λ = 0, (22)

where Γ := IT − S†S ∈ RT×T ,Λ := X1,TΓ ∈ Rn×T , and λ = vec(Λ). It can be shown that
(Newey and McFadden, 1994), as the number of samples grows, the MLE noise estimate ξ̂ con-
verges to a normal distribution as

√
T (ξ − ξ̂)

d−→ N (0, I−1), where I = Eξ

[
∂2

∂ξ2
JMLE(ξ | D)

]
is

the Fisher Information Matrix (FIM), which is given by I = IT ⊗ Σ−1
ξ in the unconstrained case.

For a constrained MLE problem, it can similarly be shown, as by Stoica and Ng (1998), that the
asymptotic distribution of the estimates has covariance Σ∆ = I−1 − I−1J⊺(JI−1J⊺)−1JI−1,
where J := ∂

∂ξC(ξ) = Γ ⊗ In is the Jacobian of the constraints. We next present a few techni-
cal results that are useful for computing the uncertainty covariance of the MLE estimates and the
associated confidence sets. The proofs of these results are given in the Appendix (Pilipovsky and
Tsiotras, 2023b).
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Lemma 1 The error of the constrained MLE estimator (19) for the unknown noise realization
ξ = vec(Ξ0,T ) converges to the normal distribution N (0,Σ∆), where Σ∆ = S†S ⊗ Σξ.

Proposition 1 Assume the uncertainty error estimate is normally distributed as ∆ξ ∼ N (0,Σ∆).
Then, given some level of risk δ ∈ [0.5, 1), the uncertainty set ∆ := {∥∆Ξ0,T ∥ ≤ ρ}, contains the
(1− δ)-quantile of ∆Ξ0,T , with ρ =

χnT,1−δ√
λmin(Σ

−1
∆ )

, where χp,q is the square root of the inverse CDF

of the χ2
p,q distribution.

Corollary 2 For the MLE problem (19), the associated (1 − δ)-quantile uncertainty set ∆ :=

{∥∆Ξ0,T ∥ ≤ ρ} has the bound ρ = ∥Σ1/2
ξ ∥χnT,1−δ, where ∆Ξ0,T = Ξ0,T − Ξ̂0,T .

5. Robust DD-CS
The problem outlined in (13) is categorized as an uncertain convex program (Ben-Tal et al.,

2009), where the LMI constraints (13c) are required to hold across all realizations of the un-
certain parameter ∆Ξ0,T within the set ∆ defined in Proposition 1. This formulation results in
a semi-infinite problem, making the original constraints intractable. To address this, we focus
on the robust counterpart (RC) of a class of uncertain LMIs (uLMI), which simplifies the prob-
lem to a robust feasibility problem. Letting A(Zk,Ξ0,T ) ⪰ 0 denote the LMI in (13c) for the
decision variables Zk = {Sk,Σk,Σk+1}, we can ensure tractability by enforcing the condition
sup∆Ξ0,T∈∆A(Zk,Ξ0,T ) ⪰ 0. Adhering to this robust counterpart ensures that the original con-
straints are robustly met with high probability, characterized by the risk value δ. In what follows,
we will form the RC of the uncertain CS problem in (13). We first state the following theorem on
the equivalence of the RC of a uLMI in which the uncertainty appears linearly in the constraints.

Theorem 4 (Ben-Tal et al. (2009), Proposition 6.4.1) The RC of the uncertain LMI

A(y,Π) := Â(y) + L⊺(y)ΠR+R⊺Π⊺L(y) ⪰ 0, (23)

with unstructured norm-bounded uncertainty set Z = {Π ∈ Rp×q : ∥Π∥ ≤ ρ}, can be equivalently
represented by the LMI [

λIp ρL(y)

ρL⊺(y) Â(y)− λR⊺R

]
⪰ 0, (24)

in the decision variables y, λ.

5.1. Problem Formulation and Robust LMI Counterpart

Using (20) to obtain a noise realization estimate Ξ̂0,T and Corollary 2 to obtain the associated
uncertainty set ∆, the original covariance LMI constraints (13c), may be decomposed using Ξ0,T =

Ξ̂0,T +∆Ξ0,T as the semi-infinite uLMIs ĜΣ
k +∆GΣ

k (∆Ξ0,T ) ⪰ 0, for all ∥∆Ξ0,T ∥ ≤ ρ, where,

ĜΣ
k =

[
Σk+1 − Σξ (X1,T − Ξ̂0,T )Sk

S⊺
k(X1,T − Ξ̂0,T )

⊺ Σk

]
, (25)

is the nominal LMI, and

∆GΣ
k =

[
0n −∆Ξ0,TSk

−S⊺
k∆Ξ⊺

0,T 0n

]
⪰ 0, (26)
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is the perturbation to the covariance LMI. Next, we represent the matrix (26) as

∆GΣ
k = L⊺(Sk)∆Ξ⊺

0,TR+R⊺∆Ξ0,TL(Sk), (27)

where, L⊺(Sk) = [0n,T ;−S⊺
k ], R⊺ = [In; 0n]. Finally, using Theorem 4, we may equivalently

represent the RC of the uLMI (27) as the LMI[
λIT ρL(Sk)

ρL⊺(Sk) ĜΣ
k (Zk, Sk)− λR⊺R

]
⪰ 0, (28)

in terms of the decision variables {Sk, λ} and Zk = {Σk,Σk+1}.

