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Abstract
In this paper, we focus on the problem of shrinking-horizon Model Predictive Control (MPC) in
uncertain dynamic environments. We consider controlling a deterministic autonomous system that
interacts with uncontrollable stochastic agents during its mission. Employing tools from conformal
prediction, existing works derive high-confidence prediction regions for the unknown agent tra-
jectories, and integrate these regions in the design of suitable safety constraints for MPC. Despite
guaranteeing probabilistic safety of the closed-loop trajectories, these constraints do not ensure
feasibility of the respective MPC schemes for the entire duration of the mission. We propose a
shrinking-horizon MPC that guarantees recursive feasibility via a gradual relaxation of the safety
constraints as new prediction regions become available online. This relaxation enforces the safety
constraints to hold over the least restrictive prediction region from the set of all available prediction
regions. In a comparative case study with the state of the art, we empirically show that our approach
results in tighter prediction regions and verify recursive feasibility of our MPC scheme.
Keywords: MPC, Dynamic Environments, Conformal Prediction

1. Introduction

In safety-critical situations, predicting the behavior of uncontrollable dynamic agents is essential for
systems that operate among them. For example, a mobile robot that navigates among pedestrians is
responsible for the safety of itself and any humans it encounters on its path. To facilitate planning
in such environments, Model Predictive Control (MPC) schemes that incorporate predictions of the
future agent states have been developed, see, e.g., [Trautman and Krause, 2010; Kuderer et al., 2012;
Wang et al., 2022; Yoon et al., 2021; Nair et al., 2022]. However, uncertainty in the predictions can
jeopardize safety, potentially allowing the system to approach the true location of the agents.

The authors in [Du Toit and Burdick, 2011a,b] quantify prediction uncertainty in the case of
spherical or Gaussian-distributed agents and derive a probabilistic collision-checking constraint
for MPC. In [Fisac et al., 2018; Fridovich-Keil et al., 2020], Bayesian inference is used to esti-
mate uncertainty in the prediction of human motion. The scheme in [Zhu et al., 2022] provides a
sample-based estimate of the uncertainty for Gaussian-process predictors. In [Wei et al., 2022], a
bootstrapped predictor is employed and distribution-free constraints are derived to ensure proba-
bilistic safety. In all the aforementioned works, uncertainty quantification is restricted to particular
predictors (e.g., Gaussian processes) or agent models/distributions (e.g., Gaussian agents). These
limitations prevent the corresponding MPC schemes from providing safety guarantees for state-of-
the-art predictors (e.g., neural networks) and arbitrary stochastic agents (e.g., non-Gaussian agents).
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In statistics, a more general technique for uncertainty quantification is provided by conformal
prediction [Vovk et al., 2005; Shafer and Vovk, 2008]. The key idea is to use a calibration dataset
to design high-confidence prediction regions for the test data. This method is compatible with any
prediction algorithm, without imposing any assumptions on the data distribution. Conformal pre-
diction has been recently employed in various safety-critical applications of autonomous systems.
Application examples include detection of unsafe situations [Luo et al., 2022], generation of proba-
bilistically safe reachable sets [Muthali et al., 2023], safety verification [Bortolussi et al., 2019; Fan
et al., 2020; Lindemann et al., 2023b], and safe open-loop control [Tonkens et al., 2023].

In the context of MPC, conformal prediction for dynamic agent trajectories has been explored to
certify safety during control implementation. When the test trajectories are included in the training
data, the conformal prediction regions from [Chen et al., 2021] guarantee probabilistic safety. The
MPC scheme in [Dixit et al., 2023] adaptively quantifies prediction uncertainty, providing an aver-
age probabilistic safety guarantee. Conceptually closest to our work are the shrinking-horizon MPC
schemes presented in [Lindemann et al., 2023a; Yu et al., 2023], where safety is ensured jointly at
all time steps with high probability. In [Lindemann et al., 2023a], the authors achieve this by union
bounding over the one-step ahead prediction regions corresponding to all time steps. In contrast,
the authors in [Yu et al., 2023] simultaneously design high-confidence regions for one-step ahead
predictions without employing union bounding. Despite their strong safety guarantees, neither of
the respective MPC schemes is ensured to be feasible for the entire duration of system operation.

