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Abstract

While real-world problems are often challenging to analyze analytically, deep learning excels
in modeling complex processes from data. Existing optimization frameworks like CasADi
facilitate seamless usage of solvers but face challenges when integrating learned process models
into numerical optimizations. To address this gap, we present the Learning for CasADi
(L4CasADi) framework, enabling the seamless integration of PyTorch-learned models with
CasADi for efficient and potentially hardware-accelerated numerical optimization. The appli-
cability of L4CasADi is demonstrated with two tutorial examples: First, we optimize a fish’s
trajectory in a turbulent river for energy efficiency where the turbulent flow is represented by a
PyTorch model. Second, we demonstrate how an implicit Neural Radiance Field environment
representation can be easily leveraged for optimal control with L4CasADi .

L4CasADi, along with examples and documentation, is available under MIT license at

https://github.com/Tim-Salzmann/l4casadi

Keywords: optimization; machine learning; control systems; data-driven control

1. Introduction

Accurate mathematical problem formulation is at the core of every numerical optimization
procedure. While many real-world problems are hard to formulate analytically, data-driven
methods, especially deep learning methods, thrive in modeling complex processes from data.
Efficiently integrating learned process models into numerical optimizations is challenging, as
data-driven models and numerical optimization come with their respective tools and character-
istics: Deep learning models, commonly constructed in PyTorch Paszke et al. (2019), Tensor-
Flow Abadi et al. (2016), or JAXBradbury et al. (2018), leverage first-order optimization meth-
ods (backpropagation) in time-expensive offline training on a large amount of data. Solutions
to complex problems can be learned from data without defining any prior structure on the task.
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Once trained, however, their inference is fast and can be further accelerated on dedicated hard-
ware (GPUs). Numerical optimization techniques, in contrast, employ second-order methods,
primarily interior point and sequential quadratic programming, to formulate optimization prob-
lems, potentially subject to constraints. Solving these problems necessitates formulating a spe-
cific problem structure and proficiently selecting a suitable solver algorithm (IPOPT, SNOPT,
qpOASES,OSQP, ECOS, etc.1). Aiming to remove the overhead of adapting the syntax for each
solver, multiple frameworks have appeared allowing seamless usage across them. Within convex
problems, CVXPY Diamond and Boyd (2016), is a widely used Python wrapper. On the other
hand, PyomoBynumet al. (2021), AMPLFourer et al. (1989), orCasADiAndersson et al. (2019)
allow for a wider range – including non-convex – of optimization problems and solvers, including
commercial ones as MOSEK MOSEK ApS (2023) or Gurobi Gurobi Optimization LLC (2023).

Thus, both PyTorch and CasADi have established themselves as prominent tools within
their respective research domains, owing to their comprehensive functionalities, user-friendliness,
and adaptability. However, the increasing importance of data-driven approaches in optimiza-
tion poses a challenge for CasADi as it lacks native support for learned functions.

We seek to close this gap by presenting the Learning for CasADi (L4CasADi) framework,
which enables the seamless integration of learned PyTorch models with the numerical optimiza-
tion framework CasADi Andersson et al. (2019). L4CasADi enables hardware acceleration for
learned components in a CasADi optimization formulation and can generate such problems
as plain C/C++ code for efficient solution. By bringing this functionality to CasADi, tools
building upon CasADi (such as acados Verschueren et al. (2021)), as well as the large number
of products already using CasADi, and the numerical optimization community at large can
benefit from the same data-driven modeling capabilities.

2. L4CasADi - Syntax and Usage

L4CasADi was designed with three key desiderata in mind: (I) Simplicity for the user, (II)
generalizability across PyTorch model architectures, and (III) efficiency in runtime. We will
provide an insight into how these desiderata manifest within the user experience of L4CasADi .

Similarly to PyTorch, L4CasADi models are initially constructed in Python. Defining
an L4CasADi model in Python given a pre-defined PyTorch model is as easy as

import l4casadi as l4c

# Construct L4CasADi Model from PyTorch Model

l4casadi_model = l4c.L4CasADi(

pyTorch_model,

device='cpu', # Device in ['cpu', 'gpu', 'mps']

name='l4casadi_f' # Unique name

)

where the architecture of the PyTorchmodel is unrestricted and large models can be accelerated
with dedicated hardware. Once an L4CasADi model is defined it can be employed in a variety
of settings, as will be outlined in the following.

