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Abstract
Machine Learning (ML) based control, particularly Reinforcement Learning (RL), has achieved
impressive advancements but is often black-box and lacks worst-case guarantees in safety-critical
systems. In contrast, classical model-based control offers stability guarantees but usually under-
performs the machine-learned black-box controller. This motivates us to combine machine-learned
black-box and model-based controllers. Due to the nonconvexity of the space of stable controllers,
a simple convex combination of the two controllers can lead to instability. We propose using Dis-
turbance Response Control (DRC) to reparameterize the two controllers, ensuring the convexity of
the stable controller space. We then propose λ-CLEAC, which adaptively combines the machine-
learned black-box controller and the model-based controller in the DRC parameterization. We
prove that our approach achieves the best of both worlds: stability as in model-based control and
similar regret bounds as the machine-learned controller.
Keywords: Learning-augmented control, stability, black-box policy

1. Introduction

Machine-learned controllers, such as those learned by Reinforcement Learning (RL), have
demonstrated remarkable success in various domains, including game playing (Kiran et al. (2021);
Silver et al. (2018)), fine-tuning of large language models (Chang et al. (2023); Lee et al. (2023)),
online advertising (Zhao et al. (2021)). However, when it comes to safety-critical systems such
as robotics, energy management, and autonomous driving, machine-learned controllers are often
black-box controllers that fall short in providing worst-case guarantees. This is in sharp contrast
with model-based control, where tools such as Linear Quadratic Regulators (LQR), Model Predic-
tive Control (MPC), and robust control (Anderson and Moore (2007); Garcı́a et al. (1989); Dorato
(1987)) can help provide stability guarantees (Dean et al. (2017); Doyle (1996)). This discrepancy
motivates the need for learning-augmented control, which is to combine a machine-learned black-
box controller with a model-based controller to obtain a controller with good performance when
the machine-learned black-box controller is effective while maintaining stability guarantees of the
model-based controller.

The motivation described above has driven significant progress in the design of learning-augmented
algorithms for a wide range of problems. This line of work aims to leverage machine-learned black-
box advice to counterbalance the conservatism of traditional algorithms designed to optimize worst-
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case performance bounds, thus achieving near-optimal performance when the machine-learned ad-
vice is reliable while ensuring performance bounds when the machine-learned advice is not depend-
able. For example, learning-augmented algorithms have been designed for various online problems,
such as ski rental (Shah and Rajkumar (2021); Wang et al. (2020)), caching (Lykouris and Vas-
silvtiskii (2018); Rohatgi (2020); Wei (2020)), convex body/function chasing (Christianson et al.
(2022); Sellke (2023); Rutten et al. (2023)), and more generally, metrical task systems (Antoniadis
et al. (2023); Christianson et al. (2023)). The underlying idea of these algorithms is usually via
switching between the untrusted machine-learned and the model-based decisions or, more generally
speaking, combining the decisions in a convex way.

When it comes to designing learning-augmented algorithms for dynamical systems, there have
been several recent works (Nagabandi et al. (2018); Rosolia and Borrelli (2018); Pong et al. (2018);
Qu et al. (2021); Li et al. (2022a,b), where the idea of a convex combination between machine-
learned and model-based controllers is also employed. However, there is a critical issue with di-
rectly combining two controllers via a convex combination. It is widely known that the space of
stable controllers is not convex (Fazel et al. (2019)), so combining two stable controllers through a
naive convex combination could lead to instability. To see this, in the most basic linear dynamical
system setting, it is easy to construct examples where some convex combination of two stable linear
controllers K and K ′ can be unstable Fazel et al. (2019). This shows that the convex combination
idea is not suitable for designing learning-augmented algorithms for dynamical systems. In previ-
ous work (Li et al. (2022a)), to counteract the above problem, the convex combination parameter
for the machine-learned black-box controller must be set to close to 0 after a finite number of steps,
meaning that it does not fully utilize the potential benefits of the machine-learned black-box con-
troller. This leads us to ask the question: Rather than combining the controllers directly using a
convex combination, is there another way to combine the controllers to fully realize the potential
benefits of the machine-learned black-box controller?

