
Proceedings of Machine Learning Research vol 242:1753–1764, 2024 6th Annual Conference on Learning for Dynamics and Control

Physics-Constrained Learning of PDE Systems
with Uncertainty Quantified Port-Hamiltonian Models

Kaiyuan Tan KAIYUAN.TAN@VANDERBILT.EDU

Peilun Li PEILUN.LI@VANDERBILT.EDU

Thomas Beckers THOMAS.BECKERS@VANDERBILT.EDU

Department of Computer Science, Vanderbilt University, Nashville, TN 37212

Editors: A. Abate, M. Cannon, K. Margellos, A. Papachristodoulou

Abstract
Modeling the dynamics of flexible objects has become an emerging topic in the community as

these objects become more present in many applications, e.g., soft robotics. Due to the properties
of flexible materials, the movements of soft objects are often highly nonlinear and, thus, complex
to predict. Data-driven approaches seem promising for modeling those complex dynamics but
often neglect basic physical principles, which consequently makes them untrustworthy and limits
generalization. To address this problem, we propose a physics-constrained learning method that
combines powerful learning tools and reliable physical models. Our method leverages the data
collected from observations by sending them into a Gaussian process that is physically constrained
by a distributed Port-Hamiltonian model. Based on the Bayesian nature of the Gaussian process, we
not only learn the dynamics of the system, but also enable uncertainty quantification. Furthermore,
the proposed approach preserves the compositional nature of Port-Hamiltonian systems.
Keywords: physics-constrained learning, scientific machine learning, Gaussian processes

1. Introduction

Modeling the dynamics of partial differential equation (PDE) systems plays a pivotal role in making
safe and efficient control decisions, as they can forecast future states of the desired systems. The
applicability of such models extends across various domains, including but not limited to flexible
robots (Zheng and Lin, 2022), heat transfer processes (Zobeiry and Humfeld, 2021), and electrical
systems (Cieślik, 2021). However, accurately modeling nonlinear PDE systems remains challeng-
ing, particularly due to their inherent complexity. A salient aspect of this complexity is the intricate
modeling of nonlinearities within these systems, a task that is challenging and critical for accurate
models. Traditional first-principle modeling methods often struggle with highly nonlinear effects,
leading to solutions that may not fully capture the underlying physical reality. To address the lack of
knowledge of complex systems, data-driven methods have been proposed to address state forecast-
ing tasks, e.g., Long et al. (2018, 2019); Bar-Sinai et al. (2019); Wu and Xiu (2020); Stephany and
Earls (2022). However, those pure data-driven learning approaches pose new questions regarding
the efficiency, safety, and physical correctness of learned models (Hou and Wang, 2013). Due to the
neglect of physical priors, the pure-learning approach suffers from many disadvantages, e.g., lim-
ited trustworthiness (Feng and Lavaei, 2021). Hence, learning methods that are both trustworthy and
powerful gradually arouse researchers’ attention. This paper proposes a novel method that leverages
the principles of physically constrained learning, aiming to infuse the model with a deeper under-
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standing of the physical laws governing the system. Unlike conventional pure-learning approaches,
which may overlook the conservation laws, our method utilizes distributed Port-Hamiltonian sys-
tems (dPHS) as a framework to incorporate these physical priors as inductive bias directly into the
learning process.

