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Abstract
Inverse optimal control (IOC) is about estimating an unknown objective of interest given its optimal
control sequence. However, truly optimal demonstrations are often difficult to obtain, e.g., due to
human errors or inaccurate measurements. This paper presents an IOC framework for objective
estimation from multiple sub-optimal demonstrations in constrained environments. It builds upon
the Karush-Kuhn-Tucker optimality conditions, and addresses the Errors-In-Variables problem that
emerges from the use of sub-optimal data. The approach presented is applied to various systems
in simulation, and consistency guarantees are provided for linear systems with zero mean additive
noise, polytopic constraints, and objectives with quadratic features.1
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1. Introduction

Applications in robotics and control often involve complex and demanding tasks in constrained en-
vironments. While strategies such as Model Predictive Control (Kouvaritakis and Cannon, 2016)
have been successfully deployed to address these challenges, their performance depends heavily on
the design of the objective function, which is often nontrivial. In fact, the translation of a complex
goal description into a suitable objective is often unintuitive, and its tuning can be delicate. Thus,
inverse optimal control (IOC) methods (Lin et al., 2021; Ab Azar et al., 2020) provide a promising
tool to tackle this issue: starting from a partially specified objective (e.g., described by a set of basis
functions), they aim to estimate the missing parameters from optimal control sequences (also known
as demonstrations).
However, available control sequences may be suboptimal in practice, as they are, e.g., provided by
humans, or affected by noise. The methods in (Englert et al., 2017) and (Menner et al., 2019), which
rely on the Karush-Kuhn-Tucker (KKT) conditions (Kuhn and Tucker, 2014), address these issues
by allowing for a slight suboptimality in the demonstrations using a least-squares approximation of
the stationarity condition. However, the estimate obtained is not consistent: it does not deal with the
errors entering the regressors due to the sub-optimality of the given controls – in other words, the
Errors-In-Variables (EIV) nature of the problem (Griliches, 1974) is not addressed. A possibility
to address this issue consists in jointly estimating demonstrations and optimal objective parameters,
as done by (Hatz et al., 2012). The same idea is used in (Menner and Zeilinger, 2020), where a
probabilistic model taking Gaussian measurement noises into account is considered. However, the
majority of IOC approaches rely on deterministic models and do not consider stochastic noise in the
dynamics. Another exception is the approach in (Nakano, 2023), where a stochastic demonstration
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model is considered, but knowledge of the optimal input sequence is still assumed. An intrinsic
probabilistic view of the problem is given by the formulation in Inverse Reinforcement Learning
(IRL), where data are modeled as Markov Decision Processes (Feinberg and Shwartz, 2012) and
thus intrinsically deal with suboptimal demonstrations. Solutions are typically obtained with en-
tropy maximization (Ziebart et al., 2008; Finn et al., 2016). However, in contrast to IOC, the IRL
formulation does not allow for a natural inclusion of constraints.

Contribution This work presents an IOC framework capable of dealing with suboptimal and
noisy demonstrations. It starts from a formulation based on the KKT conditions and rephrases it
in terms of an EIV problem (Griliches, 1974): to the best of the authors’ knowledge, this is novel
in the IOC and IRL literature. We present two approaches considering different assumptions to
solve it: when the distribution of noises is known, we start from a Bayesian interpretation of the
problem (Dellaportas and Stephens, 1995) and rely on Markov Chain Monte Carlo (MCMC) (Gilks
et al., 1995), while when no such an information is given, we leverage total least squares (Golub and
Van Loan, 1980). Our approach relates to that in (Menner and Zeilinger, 2020), because it jointly
estimates demonstration and optimal objective parameters working with probabilistic models; how-
ever, differently from that work, we provide principled ways of estimating hyper-parameters, and
study the case in which disturbances are non-Gaussian. Our approaches not only allow for an im-
proved estimation performance with respect to the state-of-the-art, as shown in the numerical tests,
but also provide consistency guarantees in the case of linear systems with zero-mean additive noise,
polytopic constraints and quadratic objectives.