Contributions. In this paper, we propose a novel approach to address the above question.
Rather than simply using a convex combination of the two controllers, our high-level idea is to
reparameterize the controllers to make the space of the stable controllers convex. This allows us to
combine these reparameterized controllers while ensuring stability. Specifically, we use the Distur-
bance Response Control (DRC) parameterization proposed by (Simchowitz et al. (2020)). Although
DRC was originally used for linear controllers in LTI systems, we generalize the scheme to nonlin-
ear controllers and prove the convexity of the space of stable controllers in LTI systems. With the
DRC parameterization of the machine-learned black-box controller and the model-based controller,
we propose λ-CLEAC, which adaptively selects the confidence parameters that combine the two
controllers. We show that in the LTI setting, λ-CLEAC achieves a bounded state norm (stability)
as well as similar regret as the machine-learned black-box controller. This implies that when the
machine-learned black-box controller performs well, our algorithm also performs well while main-
taining stability guarantees. Additionally, our work extends beyond LTI systems, generalizing to
LTV systems and LTI systems with model mismatch. In both settings, we provide adaptive policies
to combine the two controllers and show similar guarantees: the bounded state norm (stability) and
similar regret bounds as the machine-learned black-box controller. Finally, we perform experiments
to validate the effectiveness of our approach.

Related Work. Our research is broadly related to reinforcement learning literature (Oh et al.
(2020); Canese et al. (2021); Moerland et al. (2023); Szepesvári (2022); Kaelbling et al. (1996)) and
the learning-based control literature (Levine (2018); Wabersich and Zeilinger (2018); Hewing et al.
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(2020); Fisac et al. (2019); Buşoniu et al. (2018)). More specifically, work is connected to a range
of works aiming to bridge machine-learned black-box and model-based approaches.

Combination of model-based controllers with model-free controllers. Our study contributes to
the latest research endeavors that aim to combine model-free and model-based controllers for online
control. We include some of the prominent works in this field below: Pong et al. (2018) establishes
a connection between Q-learning and model predictive control (MPC). Rosolia and Borrelli (2018)
explores MPC methods incorporating penalty terms acquired through model-free algorithms. Naga-
bandi et al. (2018) employs deep neural network dynamics models to initialize a model-free learner,
enhancing sample efficiency while preserving high task-specific performance. In Qu et al. (2021),
the authors examine a specific dynamical system described by xt+1 = Axt + But + r(xt), where
f represents residual dynamics, and demonstrate that initializing a model-free policy with a model-
based approach is guaranteed to converge toward a nearly optimal linear controller. Our work is
mostly related to Li et al. (2022a), where the authors provide a policy that adaptively chooses the
confidence parameters to combine the machine-learned black-box controller with a model-based
one, ensuring stability and a competitive ratio. However, a downside of this approach is its tendency
to overlook the machine-learned black-box controller after a finite number of steps. In contrast, our
algorithm addresses this limitation by consistently upholding a positive confidence parameter for
the machine-learned black-box controller.

Learning-augmented online problems. The idea of harnessing the machine-learned black-box
advice with traditional robust online algorithms, known as learning-augmented algorithms, has
motivated significant research advancement in various online algorithm settings, such as ski rental
(Shah and Rajkumar (2021); Wang et al. (2020)), caching (Lykouris and Vassilvtiskii (2018); Ro-
hatgi (2020); Wei (2020)), convex body/function chasing (Sellke (2023); Rutten et al. (2023)), and
metrical task systems (Antoniadis et al. (2023); Christianson et al. (2023)). Typically, these algo-
rithms make decisions by dynamically switching between the machine-learned black-box decision
and the model-based decision or more broadly speaking, by combining them in a convex manner.
However, when dealing with dynamical systems, directly combining two stable controllers in a
convex way can lead to instability. Our contribution lies in addressing this challenge by reparame-
terizing the controller space so that the space of stable controllers becomes convex.

2. Problem Formulation and Preliminaries

2.1. Problem Formulation

Consider a general dynamical system

xt+1 = ft(xt, ut, wt), (1)

where xt ∈ Rn is the system state, ut ∈ Rm is the control action at time t, ft : Rn × Rm × Rn is
the system dynamic, and wt ∈ Rn are the disturbance. We study the following control problem:

min
ut:t≥0

T∑
t=0

bt(xt) + ct(ut), subject to (1),

where bt : Rn → R and ct : Rm → R are convex and differentiable for all t ≥ 0, with a fixed initial
state x0 ∈ Rn.
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Suppose we are provided with a machine-learned black-box controller gml and a model-based
controller gmb. The model-based controller is known to be stable, whereas the machine-learned
black-box controller has potentially superior control performance, but may sometimes be unstable.
Our goal is to design a controller that achieves similar stability guarantees as the model-based
controller, and similar performance as the machine-learned black-box controller when it performs
well.1 More formally, by stability, we use the following definitions.

