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Abstract
Invariant sets are essential when establishing safety of nonlinear systems. However, certifying the
existence of a positive invariant set for a nonlinear model is difficult and often requires knowledge
of the system’s dynamic model. This paper presents a data driven method to certify a positive in-
variant set for an unknown, discrete, nonlinear system. A triangulation of a subset of the state space
is used to query data points. Then, a convex optimization problem is used to create a continuous
piecewise affine (CPA) function that fulfills the criteria of the Extended Invariant Set Principle by
leveraging an inequality error bound that uses the system’s Lipschitz constant. Numerical results
demonstrate the program’s ability to certify positive invariant sets from sampled data.
Keywords: LaSalle’s invariance principle, stability of nonlinear systems, invariant sets, data driven

1. Introduction

A set is invariant for a dynamical system if trajectories starting in the set remain there in perpetuity.
Invariant sets are important for certifying the safety of linear and nonlinear systems, as feasible
invariant sets are regions where constraints can be guaranteed to be obeyed.

Determining an invariant set for nonlinear systems is a longstanding challenge in control the-
ory and has resulted in methods such as synthesizing Lyapunov functions of different function
forms, modelling nonlinear systems as DC functions, and graph theory based methods (Blanchini
(1999);Fiacchini et al. (2010);Decardi-Nelson and Liu (2021)). However, these methods often re-
quire a known dynamic model of the system, which may be difficult to determine for more complex,
nonlinear systems. While robust invariant set synthesis methods guarantee invariance of a set when
there are uncertainties in the dynamic model, it is appealing to further verify the existence of an
invariant set through model-free methods that directly use data sampled from the system.

Recently, there has been a focus on directly verifying or synthesizing the invariant set of an
unknown dynamical system from data (Wang and Jungers (2020);Korda (2020);Jin et al. (2023)).
Direct verification and synthesis methods often rely on assumptions about certain characteristics
of the dynamic system, such as Lipschitz continuity (Jin et al. (2023)) or being Borel measurable
(Korda (2020); Wang and Jungers (2020)), to relate the sampled data to the entirety of the region of
interest in the state space.

This paper presents a data driven method to certify the existence of a positive invariant set for an
unknown discrete, nonlinear autonomous system using an extension of LaSalle’s Invariant Set Prin-
ciple (Alberto et al. (2007)). Similar to discrete Lyapunov methods, LaSalle’s Principle requires the
existence of a scalar function, V, over a region of the state space that obeys a non-increase condition
(V (x+) − V (x) ≤ 0) over the positive invariant set. Even for a known, nonlinear system, the task

© 2024 A.K. Strong & L.J. Bridgeman.



STRONG BRIDGEMAN

of finding this function can be extremely difficult and may require leveraging specific aspects of the
model to determine the function form.

Continuous piecewise affine (CPA) functions have previously been used to synthesize Lyapunov
functions over a triangulated region of the state space for discrete and continuous systems (Giesl
and Hafstein (2014a);Li et al. (2015);Hafstein (2018);Giesl and Hafstein (2014b)) and even synthe-
size control Lyapunov functions (CLFs) (Lavaei and Bridgeman (2023b)). The structure of a CPA
function across a triangulation is appealing, as the CPA function is easily parameterized, because
it affine across each simplex in the triangulation. The CPA function can then be represented by its
value at each vertex point in the triangulation. Moreover, an error term has been developed that guar-
antees constraints enforced at the vertices are also applied across the simplicies of the triangulation
(Giesl and Hafstein (2014a);Baier et al. (2012)) – making it possible to synthesize CPA functions
that obey varied constraints. Even for nonlinear dynamics and non-convex constraints, this can be
accomplished through a series of semidefinite programs (Lavaei and Bridgeman (2023a)).

In this paper, a CPA function over a triangulated region of an unknown system’s state space is
synthesized through a convex optimization problem and is used to confirm a positive invariant set
from data samples. First, a triangulation over some region of the state space is used to create a data
set of sampled pairs, {x+,x}. Then, a convex optimization problem uses the data to synthesize a
CPA function that obeys the Extended Invariance Principle across the invariant set. Rather than
using a system model, this method only requires Lipschitz continuity of the unknown dynamic
system. Therefore, it can be applied to linear and nonlinear discrete systems, so long as the system
is Lipschitz continuous. Overall, this method provides a means to verify the existence of a known
positive invariant set when only data is available from the dynamic system.