Notation We denote with 0n,m and 1n,m a matrix of dimension n×m filled with zeros and ones,
respectively, and with In the n−dimensional identity matrix. Given a vector a ∈ Rb and a function
h(a) : Rb → Rc, then ∇ah(a) returns the Jacobian of h(a) with respect to a. A Gaussian random
vector a with mean µa and covariance Σa is given as N (a;µa,Σa), while an Inverse Wishart A ran-
dom matrix with scale matrix WA and mA degrees of freedom will be denoted as IW (A;WA,mA).

2. Problem Statement

We introduce the IOC problem in Section 2.1, and present in Section 2.2 the solution strategy from
(Englert et al., 2017) building upon the KKT conditions. This is followed by the definition of the
sub-optimal demonstrations considered and of the least-squares approximation of the inverse KKT
approach in Sections 2.3 and 2.4, respectively.

2.1. Forward and Inverse Optimal Control Problem

We consider a known, deterministic, discrete-time system xk+1 = f(xk, uk), where xk ∈ Rn

indicates the state and uk ∈ Rm the input vector at time step k, generating state and input tra-
jectories of length N + 1 and N , respectively. For notational simplicity and a compact repre-
sentation of the IOC problem, we stack the input variables over their respective horizon length in
U = (u⊤0 , . . . , u

⊤
N−1)

⊤ ∈ RNm. As for the state xk, we represent it through the operator

Fk(U, x0) =

{
x0 if k = 0,

f(Fk−1(U, x0), uk−1) if k ≥ 1,
(1)
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and collect the sequence of all Fk(U, x0) in FU,x0 = {F0(U, x0), . . . , FN (U, x0)}. The optimal
control problem considered is referred to as the forward problem and, with horizon length N and I
known inequality constraints {gi(·, ·)}Ii=1, reads as

min
U

N−1∑
k=0

θ⊤ϕ(Fk(U, x0), uk) subject to


gi(Fk(U, x0), uk) ≤ 0

x0 = x(0)

k = 0, . . . , N, i = 1, . . . , I.

(2)

The objective is modeled as a linear combination of given features, collected in the vector ϕ(·) ∈ Rq,
with an unknown coefficient vector θ ∈ Rq. We further assume that f , gi and ϕ are contin-
uously differentiable for all i = 1, . . . , I . Ultimately, the inverse optimal control problem fol-
lows as inferring the unknown parameter vector θ from the optimal input sequence, denoted with
U∗ = (u∗,⊤0 , . . . , u∗,⊤N−1).

2.2. The Inverse KKT Approach

Considering optimal demonstrations, an estimate of the unknown parameter vector θ can be obtained
based on the KKT conditions, which provide necessary conditions for the solution of an optimiza-
tion problem that fulfills suitable constraint qualifications (Kuhn and Tucker, 2014). To present
these KKT conditions, we introduce the Lagrangian multipliers λi,k ∈ R, for all k = 0, . . . , N
and i = 1, . . . , I , and combine them for all i and a specific time step k in the vectors λk =
(λ0,k, . . . , λI,k)

⊤ ∈ RI , as well as further summarizing them in λ = (λ⊤
0 , . . . , λ

⊤
N )⊤ ∈ RIN . Addi-

tionally, we express the inequality constraints via G(xk, uk) = (g0(xk, uk), . . . , gI(xk, uk))
⊤ ∈ RI ,

such that the Lagrangian of problem (2) follows as

L(θ, λ,FU,x0 , U) =
∑N−1

k=0 (θ
⊤ϕ(Fk(U, x0), uk) + λ⊤

k G(Fk(U, x0), uk)).

Then, for all k = 0, . . . , N and i = 1, . . . , I , the KKT conditions in accordance to the optimal
demonstration U∗ and the initial condition x∗0 are given as

∇UL(θ, λ,FU,x0 , U)|x0=x∗
0,U=U∗ = 0mN,1 (3a)

λi,kgi(Fk(U
∗, x∗0), u

∗
k) = 0 (3b)

gi(Fk(U
∗, x∗0), u

∗
k) ≤ 0, λi,k ≥ 0. (3c)

Solving (3) for θ and λ returns the coefficient vector θ∗ of the corresponding forward problem, as
well as its Lagrangian multipliers λ∗.