1. Wächter and Biegler (2006); Gill et al. (2005); Ferreau et al. (2014); Stellato et al. (2020); Domahidi et al.
(2013)
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2.1. Python

Once defined, an L4CasADi model can be seamlessly integrated with a CasADi symbolic
graph within CasADi’s Python interface. On the first call, L4CasADi will automatically
generate C++ code and compile the L4CasADi model for runtime efficiency.

# Use L4CasADi Model in CasADi Symbolic Graph

y: casadi.MX = l4casadi_model(x: casadi.MX)

The resulting symbolic output variable can be included in any further CasADi operations.
This seamless integration empowers the utilization of CasADi’s extensive toolkit to formulate
and solve optimization problems involving L4CasADi models.

# Minimize the L4CasADi Model using IPOPT

nlp = {'x': x, 'f': y}

solver = casadi.nlpsol("solver", "ipopt", nlp)

sol = solver()

2.2. Standalone Application

To use an L4CasADi model outside of the defining Python routine, the L4CasADi model can
also be explicitly built into an L4CasADi Shared Library Function.

# Build the L4CasADi Model as L4CasADi Shared Library Function

l4casadi_model.build(x: casadi.MX) # Creates libl4casadi_f.so

The shared library can easily be integrated into other programming environments, e.g. Matlab
and C/C++.

Matlab A built L4CasADi model can be loaded and used in Matlab using CasADi’s Matlab
interface.

% Load L4CasADi Model from dynamic library

l4casadi_model = casadi.external('l4casadi_f', 'libl4casadi_f.so');

% Use loaded L4CasADi Model in CasADi symbolic Graph

y: casadi.MX = l4casadi_model(x: casadi.MX)

C/C++ A built (L4CasADi Shared Library Function) can be dynamically loaded from any
C/C++ program. Additionally, L4CasADi provides the L4CasADi model as auto-generated
C++ code which can be included in any C/C++ source project.

# Generate the L4CasADi Model as C++ Source Files.

l4casadi_model.generate(x: casadi.MX) # Generates l4casadi_f.cpp

2.3. Näıve L4CasADi

While L4CasADi was designed with efficiency in mind by internally leveraging torch’s C++
interface (see Section 4), this can still result in overhead, which can be disproportionate for
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small, simple models. Thus, L4CasADi additionally provides a NaiveL4CasADiModule which
directly recreates the PyTorch computational graph using CasADi operations and copies
the weights — leading to a pure C computational graph without context switches to torch.
However, this approach is limited to a small predefined subset of PyTorch operations — only
Multi-Layer-Perceptron style models and inference on CPU are supported.

naive_mlp: l4c.NaiveL4CasADiModule = l4c.naive.MultiLayerPerceptron(

in_features,

hidden_features,

out_features,

hidden_layers,

activation='Tanh'

)

l4c_model = l4c.L4CasADi(naive_mlp)

y: casadi.MX = l4c_model(x: casadi.MX)

3. Tutorial Examples

To showcase the practical application of the proposed framework and how it opens up new
research avenues at ease, we present two illustrative case studies. First, we formulate a trajectory
generator that finds theminimum energy path for a fish swimming upstream in a turbulent river.
The second case studydemonstrates howL4CasADi facilitates the incorporation of cutting-edge
computer vision models into optimization problems. In this case, we optimize a collision-free
trajectory through an implicit environment representation given as a Neural Radiance Field
(NeRF). These two case studies are distinguished by their simplicity and ease of comprehension,
and thereby, serve as excellent templates for users to adapt to more intricate scenarios. To
this end, the code associated with these examples is available alongside L4CasADi2.

3.1. Fish Navigation in Turbulent Flow

The example shows how to design an optimization-based trajectory generator to navigate a
turbulent fluid flow. The flow, and thus the fish’s dynamics, are modeled by a Neural Network
in PyTorch, while the optimal trajectory optimization problem is formulated in CasADi. By
using L4CasADi , both can be combined and optimized jointly. When doing so, we seek to find
the minimum energy trajectory that allows a fish to navigate from the starting point to the
goal. For this purpose, the fish needs to swim upstream a river where a circular stone causes
the flow to be turbulent.