2. Preliminaries

The interior, boundary, and closure of the set Ω ⊂ Rn are denoted as Ωo, δΩ, and Ω̄, respectively.
The notation Rn denotes the set of all compact subsets Ω ⊂ Rn satisfying i) Ωo is connected and
contains the origin and ii) Ω = Ω̄o. Scalars, vectors, and matrices are denoted as x, x, and X,
respectively. The notation Zb

a (Zb
ā) denotes the set of integers between a and b inclusive (exclusive).

2.1. Invariant Sets

Invariant sets are often used to confirm the safety of an autonomous dynamical system, as they can
ensure that the entirety of a system’s trajectory will remain in a subset of the state space. Positive
invariant sets may also be defined as contractive invariant sets, where the safe set may contract by
some factor, γ, when the dynamic system is applied to it.

Definition 1 Positive Invariant Set (Alberto et al. (2007)) The set S ⊆ Ω is positive invariant for
mapping T : Rn → Rn, if T (S) ⊂ S. For any x0 ∈ S, Tn(x0) ∈ S for n ≥ 0.

LaSalle created a means with which to determine if a set is invariant using a scalar Lyapunov-
like function for both continuous and discrete systems (LaSalle (1960);LaSalle (2012)). While
originally the principle required that the Lyapunov-like function must maintain the non-increase
condition for all states in the set, it has since been generalized to allow for regions fully enclosed in
the invariant set to have increases of the Lyapunov-like function (Alberto et al. (2007)).
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Theorem 2 The Extended Invariance Principle (Alberto et al. (2007);Gabriel Filho (2004)) Con-
sider the autonomous discrete dynamical system

xk+1 = T (xk), x ∈ Rn, (1)

and suppose T : Rn → Rn and V : Rn → R are continuous functions. Let L ∈ R be a constant
such that AL := {x ∈ Rn | V (x) < L} is bounded and define ∆V (xk) = V (T (xk))−V (xk). Let
C := {x ∈ AL | ∆V (x) > 0}, where AL \ C maintains ∆V (x) ≤ 0 for all x ∈ AL \ C. Suppose
that supx∈C V (x) ≤ l and supx∈C ∆V (x) ≤ s. Suppose that l + s < L. Define Al+s := {x ∈
AL | V (x) ≤ l + s} and E := {x ∈ ĀL | ∆V (x) = 0} ∪Al+s. Let M be the largest invariant set
of (1) contained in E. Then,

1. AL and Al+s are positively invariant sets relative to (1);

2. solutions of (1) that enter Al+s converge to the largest invariant set contained in Al+s;

3. every solution of (1) starting in AL converges to the set M as n → ∞.

The key aspect of Theorem 2 is that AL and Al+s can enclose regions where ∆V > 0. This is im-
portant for the proposed data-driven techniques because near an equilibrium point ∆V approaches
zero, but the uncertainty from not having a model remains finite, making it impossible to verify
∆V < 0 near the equilibrium without infinite data collection. Theorem 2 allows us to avoid this
problem, as long as that equilibrium point is not on the boundary of the invariant set.

2.2. Continuous Piecewise Affine Functions

This paper uses a triangulation (T ) over a region of the dynamic system’s state space to sample
{x+,x} pairs. Then, a CPA function, defined on each vertex of the triangulation as Wx, is de-
termined for the triangulation using the convex optimization problem developed in this paper. In
the optimization problem, constraints are formulated with an additional error bound for each vertex
point of a simplex, so that the entirety of the simplex obeys the constraint, paralleling Giesl and
Hafstein (2014a). The following section describes the necessary definitions and properties of the
triangulation and the CPA function, so that this optimization problem can be developed.

Definition 3 Affine independence (Giesl and Hafstein (2014b)): A collection of m vectors {x0,x1,
. . . ,xm} ⊂ Rn is affinely independent if x1 − x0, . . . ,xm − x0 are linearly independent.