2.3. Sub-Optimal Demonstrations

The considered sub-optimal demonstrations follow a unified structure given in Assumption 1.

Assumption 1 The available sequences, indicated with Ud = (u⊤d,0, . . . , u
⊤
d,N−1)

⊤ for d = 1, . . . , D,
are noisy realizations of the optimal sequence U∗:

Ud = U∗ + nd, (4)

where nd = (nd,0, . . . , nd,N−1)
⊤ ∈ RNm is a vector collecting the realization of the additive noise.

To address various causes of sub-optimal data, such as, e.g., a non-expert demonstrator or the pres-
ence of measurement noise, we consider the following two scenarios.
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Problem 1 Demonstrations are i.i.d., normally distributed around U∗, i.e., nd,k ∼ N (0m,1,Σu)
for all d = 1, ..., D and k = 0, ..., N − 1. The covariance matrix Σu thereby reflects the difficulty
of obtaining an optimal input and is potentially unknown.
Problem 2 Additive noises nd,k, for all d = 1, ..., D and k = 0, ..., N − 1, follow an unknown
distribution.

2.4. A Least Squares Approximation of Inverse KKT

Working with sub-optimal demonstrations not only requires a nontrivial constraint handling, but can
additionally cause violations of the stationarity condition in equation (3a), yielding

∇UL(θ∗, λ∗,FU,x0 , U)|x0=xd,0,U=Ud
̸= 0mN,1.

To deal with this issue, approaches such as those in (Englert et al., 2017; Menner et al., 2019)
propose to reformulate (3a) in terms of a least-squares optimization problem, which we indicate
with (θ⊤, λ⊤

[1:D])
⊤ = KKT (U[1:D]). Its objective then reads as

min
θ,λ[1:D]

D∑
d=0

∥∇UL(θ, λd,FU,x0 , U)|x0=xd,0,U=Ud
∥2 (5)

and conditions (3b) and (3c) are considered in the constraints. However, as detailed in Subsec-
tion 3.1, the resulting problem has an EIV nature, and a plain least-squares estimate is not consistent
– i.e., it is biased and does not converge to its optimal value as D → +∞.

3. IOC as an Errors-in-Variables Problem

In this section, we introduce the EIV-regression problem emerging from the inverse KKT problem
with sub-optimal demonstrations, and present an IOC framework that takes inspiration from existing
EIV solution strategies. The first approach builds upon an MCMC sampler, addresses Problem 1,
and is presented in Section 3.2. The second approach, presented in Section 3.3, addresses Problem
2 and follows the idea of total least squares. Finally, practical aspects of the proposed framework
are discussed in Section 3.4

3.1. Stationarity Condition as an EIV-Regression

Denoting with Jθ = ∇U (
∑N−1

k=0 ϕ(Fk(U, x0), uk)) and with Jλ = ∇U (
∑N−1

k=0 G(Fk(U, x0), uk))),
the stationarity condition in (3a) can be interpreted as the following linear regression problem(

Jθ Jλ
)
|x0=x∗

0, U=U∗︸ ︷︷ ︸
J(U)

(
θ
λ

)
︸︷︷︸

β

= 0mN,1︸ ︷︷ ︸
Y

. (6)

There, β acts as the regression parameter vector, J(U) as a stack of feature vectors, and U as the
independent variable vector. The dependent variables, collected in Y , are equal to zero when U =
U∗. However, when operating with Ud as in (4), noise enters through the independent variable in the
regressors, yielding an EIV problem. As a direct consequence, a naive least-squares estimate results
biased and not consistent (Söderström, 2019). To address this issue, we present two optimization-
based approaches in which the objective reflects the quality of a potential solution vector β in
accordance with (6) and the available data, and consider conditions (3b) and (3c) in the constraints.
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3.2. Approach 1: Maximum A Posteriori Estimate