Definition 1 A system (1) is input-to-state stable (ISS) under a controller if, for any bounded
disturbance sequence ∥wt∥ ≤ W , there exists some C1, C2 > 0, such that for all t ≥ 0 and
x0 ∈ Rn, ∥xt∥ ≤ C1∥x0∥ + C2W . A system (1) is exponential input-to-state stable (Exp-
ISS) under a controller if, there exists some C1, C2 > 0, β ∈ (0, 1), such that for all t ≥ 0,
∥xt∥ ≤ C1β

t∥x0∥+C2W . Further, a system (1) is incrementally exponential input-to-state stable
(Inc-Exp-ISS) under a controller, if there exists C1, C2 > 0, β ∈ (0, 1), such that for all t ≥ 0,

∥x1t − x2t ∥ ≤ C1β
t∥x10 − x20∥+ C2∥W1 −W2∥∞, (2)

where {x1t } and {x2t } are two trajectories under the controller starting at x10, x
2
0 and under distur-

bances w1
0, w

1
1 . . . and w2

0, w
2
1, . . . respectively. NotationsW1 = [w1

0 | w1
1 | · · · | w1

t ]
T ,W2 = [w2

0 |
w2
1 | · · · | w2

t ]
T are the disturbances stacked in matrix form for the two trajectories respectively.

Further, the performance is formally defined as regret.

Definition 2 Let ALG be an online algorithm that chooses control action ut at each time t. Define
its performance cost as Cost(ALG) =

∑T
t=0 bt(xt)+ct(ut). Similarly, let Cost(OPT ) be the cost

of the offline optimal controller; let Cost(ALG) be the cost of the algorithm ALG. Then we define
regret of ALG as Regret(ALG) = Cost(ALG)− Cost(OPT).

With the above definition, our goal can be formally stated as How to combine the machine-
learned black-box controller and the model-based controller to get a controller that is ISS and
further achieves similar regret bound as the machine-learned black-box controller?

In answering the above question, we will first consider the LTI setting (in Section 3),

ft(xt, ut, wt) = Axt +But + wt, (3)

as the LTI setting streamlines the presentation and best illustrates our ideas. Here, we assume that A
satisfies ∥At∥ ≤ CAρ

t for some CA > 0 and ρ ∈ (0, 1). Our result easily generalizes beyond LTI,
and in Section 4, we consider the Linear Time-Varying (LTV) system and LTI system with model
mismatch, which are general enough to capture many realistic dynamical systems.

Finally, in the LTI setting, we assume the system matrices A,B are known, which is reasonable
if one has a simulator for the underlying dynamics. In addition, this assumption will be relaxed in
the LTV and the LTI with a model mismatch setting. In the LTV setting, only the systems matrices
up to the current time step need to be known, which is realistic as the LTV system can be thought as
a linearization of the nonlinear system around the past trajectory; in the LTI with nonlinear model
mismatch setting, the nonlinear mismatch is unknown, which is also realistic as oftentimes, one has
a good linear approximation of the unknown nonlinear system, and the mismatch can be thought as
the linearization error.

1. In the paper, we label variables related to the machine-learned black-box controller as ml and the model-based
controller as mb.
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2.2. DRC parameterization

As mentioned earlier, if we naively combine two controllers gml and gmb with convex parameter
λ ∈ [0, 1] to get λgml + (1 − λ)gmb, the combined controller can be unstable even if both gml and
gmb are stable. This issue motivates us to reparameterize the controllers using Disturbance Response
Control (DRC), which is commonly used in online control.

We now introduce DRC parameterization for linear controllers in LTI systems (3), which was
proposed by Simchowitz et al. (2020). We first define the natural state.