In this paper, we focus on jointly providing recursive feasibility and probabilistic safety guar-
antees for shrinking-horizon MPC in dynamic environments. In particular, we consider a determin-
istic autonomous system interacting with uncontrollable dynamic agents, whose trajectories follow
an unknown distribution. Given a learning-based trajectory predictor, we obtain online-updated
estimates of the agent trajectories. Employing these estimates along with tools from conformal
prediction, we derive updated prediction regions for the future agent states at each time step (see
Figure 1). Unlike [Lindemann et al., 2023a], where union bounding is employed, we simultaneously
construct high-confidence prediction regions over multiple time steps, inspired by the approach in
[Yu et al., 2023]. In contrast to [Lindemann et al., 2023a; Yu et al., 2023], where high-confidence
regions for one-step ahead predictions are derived, we obtain high-confidence prediction regions for
all prediction time steps. We leverage these regions to design appropriate safety constraints for all
future system states at each time step. Our main contributions are the following:

i) Employing our safety constraints, we develop a recursively feasible and probabilistically safe
shrinking-horizon MPC scheme. Recursive feasibility is ensured by the gradual relaxation
of our constraints as updated prediction regions are constructed online. Probabilistic safety
is guaranteed by the fact that our constraints rely on high-confidence prediction regions. To
the best of our knowledge, our MPC scheme is the first to ensure recursive feasibility, while
maintaining probabilistic safety, for arbitrary trajectory predictors and stochastic agents.

ii) We empirically show that our conformal prediction method results in tighter prediction re-
gions than the one in [Lindemann et al., 2023a]. We also verify recursive feasibility of the
proposed MPC scheme in a comparative simulation.

All proofs are included in [Stamouli et al., 2024, Appendix A].
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Fig. 1: We predict trajectories of dynamic agents using arbitrary predictors (e.g., neural networks) and
employ conformal prediction to bound the uncertainty in high-confidence prediction regions (blue squares).

2. Problem Formulation

Consider a discrete-time nonlinear dynamical system of the form:

xt+1 = f(xt, ut), (1)

where xt ∈ Rn denotes the state, ut ∈ Rm the control input, and f : Rn ×Rm → Rn the dynamics
function. Suppose that the system is subject to state and input constraints of the form:

xt ∈ Xt, t = 0, . . . , T, (2)

ut ∈ Ut, t = 0, . . . , T − 1, (3)

respectively, where T ≥ 1 is the total mission time.1 Moreover, consider a control performance
objective determined by the following cost function:

JT (x0;u0, . . . , uT−1) = Jf (xT ) +
T−1∑
t=0

J(xt, ut), (4)

where J : Rn × Rm → R+ evaluates the stage cost at each time step t = 0, . . . , T − 1, and
Jf : Rn → R+ the terminal cost at time T .

The system operates in an environment with N dynamic stochastic agents whose trajectories
are a priori unknown. Let Yt :=

[
Y ⊺
t,1, . . . , Y

⊺
t,N

]⊺
represent the joint agent state at time t, where

Yt,j ∈ Rp denotes the state of agent j at time t. The system can sequentially collect observations
Y0, . . . , Yt of the joint agent state, while being controlled up to time t. The joint agent trajectory
Y0:T :=

[
Y ⊺
0 , . . . , Y

⊺
T

]⊺ is assumed to be sampled from an unknown probability distribution D.

Assumption 1 The state xt of system (1) does not change the distribution D of the joint agent
trajectory Y0:T , for any t = 0, . . . , T − 1.