This first approach addresses Problem 1 and relies on the information about the distribution of the
additive noise in (4). The goal of jointly estimating U∗ and β is formulated as a Maximum-a-
Posteriori problem as follows.
We treat the independent variable U as a random vector with prior distribution U ∼ N (U0,ΣU0).
It should capture the optimal U∗ and yield a likelihood model Ud|U ∼ N (U,ΣU ) describing
the suboptimal demonstrations according to (4). Moreover, the likelihood associated with (6) is
Yd|U, β ∼ N (J(U)β,ΣY ), where the covariance ΣY describes the discrepancy from the vector
0mN,1 and is deterministically chosen. To complete the Bayesian description of our problem, we
consider the following priors: β ∼ N (β0,Σβ) and ΣU ∼ IW (WU ,mU ). The resulting Bayesian
network is depicted in Figure 1. Noting that Ud and Yd are conditionally independent given U , the
posterior for the unknown β, U and ΣU reads as follows:

p(β,ΣU , U |ΣY , Y[1:D], U[1:D]) (7)

∝
∏D

d=1N (Yd; J(U)β,ΣY ) · N (Ud;U,ΣU ) · N (U ;U0,ΣU0) · N (β;β0,Σβ) · IW (ΣU ;WU ,mU ).

β {Yd}Dd=1 U {Ud}Dd=1 ΣU

Figure 1: Visualization of the Bayesian network considered.

The rationale of our proposed approach consists in finding U and β maximizing such a posterior,
while taking into consideration the constraints (3b) and (3c). This Maximum-A-Posteriori approach
can be written as follows:

min
β,U

P (U, β|ΣU ) subject to


λi,kgi(Fk(U, x0), uk) = 0

gi(Fk(U, x0), uk) ≤ 0, λi,k ≥ 0

k = 0, . . . , N, i = 1, . . . , I,

(8)

where the cost P (U, β|ΣU ) is obtained by taking the negative logarithm of (7) and neglecting the
distribution of ΣU . Before solving (8), we perform a full Bayesian treatment of the problem to
provide (A) an estimate for ΣU and (B) good candidate initial values for U and β. This is done
with an MCMC strategy based on a single-component Metropolis-Hastings sampling scheme (Gilks
et al., 1995). We sketch the procedure in the following paragraph, and defer to the Supplementary
material for the detailed derivation.

MCMC strategy The (single-component) Metropolis-Hastings algorithm allows for the genera-
tion of a Markov Chain for which the invariant distribution is a target distribution of interest. In
our case, we aim at simulating the posterior (7). This is done by iteratively sampling from the
so-called full conditionals, which in this case are p(β|Y[1:D],ΣY ), p(U |U[1:D], Y[1:D], β,ΣU ) and
p(ΣU |U[1:D], U). We first focus on the case in which the dynamics in (1) are linear, the objective
features in ϕ(·) are quadratic, and constraints in {gi(·, ·)}Ii=1 are polytopic. In this scenario, J(U)
can be re-written as an affine transformation of U , i.e., J(U)β = (MU+E)β. The full conditionals,
inspecting the likelihood-prior products, read as follows:

p(β|Y[1:D], U) ∝
D∏

d=1

N
(
Yd; (MU + E)β,ΣY

)
· N (β;β0,Σβ) (9)
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p(U |β, Y[1:D], U[1:D],ΣU ) ∝
D∏

d=1

N (Yd; (MU +E)β,ΣY ) · N (Ud;U,ΣU ) · N (U ;U0,ΣU0) (10)

p(ΣU |U[1:D], U) ∝
D∏

d=1

N (Ud;U,ΣU ) · IW (ΣU ;WU ,mU ). (11)

By leveraging standard properties of conjugate priors (Gelman et al., 2004), the distributions above
have a closed-form expression as Gaussian ((9), (10)) and Inverse Wishart (11). Since these are easy
to sample, the single-component Metropolis-Hastings scheme becomes a Gibbs sampler. Because
all the involved distributions are well-defined, the stochastic simulation scheme is ergodic; at con-
vergence, we perform a Monte Carlo integration of the full conditionals to obtain the sample mean
for ΣU , β and U . The first is used to set the cost in (8), while the other two are used as intialization
of the solver. With this construction, the following Theorem holds. Its proof can be found in the
Appendix.