Definition 4 n - simplex (Giesl and Hafstein (2014b)): A simplex, σ, is defined as the convex hull
of n+ 1 affinely independent vectors, co{xj}nj=0, where each vector, xj ∈ Rn, is a vertex.

Definition 5 Triangulation (Giesl and Hafstein (2014b)): Let T = {σi}mT
i=1 ∈ Rn represent a finite

collection of mT simplices, where the intersection of any two simplices is a face or an empty set.

Let T = {σi}mT
i=1. Let {xi,j}nj=0 be the set of simplex σi’s vertices, where σi = co({xi,j}nj=0).

The vertices of the triangulation T of the set Ω is denoted by EΩ. Likewise, all vertices of the
triangulation T are denoted as ET .

3



STRONG BRIDGEMAN

Lemma 6 (Remark 9, Giesl and Hafstein (2014b)) Consider the triangulation T = {σi}mT
i=1, where

σi = co({xi,j}nj=0), and a set W = {Wx}x∈ET ⊂ R, where W (x) = Wx, ∀x ∈ ET . For simplex
σi, let Xi ∈ Rn×n be a matrix that has xi,j − xi,0 as its j-th row and W̄i ∈ Rn be a vector
that has Wxi,j − Wxi,0 , as its j-th element. The function W (x) = x⊤X−1

i W̄i is the unique CPA
interpolation of W on T for x ∈ σi.

In Baier et al. (2012), the Lipschitz constant of a system can be used to bound the error between
a function evaluated at the vertex of simplex, xj ∈ σ, versus the function evaluated at x ∈ σ.
This error bound is used in Sections 3.2 and 3.3 to develop constraints that ensure the non-increase
condition is enforced over the entirety of a simplex.

Lemma 7 Proposition 4.1 (Baier et al. (2012)) Let x0,x1, . . . ,xk ∈ Rn be affinely independent
vectors. Define σ := co({x0,x1, . . . ,xk}), c = maxx,y∈σ ∥x− y∥ , and consider a convex combi-
nation

∑n
j=0 λjxj ∈ σ. If g : Ω → R is Lipschitz with constant L, i.e. ∥g(x)− g(y)∥ ≤ L ∥x− y∥

for all x,y ∈ Ω, then ∣∣∣∣∣∣g
 n∑

j=0

λjxj

−
n∑

j=0

λjg(xj)

∣∣∣∣∣∣ ≤ Lc. (2)

3. Main Results

This paper aims to use data samples generated from an unknown, Lipschitz continuous system to
analyze whether or not a predefined set is control invariant. While the system model is unknown, it
can produce N data pairs, {x+

n ,xn}Nn=0, where xn is the initial state, and x+
n is the state at the next

time-step. The points n = 0, . . . , N need not be from the same trajectory. Instead, a triangulation
of the relevant subspace is used to create query points that are sampled to create a data set.

In Section 3.2, conditions that are necessary for a CPA function to uphold Theorem 2 for a
predefined set are derived. These conditions are expressed as constraints enforced at the vertex
points of relevant simplices in the triangulation and depend on the system’s Lipschitz constant. The
Lipschitz constant of a system can be known a priori or can be found from the sampled data set using
techniques available in the literature (Calliess (2017); Chakrabarty et al. (2020)). The conditions
found in Section 3.2 are then used in Section 3.3 to create a convex optimization problem capable
of synthesizing a CPA function that determines whether the predefined set is positive invariant.

3.1. Data Driven Triangulation

A typical CPA approach involves formulating a triangulation, T = {σi}mT
i=1, over some region of the

dynamic system’s state space, Ω ∈ Rn. Then, the system model can the be applied to each vertex
point in the triangulation to understand how the system evolves over the region of the state space.
However, without knowledge of a system model, the triangulation is constrained to using sampled
pairs as vertices. Consider that Theorem 2 requires knowledge of how the system evolves given an
initial state, i.e. ∆T (x) = T (x) − x. This evolution is only known at the given data points, so the
vertex points of the triangulation must be {xn}Nn=0, so that {x+

n }Nn=0 can give information about
how the system evolves over time. Any understanding about how the system evolves over points in
the state space that are not sampled relies on the Lipschitz continuity of the dynamic system.