Assumption 1 approximately holds in many applications and is standard in prior work [Linde-
mann et al., 2023a; Yu et al., 2023]. We reserve a comprehensive study of distribution shifts for
future work. In addition to the constraints (2) and (3), we consider the dynamic agent constraints:

c(xt, Yt) ≥ 0, t = 0, . . . , T, (5)
1We assume that the initial state satisfies the constraint (2) (i.e., x0 ∈ X0).
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where c : Rn × RNp → R is L-Lipschitz in its second argument with respect to some norm ∥·∥.2
While safety is the main focus of our work, the function c(·, ·) can encode diverse objectives, from
collision avoidance to dynamic agent tracking (see Section 5 for a particular example of collision
avoidance). Given the fact that the trajectory Y0:T is a priori unknown, the constraints imposed by
(5) on the system state xt are also a priori unknown. However, we assume availability of an offline
dataset D := {Y (1)

0:T , . . . , Y
(K)
0:T }, where the joint agent trajectories Y (i)

0:T :=
[
Y

(i)⊺

0 , . . . , Y
(i)⊺

T

]⊺
are

independently drawn from D. Employing the dataset along with online observations of Y0:T , our
goal is to develop a recursively feasible MPC with probabilistic safety guarantees for system (1).

Problem 1 (Recursively Feasible and Probabilistically Safe Shrinking-Horizon MPC in Dy-
namic Environments) Given a failure probability δ ∈ (0, 1), design a recursively feasible shrinking-
horizon model predictive controller for system (1), that minimizes the cost function (4), while guar-
anteeing the satisfaction of (2), (3), and:

P

(
T⋂
t=0

{
c(xt, Yt) ≥ 0

})
≥ 1− δ. (6)

In the next section, we provide some background on trajectory predictors and employ conformal
prediction to derive high-confidence prediction regions for the future agent states, for every t =
0, . . . , T − 1. We will leverage these regions to develop a recursively feasible shrinking-horizon
MPC scheme that ensures satisfaction of the probabilistic safety guarantee (6) (see Section 4).

3. Online-updated Conformal Prediction Regions for Dynamic Agent Trajectories

The main challenge in addressing Problem 1 lies in the absence of prior knowledge of the joint agent
trajectory Y0:T . The trajectory Y0:T is a key component of the dynamic agent constraints (5), which
are imposed on the state of system (1), and are critical to the safety of a model predictive controller.
To address this issue, we first split the dataset D into a training set Dtrain and a calibration set
Dcal. Employing the dataset Dtrain, we can develop an algorithm that, at each time t, predicts the
future agent states Yt+1, . . . , YT , as described in Subsection 3.1. Exploiting the dataset Dcal, we can
bound the uncertainty of the resulting estimates in high-confidence conformal prediction regions, as
detailed in Subsection 3.2. We note that our results in Subsection 3.2 are inspired by the approach
in [Yu et al., 2023] (see Remark 1 for details).

3.1. Trajectory Predictors

Recall that system (1) can sequentially collect observations Y0, . . . , Yt of the joint agent state, while
being controlled up to time t. By feeding Yt into a trajectory prediction algorithm, we can generate
estimates Ŷt+1|t, . . . , ŶT |t of the future agent states Yt+1, . . . , YT , respectively.

As outlined in [Lindemann et al., 2023a], a trajectory predictor can be formed by learning a
predictive model g : RNp → RNp from the dataset Dtrain. For a given observation Yt, the model
g(·) should produce an estimate Ŷt+1|t of the next state Yt+1. We can recursively generate the
remaining estimates Ŷt+2|t, . . . , ŶT |t, by sequentially inputting Ŷt+1|t, . . . , ŶT−1|t to the learned
model g(·). This method is compatible with any learning algorithm and model architecture. For

2We assume that the initial state satisfies the constraint (5) (i.e., c(x0, Y0) ≥ 0).
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example, the function g(·) could be modeled as a Recurrent Neural Network (RNN), an architecture
that has been widely adopted in trajectory prediction [Salehinejad et al., 2017].