Theorem 1 Consider linear system dynamics, polytopic constraints, and quadratic features in ϕ.
Then, if the adopted solver for problem (8) converges to the global minimum, its solution returns
the maximum a posteriori estimate of the posterior probability function in (7), fulfilling conditions
(3b) and (3c). Furthermore, the estimate is consistent.

In the more general case of nonlinear dynamics, (10) is not Gaussian anymore, so a Metropolis-
Hastings step has to be adopted. As a further consequence, the cost loses bi-convexity, and conver-
gence is ensured only to a local optimum.
Finally, note that the sampling-based solution can easily be extended to non-Gaussian (but known)
distributions by applying a general Metropolis-Hastings step on the required full-conditionals.

3.3. Approach 2: Total Least Square Estimate

This section addresses Problem 2, where a likelihood function cannot be constructed because no
information on the noise distribution is available. In this approach, we employ total least squares
to estimate the regression parameter vector β and the residuals r[1:D], which describe the noise
realizations. A first formulation reads as follows:

min
r[1:D],β

D∑
d=1

r⊤d Σ
−1
U rd subject to


J(Ud − rd)β = 0mN,1

λi,kgi(Fk(Ud − rd, x0), ud,k − rd,k) = 0

gi(Fk(U − nd, x0), ud,k − rd,k) ≤ 0, λi,k ≥ 0

k = 0, . . . , N, i = 1, . . . , I, d = 1, . . . , D.

(12)

To reduce the number of necessary optimization variables, we leverage the assumption that a unique
optimal demonstration U∗ exists, and extend the optimization problem in (12) with the equality
constraint U = Ud − rd for all d = 1, ..., D. This allows for the transformation of (12) into an
equivalent problem, optimizing for a single demonstration U instead of all residuals by replacing
each usage of Ud − rd with U . Thus, (12) becomes

min
U,β

D∑
d=1

(U − Ud)
⊤Σ−1

U (U − Ud) subject to


J(U)β = 0mN,1

λi,kgi(Fk(U, x0), uk) = 0

gi(Fk(U, x0), uk) ≤ 0, λi,k ≥ 0

k = 0, . . . , N, i = 1, . . . , I.

(13)
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However, such a problem depends on ΣU , which is initially unknown. To obviate this issue, we
propose an alternating scheme which (A) starts from an initial guess for U and β, (B) estimates the
unknown covariance as ΣU = 1

D

∑D
d=1(U − Ud)

⊤(U − Ud), (C) solves (13), and (D) iterates the
steps (B-C). The performance of such an approach is summarized in the following Theorem, which
is proved in the Appendix.

Theorem 2 Consider linear system dynamics, polytopic constraints, and quadratic features in ϕ.
Furthermore, assume that nk has mean zero. Then, if the solver for problem (13) converges to the
global minimum, the proposed procedure returns a consistent estimate for β.

3.4. Practical Aspects

In this section, we discuss two main considerations arising in the developed optimization schemes:
namely, the initialization and the adopted solvers.

3.4.1. INITIAL GUESS

Especially for non-convex optimization problems, or problems with only a few available demon-
strations, a suitable initial guess and solver initialization are critical to improve the final estimate
or reduce computation time. If no prior knowledge is available, we suggest setting U0 equal to the
sample mean, and β0 as its corresponding estimate KKT (U0). The matrices ΣY and WU can be
either set to a covariance approximation with respect to U0, risking exaggerated certainty of the
estimated parameters (Kass and Steffey, 1989), or to a diagonal matrix, reflecting the independence
of the investigated noise.