Definition 3 Given a sequence of disturbances wt and initial state x0, the natural states for the
LTI system (3) are

xnt = Atx0 +
t−1∑
i=0

At−1−iwi. (4)

DRC parameterization means that instead of writing the controller as a function of the current ob-
served state g(xt), it writes the controller as a function of the natural states, which according to (4)
are independent of the past control actions ut. As an example, we show that the linear controller
ut = Kxt can be written in the DRC form. Note that we have wt = xnt+1 − Axnt , so we can then
reparameterize the state xt as a linear function of the natural states:

xt = (A+BK)xt−1 + wt−1 = (A+BK)txn0 +

t−1∑
i=0

(A+BK)t−1−i(xni+1 −Axni ).

Then we can rewrite ut = Kxt as ut =
∑t

i=0Mix
n
t−i ≈

∑h
i=0Mix

n
t−i, where Mi =

KBK(A + BK)i−1. Here, the controller is parameterized by (M0, . . . ,Mh) for some constant
h ≪ t that acts upon the natural states xni . The approximation is valid up to error O(exp(−h)) if
K is a stable controller, i.e. the spectral radius ρ(A+BK) < 1.

The benefit of DRC is that the control input ut can be written as a convex function of (M0, . . . ,Mh),
which also means the space of stable controllers is convex. Note that the original definition of DRC
is only for LTI systems and linear controllers. In the next subsections, we will generalize DRC to
nonlinear controllers, which will be vital to developing our approach.

3. Main Results

As mentioned in the previous section, throughout the section, we focus on the LTI setting (3)
as this streamlines the presentation and best illustrates our core idea. We generalize beyond LTI in
Section 4.

To present our result, we first generalize the DRC parameterization to nonlinear controllers
and show that the space of stable nonlinear controllers is convex after DRC parameterization (Sec-
tion 3.1). Then, utilizing this result, we propose to combine the machine-learned black-box con-
troller and the model-based controller in DRC parameterization, and we propose λ-CLEAC that
adaptively selects the confidence parameter (Section 3.2). Finally, we formally prove the stability
and regret bounds for λ-CLEAC (Section 3.3). Due to space limits, all proofs of the paper can be
found in the online appendix, accessible at Shen et al. (2023).
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3.1. DRC for nonlinear controllers

As Section 2.2 gives the DRC parameterization for linear controllers in LTI systems, we now
generalize the DRC for nonlinear controllers in LTI systems. Consider a nonlinear controller g :
Rn → Rm, which gives the control input ut = g(xt) and generates the state sequence

xt = Axt−1 +Bg(xt−1) + wt−1, (5)

where A satisfies ∥At∥ ≤ CAρ
t for some CA > 0 and ρ ∈ (0, 1) and g is L0-Lipschitz, i.e.

∥g(x)− g(y)∥ ≤ L0∥x− y∥ for all x, y ∈ Rn.
Define the natural states the same way as in (4), i.e. xnt = Atx0 +

∑t−1
i=0 A

t−1−iwi, so that
it only depends on the initial state x0 and the noise inputs wi. We show that we can rewrite any
Inc-Exp-ISS controller as a function of the natural states with an exponentially small approximation
error:

Theorem 4 Consider the LTI system (3) with bounded disturbance sequence ∥wt∥ ≤ W , with
the norm satisfying ∥v∥1 ≤ C0∥v∥ for some C0 > 0 for all v. Let ut = g(xt) be an Inc-Exp-
ISS controller with parameters C1, C2, β. Then for any h ≤ t, h ∈ Z+, there is a function G :
Rn × · · · × Rn︸ ︷︷ ︸

h+1 times

→ Rm s.t. ∥g(xt)− G(xnt−h, · · · , xnt )∥ ≤ L0C0C1C2β
h+1W .

The proof of Theorem 4 can be found in Appendix A.1 Shen et al. (2023). The above theorem
shows that any stable nonlinear controller can be converted to DRC parameterization as given by the
function G, which shows the generality of DRC. This theorem also justifies our following algorithm
which combines two controllers in their DRC form.

In what follows, we show an important benefit of DRC parameterization, which is when com-
bining two stable controllers, the resulting controller is stable. The proof of Theorem 5 can be found
in Appendix A.2 in Shen et al. (2023).

Theorem 5 Let G1,G2 be two DRC controllers that are Exp-ISS. Then for any λ ∈ [0, 1], the
combined controller G = λG1 + (1− λ)G2 is also Exp-ISS.