3.2. Online-updated Conformal Prediction Regions based on Trajectory Predictors

In the previous subsection, we explained that at each time t, we can obtain predictions Ŷt+1|t, . . . ,

ŶT |t of the future agent states Yt+1, . . . , YT , respectively, by using trajectory predictors. To bound
the uncertainty of these predictions, we will design valid prediction regions of the form:∥∥Yτ − Ŷτ |t

∥∥ ≤ Cτ |t. (7)

By valid prediction regions, we mean that for any given δ ∈ (0, 1), the following guarantee:

P

(
T−1⋂
t=0

T⋂
τ=t+1

{∥∥Yτ − Ŷτ |t
∥∥ ≤ Cτ |t

})
≥ 1− δ (8)

should be satisfied by (7).3

The challenges in deriving valid prediction regions are twofold. First, the distribution D over
trajectories is unknown and may deviate from standard assumptions (e.g., Gaussianity). Second,
the trajectory predictor can be highly complex (consider, e.g., a neural network predictor). To
address these issues, we employ a tractable variant of conformal prediction, referred to as split
conformal prediction [Papadopoulos, 2008]. This method is compatible with any prediction al-
gorithm, without imposing any assumptions on the data distribution. Let Y (i)

t denote the state at
time t in the trajectory Y

(i)
0:T ∈ D and let Ŷ (i)

τ |t be the prediction of Y (i)
τ at time t. Moreover, let

Itrain = {i : Y
(i)
0:T ∈ Dtrain} and Ical = {i : Y

(i)
0:T ∈ Dcal}. The main idea is to compute the

values Cτ |t based on suitably defined random variables R(i), i ∈ Ical, which are called conformity
scores. Conformity scores are typically determined by the prediction error on the calibration data.
In standard supervised learning, they are usually given by R(i) = ∥Z(i) − Ẑ(i)∥, where Ẑ(i) is the
prediction of a calibration point Z(i). Herein, they are defined as:

R(i) = max
t=0,...,T−1
τ=t+1,...,T


∥∥Y (i)

τ − Ŷ
(i)
τ |t
∥∥

στ |t

 , (9)

where:
στ |t = max

j∈Itrain

∥∥Y (j)
τ − Ŷ

(j)
τ |t
∥∥, ∀t, τ, (10)

for all i ∈ Ical. We can view the score (9) as a normalized prediction error across all real time steps
t and prediction time steps τ . Normalization via (10) should approximately ensure that no single
prediction error dominates the others in terms of scale.4 This is crucial, because for any fixed t, the
errors ∥Y (i)

τ − Ŷ
(i)
τ |t ∥ are expected to increase with the prediction time τ . In the following lemma,

we exploit the scores (9) to design valid prediction regions of the form (7).

3Note that the values Cτ |t may depend on Y
(1)
0:T , . . . , Y

(K)
0:T . Consequently, the probability measure P(·) is defined

over the product measure of Y0:T and Y
(1)
0:T , . . . , Y

(K)
0:T .

4For an alternative normalization, we could split the calibration data in two sets and compute the values στ |t based
on one of these sets.
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Lemma 1 (Online-updated Conformal Prediction Regions for Trajectories) Fix a failure prob-
ability δ ∈ (0, 1). Let Ŷτ |t be the prediction of the joint agent state Yτ at time t. Let the con-
formity scores R(i) be as in (9), with normalizing factors στ |t as in (10). Then, if R is the
⌈(|Dcal|+ 1)(1− δ)⌉-th smallest value of the set {R(i) : i ∈ Ical} ∪ {∞}, the guarantee (8)
holds with Cτ |t = Rστ |t, ∀t, τ .5

Notice in Lemma 1 that the normalizing factors στ |t are leveraged to suitably scale the score R
into the different values Cτ |t. For the values Cτ |t to be finite, we need to have ⌈(|Dcal|+1)(1−δ)⌉ ≤
|Dcal|.

Remark 1 Conformal prediction regions of the form (7) were previously derived in [Lindemann
et al., 2023a; Yu et al., 2023]. Therein, probabilistic guarantees were given only for one-step ahead
predictions (i.e., for τ = t+1, at each time step t). In Lemma 1, we extend the method of [Yu et al.,
2023] to provide valid prediction regions for all real time steps t and prediction time steps τ (see
(8)). This is critical to simultaneously guaranteeing recursive feasibility and probabilistic safety
of our MPC scheme (see Section 4). Beyond that, empirical evidence suggests that our approach
results in tighter prediction regions than the one in [Lindemann et al., 2023a] (see Section 5).