3.1.1. Problem Formulation and Implementation

We model the fish as a planar point mass actuated by velocity commands under the influence
of the river’s velocity field:

ṗ(t)=v(t)+vfl(t,p(t)), (1)

where p(t),v(t)∈R2 are the position and velocity of the fish at time t and vfl(t,p(t))∈R2 is
the velocity of the river at time t and position p(t). In simpler terms, the fish’s movement

2. https://github.com/Tim-Salzmann/l4casadi/examples
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results from a combination of its own effort, and the influence of the turbulent flow. Eq. (1)
can be written as a standard nonlinear dynamic system f , defined as

ẋ(t)=f(x(t),u(t),t)=u(t)+vfl(t,x(t)), (2)

whose states and inputs are the fish’s position x(t)=p(t) and velocity command u(t)=v(t).
To add realism to the problem, we constrain the fish’s actuation by imposing box constraints
on the velocity commands u∈ [u,ū], limit the trajectory to lie within the rivers bounds

[
p,p̄

]
and constrain the trajectory to dodge the stone generating the turbulent flow.

To compute the trajectory that minimizes the fish’s effort to reach the goal while swimming
upstream, we formulate the following Nonlinear Program (NLP):

min
x0,···,xN ,
u0,···,uN−1

N−2∑
k=0

∣∣∣∣∣∣∣∣uk+1−uk

∆t

∣∣∣∣∣∣∣∣2 (3a)

s.t. x0=p0,xN =pf , (3b)

xk+1=xk+∆t·f(xk,uk,tk), k=0,···,N−1, (3c)

u≤uk≤ ū, k=0,···,N−1, (3d)

p≤xk≤ p̄, k=0,···,N, (3e)

||xk||2≥r2st, k=0,···,N. (3f)

where p0 and pf are the initial and goal positions, ∆t is the time step and rst is the radius of
the stone located at the origin. The cost function (3a) minimizes the differences in subsequent
control (velocity) inputs which effectively minimizes the energy introduced into the system,
constraint (3b) sets the starting and ending positions, (3c) enforces the system dynamics
defined in (2), (3d) bounds the input commands, (3e) guarantees that the fish remains within
the river’s bounds and (3f) ensures that the fish does not collide with the stone. Notice that,
due to the spatial bounds in (3f) and yet-to-be-defined turbulent flow model vfl(·) within the
dynamic model f(x,u) in (3c), the NLP (3) is nonlinear and non-convex.

L4CasADi allows for implementing the NLP in (3) in CasADi, modeling the turbulent
flow vfl(t,p(t)) by a Neural Network that has previously been trained in PyTorch. Given the
nonlinear and non-convex structure of (3), the state-of-the-art interior-point solver IPOPT
Wächter and Biegler (2006) is chosen as a solver.

3.1.2. Outcome and Visualization

The trajectory obtained from solving the NLP (3) is illustrated in Fig. 1 through a series of
image sequences. The upper segment of figure (A) displays the magenta trajectory of the fish
juxtaposedwith the vorticity of the turbulent flow. Meanwhile, themiddle segment (B) portrays
the velocity field of the turbulent flow. In both instances, the stone is represented by a gray circle.
The third segment (C) shows the velocity commands necessary to trace this trajectory. For a
better insight, we encourage readers to view the accompanying animations for this example3.

Fig. 1 reveals that the computed trajectory strategically utilizes the velocity field of the
turbulent flow to minimize the energy required for reaching the objective. To put it simply,

3. Further visualizations and animations for the fish example can be found at https://github.com/

Tim-Salzmann/l4casadi/blob/main/examples/fish_turbulent_flow/README.md.
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A

B

T = 1.33 s T = 8.66 s T = 13.33 s

T = 18.4 s T = 20 sT = 16.66 s

Start

Start

End

End

T = 8.66 sT = 1.33 s T = 13.33 s

T = 16.66 s T = 18.4 s T = 20 s

Fish Start StoneEnd

C

Figure 1: Minimum energy trajectory (magenta) to navigate from the start (green) to the
goal (red) in the presence of a turbulent flow represented by its vorticity (A) and
velocity field (B). The trajectory generator is implemented in CasADi, while the
flow is modeled by a Neural Network in PyTorch3.