3.2. Proposed Algorithm

The previous section shows the set of stabilizing controllers is convex in DRC parameteriza-
tion. We utilize this fact and propose to combine the model-based and machine-learned black-box
controller in the DRC parameterization. Our approach features adaptively selecting confidence co-
efficients, λt ∈ [0, 1] to combine the machine-learned and the model-based controllers in the DRC
parameterization, which ensures that the resulting controller is stable and performs well when the
machine-learned black-box controller performs well.

Consider the LTI system (3). Suppose we are given a machine-learned black-box controller
uml
t = Gml(xnt−h, · · · , xnt ) and a model-based controller umb

t = Gmb(xnt−h, · · · , xnt ), yielding two
state sequences given by

xml
t = Axml

t−1 +Buml
t−1 + wt−1 and xmb

t = Axmb
t−1 +Bumb

t−1 + wt−1, (6)

with initial states xml
0 = xmb

0 = x0. The machine-learned black-box controller can potentially be
unstable, but the model-based controller is stable, indicated in Assumption 6(a). Otherwise, we do
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not place other assumptions, other than the control action should have bounded norms (Assump-
tion 6(b)), which is a reasonable assumption, as in many problem settings, there is a saturation limit
for the control actions.

Assumption 6 We place the following two assumptions on the two controllers

(a) The model-based policy Gmb stabilizes the system (3), i.e. for any fixed initial state x0 ∈ Rn

and norm ∥ · ∥, there exists Rmb > 0 such that for all t ≥ 0, ∥xmb
t ∥ ≤ Rmb, where xmb

t is
defined in (6).

(b) For both policies Gml and Gmb, the control actions have bounded norms, i.e. for any fixed ini-
tial state x0 ∈ Rn and norm ∥ · ∥, there exists U > 0 such that for all t ≥ 0, ∥uml

t ∥, ∥umb
t ∥ ≤

U .

Algorithm 1: λ CONVEX LEARNING AS-
SISTED CONTROL (λ-CLEAC)

Data: System parameters A,B; DRC
controllers Gml,Gmb

1 R← Rmb + L

2 xml
0 = xmb

0 = x0
3 for t ≥ 0 do
4 Observe xt, calculate

wt−1 = xt −Axt−1 −But−1

5 xnt = Axnt−1 + wt−1

6 uml
t = Gml(x

n
t−h, · · · , xnt )

7 umb
t = Gmb(x

n
t−h, · · · , xnt )

8 if ∥xml
t ∥ ≤ R then

9 λt ← 1
10 else
11 λt =

R−Rmb

∥xml
t ∥−Rmb

12 end
13 Apply control action

ut = λtu
ml
t + (1− λt)u

mb
t

14 end

Given the above two controllers, the pseudo-
code of the proposed algorithm is provided in
λ-CLEAC, which works intuitively as follows.
Initially, the user can adjust the threshold L (line
1). At each time step t, we first compute the nat-
ural state xnt (line 5), then compute the control
inputs of both machine-learned black-box and
model-based controllers via DRC parameteriza-
tion (lines 6-7). Then we can generate the machine-
learned black-box state input and compute its state
norm (line 8). We then compare the state norm
with the threshold and set the confidence param-
eter accordingly (lines 9 - 11).

One key step in our algorithm is the selec-
tion of λt, which is designed so that each time
the state norm of the machine-learned black-box
policy exceeds the threshold, we set the confi-
dence in the machine-learned black-box controller
λt to be R−Rmb

∥xml
t ∥−Rmb

< 1, and set it as 1 other-
wise. The rationale behind this approach lies in
the inherent property of the DRC parameteriza-
tion, where xt = λxml

t + (1− λ)xmb
t as long as

ut = λuml
t + (1− λ)umb

t , with a fixed λ.
We can show that, with a varying λt, we can still approximately have xt ≈ λtx

ml
t +(1−λt)x

mb
t ,

resulting in the inequality ∥xt∥ ≲ λt∥xml
t ∥+(1−λt)∥xmb

t ∥ ≤ λt∥xml
t ∥+(1−λt)Rmb. Our selection

of λt exactly makes the right-hand side of the above inequality to be bounded by R.
What sets our approach apart from the previous learning-augmented control policies is the fact

that we combine two controllers in the DRC parameterization. This allows us to use non-monotonic
confidence parameter λt. Compared to the state-of-art algorithm (Li et al. (2022a)), instead of
diminishing to close to zero, our algorithm produces λt’s that fluctuate in response to the machine-
learned black-box controller’s performance. This ensures that the system consistently considers the
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machine-learned black-box control actions, avoiding complete disregard after a finite number of
time steps. In the next Section, we show the stability and regret bounds for the proposed approach.