3.4.2. SOLVER

For linear demonstrating system dynamics, polytopic constraints and quadratic features in ϕ(·), the
optimization problems in (8) and (13) are bi-convex and fulfill all requirements for global conver-
gence of the Global Optimization Algorithm (Floudas, 2000). In any other case, they denote a
general Mathematical Problem with Equilibrium Constraints (MPEC). While such problems can be
hard for most common solvers (e.g., IPOPT (Wächter and Biegler, 2006) or SQP-based ones (Boggs
and Tolle, 1995)), the strongest convergence guarantees are provided for combinatorial methods,
such as pivoting (Fang et al., 2012) or active set methods (Giallombardo and Ralph, 2008; Leyf-
fer and Munson, 2007). The iterative application of nonlinear programming methods to a relaxed
version of the MPECs is actively investigated (Scholtes, 2001; Kadrani et al., 2009; Kanzow and
Schwartz, 2013), leading to the often-used IPOPT-C solver (Raghunathan and Biegler, 2005). In
this work, the MPEC is addressed by combining the relaxation approach by (Scholtes, 2001) with
IPOPT. The relaxation constant and its decrease factor entering the formulation are individually ad-
justed for each experiment, which is a key and delicate task to ensure that the solver converges to
an acceptable solution.

4. Experimental Results

The proposed framework is tested on three different systems in simulation: a spring-damper system
(Section 4.1), the kinematic bicycle model (Section 4.2), and a two-compartment Bayesian glucose
model (Section 4.3). The continuous system dynamics are discretized using the backward Euler
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method with sampling time Ts = 0.1 for the first two, and Ts = 1 for the third system. While Ap-
proach 1 is employed on the first two systems, Approach 2 is tested on systems 2 and 3. Throughout
the experiments, we consider different values for the input noise covariance, which are calculated
with respect to the mean input values of the optimal demonstration over the considered horizon; we
denote such a mean value with um,D. The relaxation constant and decrease factor of our MPEC
solver (see Section 3.4.2) are adjusted individually and chosen between 6 and 25, as well as 0.75
and 0.9 respectively.2 All estimates obtained with our framework are further denoted with UEIV and
θEIV, and their quality is evaluated by means of the root mean square error (RMSE) with respect to
the true values U∗ and β∗. In each set-up we repeat the experiments 10 times, and compare the per-
formance against the β obtained with the inverse KKT least square relaxation proposed in (Menner
et al., 2019), and the mean of all demonstrations Um = 1

D

∑D
d=1 Ud.

4.1. Spring-Damper System

The system dynamics read as

ẋ1 = x2, ẋ2 =
1

m
(−cx1 − dx2 + u),

with m = 1.0 kg, c = 0.2 kg · s−2 and d = 0.1 kg · s−1. The optimal control forward problem has
a horizon length of N = 10 and includes the inequality constraint u ≤ 0.7. The unknown parameter
is set to θ = (10, 5, 7)⊤, the feature vector to ϕ = ((x1 − 3)2, (x2 − 0)2, u2)⊤, and the initial value
is chosen as x0 = (1, 0.1)⊤. Mean and standard deviations of the RMSE are presented in Table 4.1.
The average runtime of one experiment employing Approach 1 is measured as 61.3s.

Method ΣU

5% um,D 10% um,D 20% um,D

θKKT 2.78± 0.207 1.59± 0.319 2.08± 0.734KKT
Um 0.005± 0.01 0.02± 0.009 0.02± 0.005
θEIV 0.16± 0.105 0.28± 0.138 0.55± 0.455EIV
UEIV 0.002± 0.001 0.004± 0.002 0.01± 0.006

Table 1: Mean and standard deviations of the RMSE for parameter and trajectory estimates on the
spring-damper system.

4.2. Kinematic Bicycle Model

Representing a more realistic use case, Approach 1 and 2 have been tested with the kinematic
bicycle model (Rajamani, 2011), indicated with θEIV1 ,UEIV1 and θEIV2 ,UEIV2 respectively. The
demonstrating system dynamics read as:

ẋ1 = u1 cos(x3), ẋ2 = u1 sin(x3), ẋ3 = u1 tan(x4)/L, ẋ4 = u2.