the object behaves like it’s riding/surfing the river’s current. Examining Fig. 1 enables us to
comprehend this phenomenon from three distinct perspectives: Firstly, in (A), it becomes
evident that the fish exploits the positive vortices (blue) to ascend and the negative ones (red)
to descend. This observation is similarly evident in (B), where the fish adeptly positions itself
per the velocity field, enabling it to exert minimal effort in the y-axis direction throughout
the majority of the navigation, as depicted by the green line in (C).
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3.2. Collision-free Trajectory Optimization in NeRFs

Neural Radiance Fields (NeRFs) are a powerful 3D representation technique that leverages
deep learning to reconstruct 3D scenes from a collection of 2D images. NeRFs encode the
scene’s geometry and appearance into a continuous function, allowing for the rendering of
photorealistic images from arbitrary viewpoints. As a byproduct, the densities (translucencies)
of the scene’s objects at any point in the 3D environment are implicitly captured in the network.
In this example, we demonstrate that such state-of-the-art learned models from computer
vision research can be easily incorporated into optimization procedures using L4CasADi .
To showcase this, we present the problem of finding a collision-free trajectory through the
densities represented by a learned NeRF, where densities below a predefined threshold are
deemed as unobstructed regions within the environment.

3.2.1. Problem Formulation

The trajectory to be planned is assumed to be given by a time-parametric polynomial of degree 9:

r(c,t)=

9∑
i=0

cit
i (4)

where the parametric variable t is time and c∈R9×3 are the polynomial’s coefficients.
L4CasADi enables the integration of a NeRF as an implicit environment representation

into the optimization problem. For this purpose, we define the following function:

ρ=fNeRF(p) (5)

where ρ∈R+ is the density of a location whose Euclidean coordinates are given by p∈R3, i.e.,
it returns 0 for obstacle-free space while its value increases as the location becomes occupied.

Having defined the analytical expression of the trajectory in (4) and the NeRF-based
environment representation in (5), we formulate a NLP that minimizes the curve’s snap, while
ensuring that it remains collision-free:

min
c

N∑
k=0

∣∣∣∣∣∣r(4)(c,tk)∣∣∣∣∣∣2 (6a)

s.t. r(c,0)=p0,r
(1)(c,0)=0,r(2)(c,0)=0, (6b)

r(c,T )=pf ,r
(1)(c,T )=0,r(2)(c,T )=0, (6c)

ρ̄>fNeRF(r(c,tk)), k=0,···,N, (6d)

where r(n)(·) is the n-th time derivative of eq. (4), N is the number of evaluation points, T
is the total time assigned to the trajectory. Constraints (6b) and (6c) define the starting and
ending conditions and (6d) ensures that the NeRF density at all points along the trajectory
is below a threshold ρ̄ and thus collision-free.

This problem, in its original form without the NeRF, is well-studied in the planning and
trajectory optimization community. Its mathematical structure allows it to be formulated
as a quadratic programming (QP) problem, which can be solved efficiently. Being able to
incorporate computer vision models in the problem formulation expands the scope of research
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(a) (b) (c)

Figure 2: NeRF renders of three examples with a collision-free minimum snap optimized
trajectory through the NeRF object. In each example, we vary the start point (blue)
and goal point (green).

possibilities but can simultaneously introduce greater complexity to the optimization task:
The NeRF in (5) makes the resulting NLP highly non-convex due to the non-smooth density
landscape as depicted in Fig. 3.

3.2.2. Implementation

We utilize a pre-trained NeRF of a yellow Lego bulldozer, a commonly employed example in
NeRF research. IPOPT Wächter and Biegler (2006) is again used as a solver. However, due
to the complexity of the problem, we apply a two-stage approach. The first phase optimizes
the trajectory to closely follow a sparse set of predetermined collision-free points, excluding
the NeRF constraint in Eq. (6d). This results in a sub-optimal yet feasible trajectory. In the
second phase, we initialize the solver with the first-phase solution and optimize for the full
NLP in Eq. (6) including constraining all points to have a lower NeRF density than ρ̄=1. To
ensure IPOPT utilizes the warmstarted trajectory in phase two, we initialize IPOPT with a
small barrier parameter µ=1e−4 (See Eq. (3a) in Wächter and Biegler (2006)). This compels
IPOPT to remain within the region of feasible solutions from the beginning.

3.2.3. Outcome and Visualization

Figure 3: 2D slice of Fig. 2.