3.3. Stability and Regret Guarantees

The following theorem provides the stability guarantee of λ-CLEAC, with the notation intro-
duced in Assumption 6. The proof of this theorem can be found in Appendix A.3 in Shen et al.
(2023).

Theorem 7 λ-CLEAC is ISS-stable. That is, for all t ≥ 0, with ∥wt∥ ≤W , we have

∥xt∥ ≤ Rmb + L+
2CAU∥B∥
1− ρ2

. (7)

We then provide the regret bound for λ-CLEAC with respect to the machine-learned black-box
controller. To state the regret, we define the notion of Stability Violation (SV), which characterizes
how much the machine-learned black-box controller violates the stability constraint.

Definition 8 Let λt be as defined in λ-CLEAC. The stability violation of the machine-learned
black-box controller at time step t is

SVt := 1− λt =

{
0, if ∥xml

t ∥ ≤ R
∥xml

t ∥−R

∥xml
t ∥−Rmb

, otherwise
(8)

The intuition behind this definition is that: when the machine-learned black-box state norm
violates the threshold, λt will be smaller, so SVt := 1−λt is large, which is why we call it stability
violation. Given the above definition, the theorem below provides the regret bound of λ-CLEAC
using the regret of the machine-learned black-box controller and the stability violations. The proof
can be found in Appendix A.4 Shen et al. (2023).

Theorem 9 We have

Regret(λ-CLEAC) ≤ Regret(Gml) +
4CLCAU∥B∥

1− ρ
·

T∑
t=1

SVt, (9)

where CL = maxt∈[T ] ∥∇ht(xt)∥ ∈ O(1). In particular, if we have that both Regret(Gml) ∈ o(T )

and
∑T

t=1 SVt ∈ o(T ), then Regret(λ-CLEAC) ∈ o(T ).

Note that since we do not make any assumptions on the machine-learned black-box controller,
Regret(Gml) ∈ o(T ) happens when the machine-learned black-box controller performs particularly
well, e.g. when it is adaptive to the data or when it is exactly the optimal policy.

The insights from Theorem 7 and Theorem 9 reveal an important balance between stability and
regret, controlled by the adjustable parameter L. When we pick a higher L, it increases the stability
bound. However, this choice makes the threshold R = Rmb + L more lenient for the machine-
learned black-box controller, causing λt to be often large. This results in a small value of

∑T
t=1 SVt

and then leads to small regret bounds. Importantly, when both Regret(Gml) and
∑T

i=1 SVt are on
the order of o(T ), we achieve Regret(λ-CLEAC) ∈ o(T ) as well. These results not only ensure
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the stability of our combined controller but also ensure that it performs well when the machine-
learned black-box controller performs well. More importantly, when the machine-learned black-box
controller performs very well, we will have λt = 1 and SVt = 0 for all t, so then both Regret(Gml)
and

∑T
t=1 SVt will be close to 0, meaning that our algorithm achieves close to 0 regret.

Compared to the previous algorithm (Algorithm 1, Section 4.1 of Li et al. (2022a)) which is
also a λ-confident policy that combines a machine-learned black-box controller and a model-based
controller, our algorithm has the following benefits:

Firstly, our adaptive policy ensures that it never rules out the machine-learned black-box con-
troller, in the sense that even when it performs badly at a time step where we allocate a very small
confidence parameter λt to it, we may increase the confidence when it performs well in the fu-
ture, utilizing the future potential of the machine-learned black-box controller; whereas for their
algorithm, the confidence parameter for the machine-learned black-box controller monotonically
decreases to as small value, so the machine-learned black-box controller will be permanently ig-
nored even if it performs well in future time steps.

Secondly, as the result of the above, when the machine-learned black-box controller performs
well, our algorithm will fully trust it and achieve similar regret as the black-box controller. In
contrast, their algorithm does not necessarily achieve 1-competitiveness 2 even when the black-box
controller is the optimal controller because their algorithm never fully trusts the machine-learned
black box controller.