In this paper, the system is assumed to be able to be queried, i.e. some state, x, can be selected
and then the corresponding x+ found. This makes it easy to formulate a triangulation scheme of the
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state space a priori and then gather data for each of the vertex points. The MESH2D toolbox was
used to create the triangulation meshes used for query points in this paper (Engwirda (2014)).

3.2. CPA Function Conditions

By Theorem 2, a positive invariant set has a scalar function defined on it that meets the non-increase
condition for all states surrounding an interior set where the non-increase condition is not required.
When synthesizing the scalar function for a known invariant set, it can be difficult to create con-
ditions that ensure the function meets this requirement because enforcing the requirement on all
relevant states in the set results in an infinite number of constraints.

The unique structure of a CPA function across a triangulation with convex simplices can be
exploited to provide a finite set of constraints on each relevant vertex on the CPA function, as
seen in Giesl and Hafstein (2014a). The Lipschitz continuity of the unknown plant can be used to
develop an error term for the non-increase condition on the scalar function. Then, if the non-increase
condition with the error term is successfully enforced on the vertices of relevant simplices, the non-
increase conditions holds for all states within those simplices (Giesl and Hafstein (2014a);Li et al.
(2015)). The following theorem demonstrates how a CPA function can meet the conditions required
of the scalar function in Theorem 2.

Theorem 8 Consider the dynamic system

xk+1 = g(xk), x ∈ X ∈ Rn, (3)

where g has Lipschitz constant Lg > 0. Let Ω ⊂ Rn be an invariant set for (3), and define T̄ =

{σi}
mT̄
i=1 as a triangulation over Ω. For some Ŝ ⊂ S ⊂ Ω, define T as the subset of T̄ in S and T̃ as

the subset of T in S \Ŝ, and T̂ as the subset of T in Ŝ . Further, define x ∈ E∂T as the vertex points
comprising ∂S. Let there exist b, ϵ, s, l ∈ R and a CPA function W = {Wx}x∈ET̄ ∈ R satisfying

Wx ≥ ϵ, ∀x ∈ ET̄ \T (4)

Wx = ϵ, ∀x ∈ E∂T , (5)

Wx < ϵ, ∀x ∈ EInt(T̃ )
, (6)

Wx < l, ∀x ∈ ET̂ , (7)

|∇Wi| ≤ b, ∀i ∈ ZmT̄
1 , (8)

W (g(xi,j))−W (xi,j) + bLgci ≤ 0, ∀i ∈ ZmT̃
1 , ∀j ∈ Zn

0 , (9)

W (g(xi,j))−W (xi,j) + bLgci ≤ s, ∀i ∈ ZmT̂
1 , ∀j ∈ Zn

0 , (10)

l + s < ϵ, (11)

s > 0, (12)

where

ci = max
x,y∈σi

∥x− y∥ . (13)

Then, S◦ is a positive invariant set.
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Proof By definition, the CPA function W is continuous over Ω. Within each simplex, any point x ∈
σi can be described as a convex combination of the simplex vertex points, i.e. x =

∑n
j=0 λjxi,j .

Note that by convexity of linear functions, W (x) of any x ∈ σi can be described by a convex
combination of the CPA function vertex points, i.e. W (x) =

∑n
j=0 λjW (xi,j). Further, for each σi

in T̃ , the value of the vertices Wxi,j is less than or equal to ϵ by Constraints 5 and 6. Consequently,

W (x) =

n∑
j=0

λjW (xi,j) <

n∑
j=0

λjϵ < ϵ.

This inequality shows that for all relevant simplices, W (x) < ϵ for all x ∈ σi. Likewise, for each σi
in T̂ , the vertices, Wxi,j , are constrained to be less than l, which implies W (x) < l for all x ∈ Ŝ.
For simplices at the border of Ŝ, some vertices may be less than l, while others are less than ϵ. The
points within the simplices will always be less than some convex combination of l and ϵ. Because of
Equation 12, this convex combination is always less than ϵ. Therefore, W (x) is bounded above for
all x ∈ S . Further, because g(x) is Lipschitz continuous and Ω is a bounded set, W (x) is bounded
below on Ω.