4. Recursively Feasible Shrinking-Horizon MPC in Dynamic Environments with
Conformal Prediction Guarantees

In this section, we present an MPC scheme that addresses Problem 1, exploiting the conformal
prediction method described in Section 3. Specifically, we focus on the case of shrinking-horizon
MPC, where an optimal control problem of horizon extending to the end of the mission is solved
at each time step. To ensure the probabilistic safety guarantee (6), we derive reformulated dynamic
agent constraints by leveraging the conformal prediction regions defined in Lemma 1. Recursive
feasibility is guaranteed by the gradual relaxation of these constraints as updated prediction regions
are constructed online. To achieve this relaxation, we progressively allow for states, that until the
previous time step, were falsely predicted to be unsafe, as suggested by the latest prediction regions.

Before introducing our MPC scheme, we first derive the dynamic agent constraints that will be
integrated in its design. Let t ∈ {0, . . . , T − 1} be the current time step, τ ∈ {t+1, . . . , T} denote
a future time step, and s ∈ {0, . . . , t} represent either a past or the current time step. Employing
the conformal prediction regions of Lemma 1, we can show that for any given δ ∈ (0, 1), with
probability at least 1− δ, the following conditions jointly hold:

c(xτ , Ŷτ |t) ≥ LCτ |t =⇒ c(xτ , Yτ ) ≥ 0, ∀t, τ. (11)

The proof is omitted, as it is similar to the one of [Lindemann et al., 2023a, Theorem 3]. Owing to
(11), we refer to the constraints:

c(xτ , Ŷτ |t) ≥ LCτ |t, t = 0, . . . , τ − 1,

as valid predicted constraints for xτ . We observe that at each time t, we have multiple valid pre-
dicted constraints for each future state xτ , which are given by:

c(xτ , Ŷτ |s) ≥ LCτ |s, s = 0, . . . , t. (12)

5The notation ⌈·⌉ represents the ceiling function.

6



RECURSIVELY FEASIBLE MPC IN DYNAMIC SETTINGS WITH CONFORMAL PREDICTION GUARANTEES

These constraints correspond to the prediction regions designed for Yτ at time steps s = 0, . . . , t.
Let xτ |t be the prediction of xτ made by a model predictive controller at time t. Since all constraints
in (12) are valid, it suffices that at least one of them is satisfied by xτ |t. Hence, the dynamic agent
constraints that are enforced in MPC are given by:

max
0≤s≤t

{
c(xτ |t, Ŷτ |s)− LCτ |s

}
≥ 0, (13)

for all t and τ . Figure 2 shows that combining the constraints from (12) into (13) provides us
with a valid constraint set for xτ |t, which expands the area of free space for the system at time
t. Depending on the specific form of c(·, ·), an expression of (13) without the maximum might
be possible to derive (consider, e.g., the example in Section 5). For complex constraints, simple
underapproximations of the corresponding constraint sets could be considered.

Fig. 2: Illustration of the constraint (13) for collision avoidance. The predicted unsafe areas for x2 at times
0 (pink set) and 1 (gray set) are guaranteed to be valid. Consequently, their intersection can be used to define
the predicted unsafe area for x2|1. This leads to an expanded area of free space for system (1) at time 1.

We are now ready to present our model predictive controller. At each time t, our MPC scheme
solves the following optimization problem:

min
xt|t,...,xT |t

ut|t,...,uT−1|t

Jf (xT |t) +

T−1∑
τ=t

J(xτ |t, uτ |t) (14a)

s.t. xτ+1|t = f(xτ |t, uτ |t), τ = t, . . . , T − 1 (14b)

xτ+1|t ∈ Xτ+1, uτ |t ∈ Uτ , τ = t, . . . , T − 1 (14c)

max
0≤s≤t

{c(xτ |t, Ŷτ |s)− LCτ |s} ≥ 0, τ = t+ 1, . . . , T (14d)

xt|t = xt, (14e)

where uτ |t is the prediction of uτ at time t. Once we obtain the optimal sequence {u∗t|t, . . . , u
∗
T−1|t}

of (14), the control input ut(xt) := u∗t|t is applied to system (1). We repeat the same process at each
time step, thus yielding a shrinking-horizon strategy. The full approach is described in Algorithm 1.
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Algorithm 1 Recursively Feasible Shrinking-Horizon MPC in Dynamic Environments with Con-
formal Prediction Guarantees
Input: Mission time T , total number of data K, training set Dtrain := {Y (i)