We set L = 0.115 m. The considered forward problem has a horizon length of N = 10 and
includes the inequality constraint u1 ≤ 2.2. The unknown parameter is set to θ = (10, 10, 3, 3, 8, 5)
and the input noise acts on the steering input u2. The feature vector is set to ϕ = ((x1 − 3)2, (x2 −
3)2, (x3 − 0)2, (x4 − 0)2, u21, u

2
2)

⊤ and the initial value is chosen as x0 = (0, 0, 0, 0)⊤. Mean and

2. Note that our experiments required careful tuning of the MPEC relaxation parameters to ensure convergence to a
suitable stationary point. This could likely be overcome and solve time significantly reduced by using a different and
more complex MPEC solver.
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standard deviations of the RMSE are presented in Table 2. The average runtime of one experiment
employing Approach 1 and 2 is given as 110.1s and 52.2s respectively. We can observe that in this
experiment, Approach 2 yields the best performance. This is likely due to the Metropolis-Hastings
step needed in Approach 1 to deal with the nonlinearity of the problem: the results might be slightly
inaccurate due to the finite-sample nature of the approach and/or to the dependence on the choice of
the proposal distribution.

Method ΣU

5% um,D 10% um,D 20% um,D

θKKT 3.20± 0.001 3.20± 0.002 3.18± 0.007KKT
Um 0.0006± 0.0001 0.001± 0.0002 0.002± 0.0005
θEIV1 0.29± 0.096 0.48± 0.161 0.98± 0.114

EIV1 UEIV1
0.0007± 0.0001 0.001± 0.0002 0.002± 0.0004

θEIV2 0.10± 0.076 0.21± 0.171 0.23± 0.145EIV2 UEIV1 0.0004± 0.0001 0.0007± 0.0002 0.001± 0.0004

Table 2: Mean and standard deviations of the RMSE for parameter and trajectory estimates on the
kinematic bicycle model.

4.3. Two-Compartment Bayesian Glucose Model

As biomedical applications are considered an important potential use case of inverse optimal con-
trol, we finally test the approach proposed in Section 3.3 on the two-compartment Bayesian glucose
model from (Callegari et al., 2003). The demonstrating system dynamics are

ẋ1 = (−p1 − k21 − x3)x1 + k12x2 + p1Q1b, ẋ2 = k21x1 − k12x2, ẋ3 = −p2x3 + p3(u− Ib).

For a full explanation on these equations, we defer to (Callegari et al., 2003), and the parameter
values are set according to patient 1 in Table 1 reported therein. The forward problem has a horizon
length of N = 20 and the insulin input is constrained as u ≥ 0. The unknown parameter is set to
θ = (1, 0.1, 10), the feature vector to ϕ = ((x1 −Q1b)

2, (x2 − k21
k12

Q1b)
2, u2)⊤ and the initial value

is chosen as x0 = (Q1b+330, k21k12
Q1b)

⊤. Mean and standard deviations of the RMSE are presented
in Table 4.3. The average runtime of one experiment employing Approach 2 is measured as 99.8s.

Method ΣU

5% um,D 10% um,D 20% um,D

θKKT 0.12± 0.007 0.13± 0.015 0.24± 0.046KKT
Um 0.70± 0.091 1.40± 0.123 3.25± 0.182
θEIV 0.09± 0.042 0.10± 0.033 0.12± 0.015EIV
UEIV 0.10± 0.061 0.20± 0.113 0.41± 0.320

Table 3: Mean and standard deviations of the RMSE for parameter and trajectory estimates for the
two-compartment glucose model of (Callegari et al., 2003).