The change in W for each simplex can be found using Lemma 6. The non-increase condition

W (g(x))−W (x) ≤ 0,

must be shown to hold for all x ∈ S \Ŝ. First, this condition will be shown to hold on each simplex,
σi ∈ T̃ . This section of the proof parallels that of Theorem 2.10, Case 1 in Giesl and Hafstein
(2014a). However, this paper is concerned with an unknown model. Therefore, the Lipschitz con-
stant of the unknown system Lg is used to bound the change from W (x) to W (g(x)) rather than
the tighter model-based bound in Giesl and Hafstein (2014a).

For some x ∈ σi, the non-increase constraint is equivalently expressed as

n∑
j=0

λjW (g(xi,j)) +W (g(x))−
n∑

j=0

λjW (g(xi,j))−
n∑

j=0

λjW (xi,j) ≤ 0.

The left-hand side is bounded above by

n∑
j=0

λjW (g(xi,j)) +

∣∣∣∣∣∣W (g(x))−
n∑

j=0

λjW (g(xi,j))

∣∣∣∣∣∣−
n∑

j=0

λjW (xi,j).

Note that W (g(xi,j)) and W (g(x)) may or may not also be in the same n−simplex as x (σi).
From Giesl and Hafstein (2014a), |W (x)−W (y)| ≤ b ∥x− y∥∞ , where here by Constraint 8

|∇W | ≤ b. By equivalence of norms ∥x− y∥∞ ≤ ∥x− y∥2 , so |W (x)−W (y)| ≤ b ∥x− y∥2 .
Using this fact and Lemma 7, a final upper bound on the constraint for any x ∈ σi is

n∑
j=0

λj (W (g(xi,j))−W (xi,j) + bLgci) ≤ 0.

By assumption, this equation holds for each vertex point of σi ∈ T̃ . By convexity of linear
inequalities, this equation also holds for all x in each simplex of T̃ . Therefore, the non-increase
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condition holds for all x ∈ S\Ŝ. The same argument can be used to show that W (g(x))−W (x) ≤ s
for all x ∈ Ŝ. Then, by Theorem 2, S◦ is a positive invariant set.

Theorem 8 guarantees that the CPA function, W , will obey the conditions of the extended
invariance principle. However, the error term introduced in Constraint 9 (bLgci) does introduce
some conservatism that limits when W can be found. For example, Theorem 8 cannot be used to
define a scalar function for a purely invariant set, because if x and g(x) are both on the boundary
of S, then Constraint 9 is infeasible. Therefore, Theorem 8 can only be applied to contractive sets.
Likewise, if S contains a fixed point, there must be some area, Ŝ, surrounding the fixed point where
the non-increase condition is not enforced. Similar to the boundary point, if W (g(x)) = W (x),
Constraint 9 becomes infeasible.

3.3. Optimization Problem for CPA Function Synthesis

Theorem 8 assumes that the value of the CPA function W can be found for g(x) for all x ∈ Ω.
However, in a data driven scenario, the triangulation scheme may result in a triangulation where
certain a sampled point x results in a corresponding x+ outside of Ω.

The following theorem formulates a convex optimization problem to determine if a known pos-
itive invariant set is upheld using data and a data driven triangulation. The problem synthesizes
a function W̃ : Rn → Rn, which is a combined CPA and quadratic function – CPA over Ω and
quadratic elsewhere. Therefore, while W̃ is continuous over Ω, it is a discontinuous function over-
all. The form of W̃ was a design choice to ensure that when x+ of a data pair {x+,x} leaves Ω, it is
defined. However, the quadratic element of W̃ ensures that the non-increase conditions (expressed
as Constraints 21 and 22) are always infeasible when x+ leaves Ω.