DD-CS RDD-CS

(a) MB-CS (top) and R/DD-CS (bottom) for
nominal dynamics model {A,B}.

DD-CS RDD-CS

(b) MB-CS (top) and R/DD-CS (bottom) for per-
turbed dynamics model {A+∆A,B+∆B}.

Figure 1: Comparison of model-based and data-driven covariance steering controllers for (a) perfect
system knowledge, and (b) imperfect system knowledge. The robust data-driven solutions are not
only adaptable to any linear dynamics due to sampling from the true system but also achieve a
desirable terminal covariance.

6. Numerical Example
To illustrate the proposed robust DD-CS (RDD-CS) framework, we consider the ground truth

double integrator model

xk+1 =

[
1 ∆T
0 1

]
xk +

[
0

∆T

]
uk +Dwk, (29)

with ∆T = 1 and D = 0.1I2, with initial conditions µ0 = [30, 1]⊺,Σ0 = diag(1, 0.5) and terminal
conditions µf = [−10, 0]⊺,Σf = 0.5I2. The planning horizon is chosen to be N = 10 and
the data-collection horizon T = 15 which satisfies the persistence of excitation criterion. For the
uncertainty set, we choose a risk threshold δ = 0.001. Figure 1 shows the performance of the
model-based and data-driven covariance controllers. In Figure 1(a), we see that MB-CS achieves
exact uncertainty control, as expected since it has access to the true model. The DD-CS method with
MLE noise estimation also achieves similar terminal behavior, although the vanilla DD-CS solution
(bottom-left) violates the terminal covariance constraints ΣN ⪯ Σf , due to the misalignment in the

9



PILIPOVSKY TSIOTRAS

mean steering from noisy data. The robust DD-CS (RDD-CS) solution (bottom-right), on the other
hand, achieves a more precise terminal covariance and is fully contained within the desired terminal
covariance, even with the slight mean misalignment. Specifically, the robust solution achieves a
terminal covariance

ΣRDD−CS
N =

[
0.2612 0.0252
0.0252 0.0941

]
≺ Σf .

In Figure 1(b), we illustrate the performance of the MB and DD controllers in the case where the
true nominal dynamics model is perturbed with ∆A = τe1e

⊺
2 and ∆B = τe2, with τ = 0.05 and

ei is the unit vector along the ith axis. In this case, the model-based design completely fails, as it
takes the original model {A,B} as the ground truth, while the data-driven design can automatically
adapt to any model as it samples data D from the true underlying system.

(a) MB-CS solution.

(b) RDD-CS solution.

Figure 2: Model-based (a) and robust data-
driven (b) covariance control designs for per-
turbed disturbance model D +∆D.

Next, we include the estimation of the dis-
turbance covariance Σξ into the DD-CS algo-
rithm. The estimate Σ̂ξ is subsequently used in
the resulting RDD-CS program. The results are
akin to those of Figure 1 and hence are omitted.
We then perturb the disturbance matrix from the
ground truth model with ∆D = 0.2I2, represent-
ing cases in which the modeler cannot effectively
quantify the intensity of the disturbance. Fig-
ure 2 shows that under this new disturbance struc-
ture, the model-based design fails as it anticipates
weaker disturbances than the actual system ex-
periences, while the data-driven solution achieves
the desired terminal covariance, albeit the terminal
mean state is more heavily perturbed due to the in-
creased uncertainty. Designing a robust open-loop
control to also take into account the uncertainty in
the mean motion is a topic of interest for future
work.

7. Conclusion

We have presented a data-driven uncertainty control method to steer the distribution of an un-
known linear dynamical system subject to Gaussian disturbances (DD-CS). Since the underlying
collected data is noisy, an exact system representation is infeasible, and thus we have proposed a
maximum likelihood estimation (MLE) scheme to solve for the underlying noise realization from
the data as a difference-of-convex program. Using the statistical properties of MLE, we derived
bounds on the (1 − δ)-quantile of the uncertainty estimates, which is subsequently used to solve a
robust DD-CS problem. Numerical examples show that the robust DD-CS method achieves desir-
able levels of performance for an underlying unknown linear system compared to that of the model-
based counterpart and any disturbance intensity satisfying the theoretically achievable bound (Liu
et al., 2023). Future work will investigate robust solutions to the mean steering problem in the case
of noisy data, as well as extensions to output-feedback systems, moving-horizon implementations,
and non-linear systems.
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