5. CONCLUSIONS

We presented two IOC approaches for the estimation of an unknown parameter vector in partially
known objectives from sub-optimal demonstrations. Both strategies build upon the KKT conditions
and allow for the consideration of inequality constraints in the optimization problem of interest.
The key idea in the proposed methods consists in addressing the EIV nature of the problem to
obtain unbiased estimates. We consider two scenarios: in the first, we assume that the input noise
entering the dynamics is distributed according to a Gaussian (but it could be extended to any known
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distribution), while in the second such information is unavailable. We tackle the first situation with
a Bayesian strategy, leveraging MCMC to initialize the actual constrained optimization problem,
while for the second we employ a formulation based on total least squares. Differently from other
approaches in the literature, both of our proposed strategies learn the noise input covariance from
data; additionally, the first approach can also include prior information and allow for uncertainty
quantification. Theoretical consistency guarantees are provided for linear systems with zero-mean
additive noise, polytopic constraints, and quadratic objectives. Results in simulation show that (i)
the estimated input sequence is closer to the optimal one with respect to a naive sample mean of
the demonstrating sequences, and (ii) the proposed approaches outperform a previously presented
method relying on a least-squares relaxation of the classical KKT inversion approach, especially in
scenarios with higher input noise levels.

Appendix

In the following, we present the proofs of Theorems 1 and 2 stated in Sections 3.2 and 3.3, respec-
tively.

Proof of Theorem 1
Given the irreducibility and aperiodicity of the chosen MCMC sampling algorithms, obtaining a
maximum a posteriori estimate follows directly from the ergodic theorem, as well as global conver-
gence of the bi-convex problem in (8). To prove the consistency of this estimate, we reformulate the
objective in (8) with respect to an arbitrary positive definite covariance and divide it by the amount
of data D. This reads as

−

(
D∑

d=1

1

D

(
(J(U)β)⊤Σ−1

Y (J(U)β) + Y ⊤
d Σ−1

Y Yd − 2(J(U)β)⊤Σ−1
Y Yd + U⊤Σ−1

U U

− 2U⊤Σ−1
U Ud + U⊤

d Σ−1
U Ud

)
+

1

D
((U − U0)

⊤Σ−1
U0

(U − U0) + (β − β0)
⊤Σ−1

β0
(β − β0))

)
.

By the Law of Large Numbers, acknowledging that the mean of Y is equal to 0, and replacing Ud

with U∗ +NU,d, then for D → ∞ we obtain
(J(U)β)⊤Σ−1

Y (J(U)β) + U⊤Σ−1
U U − 2U⊤Σ−1

U U∗ + U∗⊤Σ−1
U U∗ + C

= (J(U)β)⊤Σ−1
Y (J(U)β) + (U − U∗)⊤Σ−1

U (U − U∗) + C, (14)

where C is a constant term that depends on β and U . The proof is concluded by noting that (14) is
minimized by taking U∗ and β∗. ■

Proof of Theorem 2

The proof of Theorem 2 directly follows along the line of the consistency proof in Theorem 1,
showing that the cost function of optimization problem (13) is minimized by U∗. Consequently, the
estimate of β follows as β∗. ■

The supplementary material for this paper, including a synopsis of MCMC and the full
derivation of the approach presented in Section 3.2, can be found at http://arxiv.org/
abs/2312.03532
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Kulić. Objective learning from human demonstrations. Annual Reviews in Control, 2021.

Marcel Menner and Melanie N. Zeilinger. Maximum likelihood methods for inverse learning of
optimal controllers. IFAC-PapersOnLine, 2020.

Marcel Menner, Peter Worsnop, and Melanie N. Zeilinger. Constrained inverse optimal control with
application to a human manipulation task. IEEE Transactions on Control Systems Technology,
2019.

Yumiharu Nakano. Inverse stochastic optimal controls. Automatica, 149, 2023.

Arvind U Raghunathan and Lorenz T Biegler. An interior point method for mathematical programs
with complementarity constraints (mpccs). SIAM Journal on Optimization, pages 720–750, 2005.

Rajesh Rajamani. Vehicle dynamics and control. Springer Science & Business Media, 2011.

Stefan Scholtes. Convergence properties of a regularization scheme for mathematical programs with
complementarity constraints. SIAM Journal on Optimization, pages 918–936, 2001.
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