Theorem 9 Consider a dynamic system of form (3) that generates N data pairs {x+
n ,xn}Nn=0,

where {xn}Nn=0 ∈ Ω. Let Lg > 0 be the Lipschitz constant of the dynamic system. Define T̄ =
{σi}

mT̄
i=1 as a triangulation over {xn}Nn=0. Let Ŝ ⊂ S ⊂ Ω, where S is the proposed positive

invariant set of the dynamic system. Define T as the subset of T̄ in S, T̃ as the subset of T in S \ Ŝ,
and T̂ as the subset of T in Ŝ. Further, x ∈ E∂T are the vertex points that comprise ∂S. Define W̃
as

W̃ =

{
W (x) ∀x ∈ Ω

x⊤Px+ ϵ ∀x ̸∈ Ω,
(14)

where W = {Wx}x∈ET̄ is a CPA function and P ∈ Rn×n is a symmetric, positive definite matrix.
Let b, l, s, ϵ ∈ R. Consider the optimization problem

min
W,b,l,s,P

J = 0

P ≻ 0, (15)

Wx ≥ ϵ, ∀x ∈ ET̄ \T , (16)

Wx = ϵ, ∀x ∈ E∂T , (17)

Wx < ϵ, ∀x ∈ EInt(T̃ )
, (18)

Wx < l, ∀x ∈ ET̂ , (19)

|∇Wi| ≤ b, ∀i ∈ ZmT̄
1 , (20)
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W̃ (x+
i,j)− W̃ (xi,j) + bLgci ≤ 0, ∀i ∈ ZmT̃

1 ,∀j ∈ Zn
0 , (21)

W̃ (x+
i,j)− W̃ (xi,j) + bLgci ≤ s, ∀i ∈ ZmT̂

1 ,∀j ∈ Zn
0 , (22)

l + s < ϵ, (23)

s > 0, (24)

where ci is defined by Equation 13. If the optimization problem is feasible, then S◦ is a positive
invariant set.

Proof The CPA function, W, is continuous over Ω◦ and locally Lipschitz over Ω◦ by Constraint
20. Constraints 17, 18 and 19 ensure that W is bounded above. Because the dynamic system is
known to be Lipschitz continuous and the data generated is over the bounded region Ω, the samples
{x+

n }Nn=0 are bounded below. Therefore, W (x+) and W (x) are also bounded below.
Using the same logic as the proof of Theorem 8, Constraint 21 ensures that the non-increase

condition holds for all n−simplices in S \ Ŝ, and Constraint 22 ensures that ∆W in Ŝ remains
bounded for all x ∈ Ŝ. If the data pair {x+,x} contains a point x+ that leaves Ω, then, by the
definition of W̃ , W̃ (x+) is positive. The non-increase condition (Constraint 21) and the condition
on Ŝ (Constraint 22) will always be violated for a x ∈ S that has x+ ̸∈ Ω and therefore, infeasible.
Likewise, Constraint 16 does the same for x+ ∈ Ω \ S. Note that while b may not be valid for W̃
when x+ leaves Ω, it is irrelevant as the decrease constraints are already infeasible across the given
n−simplex. Therefore, if the problem is feasible, S◦ is positive invariant.

Implementation Notes: Theorem 9 is an optimization problem with strict equality and inequality
constraints. For implementation, the strict equality Constraint 17 can be set before optimization
rather than treating those CPA vertex points variables. Strict inequality constraints can be imple-
mented using small buffer variables. For example, Constraint 24, s > 0, becomes s ≥ 1× 10−10.

4. Numerical Experiments

The convex optimization problem developed in Theorem 9 provides a means to determine whether
or not a positive invariant set, defined a priori, is upheld through data samples. Two numerical
examples are shown to demonstrate the efficacy of the program. The first example demonstrates the
programs ability to ascertain the validity of a positive invariant set for a linear system where some
sampled pairs {x+,x} include x+ points that leave the triangulated region of the state space. In
the second example, the optimization problem is used to determine if the entirety of a region of the
state space for a nonlinear system is positive invariant. In both cases, the triangulation of the state
space is used to determine where points of the system will be sampled. If the optimization problem
is unable to find a feasible solution, the triangulation is refined to produce a more dense sampled
data set. If continual refinements still result in failure, then the set is assumed to not be positive
invariant. Note that the program will never return a false positive; the optimization problem will
never be feasible if the set is not positive invariant.