4. Beyond LTI

In this section, we seek to generalize the results in Section 3 to LTV systems and LTI systems
with nonlinear model mismatch. In particular, in both settings, we define the DRC parameterization
for the nonlinear controllers, show that the space of stable nonlinear controllers is convex after DRC
parameterization, provide adaptive algorithms, and prove stability and regret bounds. Due to space
limits, we only provide an overview of our results here. The details can be found in Appendix B
and Appendix C in Shen et al. (2023).
LTV. We consider the LTV system of the form

ft(xt, ut, wt) = Atxt +Btut + wt, (10)

The DRC parameterization generalizes to this setting (Definition 24 in Appendix B Shen et al.
(2023)) and we also show stable controllers can be converted to DRC format (15 in Appendix B
Shen et al. (2023)). The algorithm naturally generalizes to the LTV setting, and we can achieve the
following stability and regret result.

Theorem 10 (Informal version of Theorem 17 in Appendix B, Shen et al. (2023)) The adaptive
policy (λ-CLEAC) is ISS-stable for system (23), with the regret bound

Regret(λ-CLEAC) ≤ Regret(Gml) +O(1)

T∑
t=1

SVt. (11)

2. We say ALG is c-competitive if Cost(ALG) ≤ c · Cost(OPT) + b on any problem instance, where b ∈ R is some
constant independent of the problem instance.
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LTI with model mismatch. Another generalization we consider is the LTI system with an unknown
model mismatch, which is of the form:

ft(xt, ut, wt) = Axt +But + wt + r(xt), (12)

where r : Rn → Rn is ϵ-Lipschitz with ϵ > 0. We show that the DRC parameterization generalizes
to this setting (Definition 19 in Appendix C Shen et al. (2023)) and we also show stable controllers
can be converted to DRC format (Equation (36) in Appendix C Shen et al. (2023)). With some care-
ful modifications, λ-CLEAC can be generalized for LTI systems with an unknown model mismatch
(λ-CLEAC-M, Algorithm 3 in Appendix C Shen et al. (2023)), and we can achieve the following
stability and regret result.

Theorem 11 (Informal version of Theorem 22 and 24 in Appendix C, Shen et al. (2023)) The adap-
tive λ-confident policy (λ-CLEAC-M) is ISS-stable for system (34). The regret bound is

Regret(λ-CLEAC-M) ≤ (1 +O(ϵ))Regret(Gml) +O(1)

T∑
t=1

SVt +O(ϵT ). (13)

5. Simulations

To verify the efficacy of λ-CLEAC, we apply it to a synthetic dataset for the LTI systems. We
also conduct more simulations beyond the LTI setting, which due to space limit is postponed to
Appendix D (Shen et al., 2023).

We use synthetic data to show that our algorithm can stabilize an LTI system when given a
machine-learned black-box and a model-based controller. We consider a machine-learned black-
box controller that is periodically unstable, alongside a model-based controller that is always stable.
We choose the threshold parameter L = 10 and use λ-CLEAC to obtain a combined controller.

The outcomes are provided in Figure 5: The leftmost plot of Figure 5 demonstrates the variation
of the confidence parameter λt, reflecting fluctuations based on the performance of the machine-
learned black-box controller. In the middle plot, changes in the state norm of the combined con-
troller, the machine-learned black-box controller, and the model-based controller are presented; the
red line represents the theoretical stability bound, confirming its validity as a uniform upper limit for
the state norm of the combined controller. Lastly, the rightmost plot illustrates the tradeoff between
stability and regret of the combined controller. We choose the quadratic cost functions with some
shifts. As shown in the plot, with an increase in the threshold parameter L, the state norm of the
combined controller also increases, while the cost of the combined controller decreases and ulti-
mately converges to that of the machine-learned black-box controller. This aligns with our earlier
discussion on the tradeoff in Section 3.3.

6. Concluding Remarks

This work proposes a novel method to combine model-based and machine-learned black-box
controllers by using DRC parameterization. Adaptive policies are proposed for settings including
LTI, LTV, and LTI with model mismatch along with theoretical guarantees for stability and re-
gret. The effectiveness of the adaptive policies is validated through experiments. Future directions
include exploring theoretical results for more general dynamical systems and implementing our
algorithms for other practical settings.
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Figure 1: LTI Simulation Results
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