0:T : i ∈ Itrain},
calibration set Dcal := {Y

(i)
0:T : i ∈ Ical}, trajectory predictor Predict, failure probability δ

Output: Closed-loop control inputs u0(x0), . . . , uT−1(xT−1)
// Offline computation of the conformal prediction values Cτ |t
for i = 1, . . . ,K do

for t = 0, . . . , T − 1 do
(Ŷ

(i)
t+1|t, . . . , Ŷ

(i)
T |t)← Predict(Y

(i)
t )

for t = 0, . . . , T − 1 do
for τ = t+ 1, . . . , T do

στ |t ← maxj∈Itrain∥Y
(j)
τ − Ŷ

(j)
τ |t ∥

for i ∈ Ical do
R(i) ← maxt=0,...,T−1

τ=t+1,...,T
{∥Y (i)

τ − Ŷ
(i)
τ |t ∥/στ |t}

R← ⌈(|Dcal|+ 1)(1− δ)⌉-th smallest value of the set {R(i) : i ∈ Ical} ∪ {∞}
for t = 0, . . . , T − 1 do

for τ = t+ 1, . . . , T do
Cτ |t ← Rστ |t

// Real-time MPC
for t = 0, . . . , T − 1 do

Observe xt and Yt
(Ŷt+1|t, . . . , ŶT |t)← Predict(Yt)
Obtain the optimal control inputs u∗t|t, . . . , u

∗
T−1|t of (14)

ut(xt)← u∗t|t
Apply ut(xt) to system (1)

In the following theorem, we formalize the safety and recursive feasibility guarantees of the
shrinking-horizon MPC scheme presented in Algorithm 1.

Theorem 1 Fix a failure probability δ ∈ (0, 1). Let Ŷτ |t and Cτ |t be as in Lemma 1. Suppose
the optimization problem (14) is feasible at time step t = 0. Then, applying the MPC scheme
described in Algorithm 1, (14) is feasible at every time step t = 0, . . . , T − 1. Moreover, the
resulting closed-loop trajectory ensures the satisfaction of the probabilistic safety guarantee (6).

Remark 2 By construction, the dynamic agent constraints that we employ in our MPC scheme
guarantee: i) recursive feasibility, and ii) probabilistic safety (see (6)). We emphasize that in our
setting of shrinking-horizon MPC, recursive feasibility is not jeopardized by shortsightedness in the
control design as in fixed-horizon MPC. However, it can be compromised when only the most recent
prediction regions are incorporated in the design of safety constraints for MPC at each time step
(consider, e.g., the shrinking-horizon MPC schemes presented in [Lindemann et al., 2023a; Yu et al.,
2023]). We ensure recursive feasibility via a gradual relaxation of the constraint (13) with time t,
which prevents solutions that are initially feasible from becoming infeasible later on (see the proof of
Theorem 1 in [Stamouli et al., 2024, Appendix A.2] for details). In Section 5, we validate the above

8
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observations through a comparative case study. Probabilistic safety in our scheme is guaranteed by
the fact that all constraints in (12), which are combined into the MPC constraint (13), correspond
to valid prediction regions. This is essential given that the constraint (13) holds if at least one of the
constraints in (12) is satisfied by xτ |t (see Figure 2). By contrast, the conformal prediction regions
from [Lindemann et al., 2023a; Yu et al., 2023] are valid only for one-step ahead predictions (see
Remark 1), which implies that they would not ensure the guarantee (6) if incorporated in (13).