4.1. Linear System

This example considers the stable, linear system,

xk+1 =

[
0.366 −0.587
0.671 −0.372

]
xk. (25)
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The states were constrained to Ω = [−1, 1]2. The Lipschitz constant of the system is the spectral
norm of the dynamic’s matrix, Lg = 1, and is assumed to be known. MPT3 (Herceg et al. (2013))
was used to determine a positive invariant set, S, that had a contraction factor of γ = 0.6. The set
Ŝ, which is not required to have a non-increase condition, was selected to be 0.5S.

The triangulation (T̄ ) of Ω that allowed the optimization problem to find a feasible W̃ is shown
in Figure 1(a). The regions S and Ŝ are shown as well. For each vertex point of T̄ , the next time
step of the dynamic system (25) was determined – resulting in the data pairs, {xn,x

+
n }

ET̄
n=0. The

optimization problem from Theorem 9 was applied to T̄ with ϵ = 0 and successfully found a CPA
function W̃ , shown in Figure 1(b). The existence of W̃ implies the positive invariance of S◦.

(a) (b)

Figure 1: 1(a) shows the triangulation over Ω = [−1, 1]2 and the subsets Ŝ ⊂ S within Ω. 1(b)
displays the CPA function synthesized to confirm that S◦ is an invariant set. Note that the
non-increase condition was only enforced on the pink section of Ω, which is S \ Ŝ.

4.2. Nonlinear example

The simple discrete, nonlinear systemx(1)k+1

x
(2)
k+1

 =

0.75 cos(x(1)k )

0.15 cos(x
(2)
k )

 (26)

over the region Ω : x(1) ∈ [−π
2 , π], x

(2) ∈ [π, π2 ] was considered. This system has a Lipschitz
constant Lg = 0.765.

Here, the entire triangulated region was known to be positively invariant, S ⊆ Ω, and Ŝ was
defined as Ŝ : x(1) ∈ [−π

3 ,
π
2 ] x

(2) ∈ [−π
2 ,

π
3 ]. Figure (2(a)) shows the triangulated region of the

state space, as well as S and Ŝ. Figure 2(b) shows the synthesized function W̃ resulting from the
optimization problem developed in Theorem 9 with ϵ = 0. By successfully synthesizing W̃ from
the sampled triangulation, Ω◦ is confirmed to be positively invariant.
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(a) (b)

Figure 2: The triangulation of the region Ω is shown in 2(a). Ŝ is the blue region, while S is the
combined blue and pink region. The function W̃ over Ω is shown in 2(b). The existence
of W̃ shows that the entirety of Ω◦ is a positive invariant set for (26).

5. Discussion

In this work, a convex optimization problem is developed to synthesize a CPA function that fulfills
the Extended Invariant Set Principle using only data samples and the Lipschitz continuity of an
unknown discrete system. A triangulation of the state space is used to prompt data samples of
{x,x+} pairs. By using an error bound on the triangulation that leverages the Lipschitz continuity
of the plant and the convexity of the n−simplices, a CPA function can be determined to verify the
existence of a positive invariant set. A linear and nonlinear example are used to show the efficacy
of the convex optimization problem developed in Theorem 9.

A limitation of the current work is the reliance on an a priori triangulation to prompt specific
data samples, as this may be impractical for some systems or an impossible criteria to fulfill if data
samples were gathered prior to the verification process. Moreover, the triangulation may require an
unrealistically dense sampling of the state space to produce a feasible CPA function. This limitation
is particularly relevant in systems with a large number of states. Higher dimensions will demand a
finer triangulation scheme. The finer triangulation creates higher data requirements and requires a
larger number of constraints in the optimization problem.

Future work should consider methods to decrease the density of samples in regions of the tri-
angulation and build a triangulation from a pre-collected data set. Moreover, now that the basis to
verify a positive invariant set using CPA functions has been established, verifying uncertain invari-
ant sets and synthesis of previously unknown positive invariant sets should be addressed next.
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