The optimized trajectory for three different configu-
rations with varying start- and goal-points are shown
in Fig. 2. For a better understanding of the problem
space and the solution trajectories, we also visualize
a 2D slice through the environment with the three op-
timal trajectories in Fig. 3. The optimal minimal snap
trajectories are clearly collision-free with the NeRF’s
density representation. We encourage the reader to
view the accompanying animations for this example4.

4. Further visualizations and animations for the NeRF example can be found at https://github.com/

Tim-Salzmann/l4casadi/blob/main/examples/nerf_trajectory_optimization/README.md.
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Figure 4: Software Architecture of L4CasADi . The block details are presented in Section 4.

4. Framework Architecture

To facilitate a comprehensive grasp of the L4CasADi framework’s internal operations, the
software architecture of the L4CasADi framework is presented in Fig. 4. We will guide
the reader through the architecture step-by-step, using the figure’s background colors for
orientation.

Red In accordance with Section 2, L4CasADi models are invariably constructed in a Python
user program. This entails constructing the PyTorch model and subsequently passing it to the
L4CasADi Python class instantiation.

Purple L4CasADi symbolically traces the forward pass, the Jacobian, and Hessian of the
passed PyTorch model and stores these symbolic representations. Tracing is supported for
virtually every PyTorch model architecture. Further, L4CasADi auto-generates the function
as C++ code.

Green The generated code includes the functionality of the libl4casadi library, which facili-
tates the evaluation of saved PyTorch Traces efficiently within C/C++. These functionalities
are exported adhering to the CasADi C interface. The generated code is automatically
compiled to a shared library (L4CasADi Shared Library Function).

Yellow For direct use of the L4CasADi model within Python (as described in Section 2.1)
the shared library, exporting function symbols adhering to CasADi’s C interface, is loaded
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by the Python interface of CasADi within the L4CasADi Python class (purple). L4CasADi
returns this external function to the Python user program as a CasADi function, which at
that point can be seamlessly included in any CasADi computational graph and optimization.
By providing derivative information complying with CasADi’s C interface naming convention,
first and second-order derivatives of the L4CasADi model are available in the CasADi graph.

Blue In addition to directly using the L4CasADi model in the instantiating Python program,
the compiled L4CasADi Shared Library Function can be loaded and used in C/C++, Matlab,
or Python standalone applications (See Section 2.2).

5. Related Work

The increasing prevalence of data-drivenmodels in optimization has spurred a surge of scholarly
contributions, making it infeasible to comprehensively review the entire landscape of this
domain within the scope of this discussion. Instead, we will concentrate on specific frameworks
that integrate learned models with numerical optimization techniques, specifically PyTorch
and CasADi.

Learning and Numerical Optimization Multiple approaches have been proposed to
bring advanced numerical optimization algorithms within learning frameworks like PyTorch
and TensorFlow Amos et al. (2018); Wang et al. (2023). However, these integrations often
result in the re-implementation of individual solver algorithms within the learning framework,
which may not exhibit the same robustness and maturity as the well-established solvers
within CasADi. Recently, NeuroMANCER Drgona et al. (2023) enables the formulation of
optimization problems entirely in PyTorch. Naturally, learned components in PyTorch can be
included, even optimized within the problem solution. However, because NeuroMANCER is
restricted to the PyTorch environment they are mostly limited to the first-order solvers within
— not using second-order approaches such as IPOPT or SQP which have been proven to be
efficient and robust.

PyTorch and CasADi The demand for such a framework within the community is evident
from prior endeavors aimed at uniting the two concepts of learning in PyTorch and optimization
in CasADi. Multiple packages, do-mpc Fiedler et al. (2023), HILO-MPC Pohlodek et al.
(2022), and ML-CasADi Salzmann et al. (2023), provide the capabilities to rebuild simple
architectures of PyTorch models directly in CasADi by copying the learned weight tensors and
formulate matrix multiplications and activation functions in CasADi. This approach, similar
to Näıve L4CasADi (Section 2.3), is restricted to models comprised of the limited CasADi
function set. Further, CasADi’s function set is not optimized for large matrix multiplications
and can not use hardware acceleration. Additionally, Salzmann et al. (2023); Lahr et al. (2023)
calculate function evaluations and sensitivities for the learned model separated from CasADi
in the PyTorch framework and subsequently injects these results into the CasADi graph.
The applicability of this approach, however, is limited to specific optimization algorithms
and introduces inefficiencies in the form of excessive context switches and memory transfers
between CasADi and PyTorch.
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