5. Case Study: Navigation of a Mobile Robot around Pedestrians

In this section, we illustrate the efficacy of our model predictive controller in navigating a robot
around pedestrians. Specifically, we consider a bicycle model [Pepy et al., 2006]:

px,t+1

py,t+1

θt+1

vt+1

 =


px,t +∆vt cos θt
py,t +∆vt sin θt
θt +∆vt

ℓ tanϕt

vt +∆at

 ,

where pt := (px,t, py,t) is the position of the rear axle, θt is the orientation, vt is the velocity,
ℓ := 0.5 is the length, and ∆ := 1/8 is the sampling time. The control inputs are the steering
angle ϕt ∈

[
−π/6, π/6

]
and the acceleration at ∈

[
−5, 5

]
. We assume that the robot operates in

an environment with three pedestrians. Let Yt ∈ R6 be the joint position of the pedestrians and
εped := 0.1 the safety distance from each pedestrian. We are given a dataset D of 2610 pedestrian
trajectories. Our goal is to navigate the robot from the initial point p0 := (3.5,−3) to the target point
ptarget := (−1.8, 1), while avoiding the three pedestrians. To achieve this, we employ the constraint
∥p20 − ptarget∥∞ ≤ 0.05 and the cost function J20(x0;u0, . . . , u19) :=

∑20
t=0∥pt − ptarget∥22.6 We

also consider the objective (6) with δ = 0.1 and:

c(xt, Yt) = min
j=1,2,3

∥pt − Yt,j∥∞ − εped − ℓ.6

Note that the function c(·, ·) is 1-Lipschitz in its second argument with respect to the norm ∥·∥∞.
To demonstrate the benefits of our MPC, the MPC from [Lindemann et al., 2023a] is employed

as benchmark. Implementation details can be found in [Stamouli et al., 2024, Appendix B]. Out of
a total of 1000 test trajectories, we found that 973 are within our conformal prediction regions and
984 are within the conformal prediction regions from [Lindemann et al., 2023a]. We deduce that
our approach results in tighter prediction regions, while maintaining the prediction guarantee (8).

We focus on a comparative simulation of the two MPC schemes, corresponding to one of the
test trajectories. Let Pt denote the unsafe area corresponding to pedestrian 1 at time t and let Pτ |t
be the prediction of Pτ at time t, employed in the design of each MPC (see [Stamouli et al., 2024,
Appendix B] for formal definitions). In Figure 3, we draw: i) the unsafe areas P20|t of the proposed
MPC at time steps t = 0, 2, 10, 18, and ii) the unsafe areasP20|t of the benchmark MPC at time steps
t = 0, 2. We observe that the unsafe areas P20|0 and P20|2 are tighter in the proposed MPC than
the benchmark MPC, which suggests a reduction of conservatism in our approach. In the proposed
MPC, the target is consistently deemed safe at times 0, 2, 10, and 18, and recursive feasibility is
verified in simulation. In the benchmark MPC, the target is deemed safe at time 0 and unsafe at

6In this example, we have xt =
[
px,t, py,t, θt, vt

]⊺ and ut =
[
ϕt, at

]⊺.
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Fig. 3: Predicted unsafe areas corresponding to the final position of pedestrian 1 at various times. In the
proposed MPC, the target is deemed safe at all times. In the benchmark MPC, the target is deemed safe at
time 0 and unsafe at time 2, rendering the controller recursively infeasible.

time 2, rendering the controller recursively infeasible. This inconsistency results from the fact that
the benchmark scheme overlooks P20|0 in the design of P20|2. In contrast, the constraint (13) of the
proposed scheme guarantees that the unsafe areas P20|t consistently shrink, by accounting for all
available predicted unsafe areas P20|0, . . . ,P20|t−1 in their design (see Remark 2). Animations for
both schemes can be found at https://tinyurl.com/yckdzvz2. Figure 4 shows the frames at time 2.

Fig. 4: Proposed and benchmark MPC at time 2. For the proposed MPC, there exists a safe trajectory (gray
line) that allows the robot to reach the target at time 20. In contrast, the benchmark MPC becomes infeasible,
as the target is predicted to be unsafe with respect to pedestrian 1.

10
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