The Port-Hamiltonian framework is especially suited for modeling physical systems (Nageshrao
et al., 2015), as it provides a systematic representation of the energetic and dissipative characteristics
intrinsic to the system under consideration. Further, Port-Hamiltonian systems have many beneficial
properties such as being suitable for modeling multi-physics, inherently respecting energy conser-
vation/dissipation, and being closed under composition. As an extension for PDEs, distributed
Port-Hamiltonian systems have been introduced that enable representing a class of PDEs within
the Port-Hamiltonian framework. The term distributed refers to the capability of these systems to
operate across different variable domains, such as temporal and spatial. We capitalize on the data
obtained from the observations of the PDE system. This data is then subsequently assimilated into a
Gaussian Process, which aims to learn the Hamiltonian function of the system, thereby constructing
a Bayesian data-driven distributed Port-Hamiltonian framework tailored for the PDE, see Fig. 1. In-
corporating these physical constraints, our methodology not only conforms to established physical
laws but also amplifies the model’s capacity for generalization from sparse data, which enhances
the desired learning efficiency. Furthermore, our proposed model incorporates mechanisms for un-
certainty quantification. This feature is pivotal in ensuring the reliability of the model and can be
exploited for safe model-based control approaches. In summary, we propose a physics-constrained
learning approach that combines dPHS and Gaussian processes (GP-dPHS) to enable physically
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Figure 1: Gaussian Process Distributed Port-Hamiltonian (GP-dPHS) systems allow to learn
a probabilistic spatial-temporal Hamiltonian based on collected data. The Port-
Hamiltonian structure enables the inclusion of control inputs as well as dissipation. All
sampled models of the GP-dPHS model are physically correct in terms of the evolution
of the total energy in the system.
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correct modeling for a class of PDEs with uncertainty quantification based on data. Related Work:
Prior research has explored the realm of learning the characteristics of Partial Differential Equation
(PDE) systems, as evidenced by works such as Raissi et al. (2019), Long et al. (2018) and Chen
et al. (2021). However, these methodologies are predominantly learning-centric and tend to over-
look the inherent physical properties of the systems in question. Reliably forecasting the evolution
of the physics system requires uncertainty quantification due to the properties of physics, data, and
the model itself. However, the approaches mentioned above ignore this point by offering merely
predictions. Studies detailed in Greydanus et al. (2019) and Bertalan et al. (2019) have initiated
the incorporation of the Hamiltonian framework to align the learning process with physical laws,
a concept further extended to the domain of Port-Hamiltonian systems as demonstrated in Desai
et al. (2021) and Nageshrao et al. (2015). Despite these advancements, a notable deficiency within
these methodologies is the absence of uncertainty quantification, a metric vital for assessing the
learning’s reliability. The Gaussian process (GP), distinguished by its Bayesian underpinnings, has
been introduced to the learning of generating functions within Hamiltonian systems as delineated
in Karniadakis et al. (2021), and has been applied to Port-Hamiltonian Systems in Beckers (2023).
These approaches, however, are not able to accommodate the learning of PDE systems, signifying
a gap in the current state-of-the-art that presents an opportunity for significant contributions to the
field.

Contribution: We propose a physics-constrained learning approach, GP-dPHS, that combines
dPHS and Gaussian processes. This approach is beneficial in multiple ways: i) it enables physically
correct modeling for a class of PDEs in terms of the evolution of energy, ii) it is highly expres-
sive due to the nonparametric nature of the GP and iii) it allows us to quantify the uncertainty of
the model. The proposed model is in particular suitable for modeling low-dimensional but highly
nonlinear PDEs and opens the door for the design of robust controllers based on the provided un-
certainty of the proposed model. The detailed reasoning can be found in the following parts.

This paper details the theoretical underpinnings of our approach in 2, elucidates the modeling
process in 3, and presents empirical results in 4 that showcase the efficacy of incorporating physical
priors in learning nonlinear PDE systems.

2. Background and Problem Formulation

In this section, we briefly describe the class of distributed Port-Hamiltonian systems, revisit GP
regression, and introduce the problem setting.

2.1. Distributed Port-Hamiltonian Systems

Composing Hamiltonian systems with input/output ports leads to a so-called Port-Hamiltonian sys-
tem, which is a dynamical system with ports that specify the interactions of its components. In Mac-
chelli et al. (2004), the classical finite-dimensional Port-Hamiltonian formulation of a dynamical
system is generalized in order to include the distributed parameter and multivariable case. In contrast
to finite-dimensional PHS, the interconnection, damping, and input/output matrices are replaced by
matrix differential operators that are assumed to be constant, i.e., no explicit dependence on the
state (energy) variables is considered. As in finite dimensions, given the Stokes–Dirac structure,
the model of the system easily follows once the Hamiltonian function is specified. The resulting
class of infinite-dimensional systems in Port-Hamiltonian form is quite general, thus allowing the
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interpretation of many classical PDEs within this framework and the description of several physical
phenomena, such as the heat conduction, piezoelectricity, and elasticity. In the following, we recall
the definition of dPHS from Macchelli et al. (2004).

Denote by Z a compact subset of Rn representing the spatial domain of the distributed parameter
system. Then, denote by U and V two sets of smooth functions from Z to Rnu and Rnv , respectively.

Definition 1 A constant matrix differential operator of order N is a map L from U → V such that,
given u = (u1, . . . , unu) ∈ U and v = (v1, . . . , vnv) ∈ V

v = Lu ⇐⇒ vb :=
N∑

#α=0

Pα
a,bD

αuα (1)

where α := {α1, . . . , αd} is a multi-index of order #α :=
∑d

i=1 αi, Pα are a set of constant nu×nv

matrices and Dα := ∂α1
z1 · · · ∂αd

zd
is an operator resulting from a combination of spatial derivatives.

Note that, in (6), the sum is intended over all the possible multi-indices α with order 0 to N and
implicitly on a from 1 to q.

Definition 2 Denote by J a constant matrix differential operator. Then, J is skew-adjoint if and
only if its formal adjoint J∗ is the map from V to U such that

u = −J∗v ⇐⇒ ub := −
N∑

#α=0

(−1)#αPα
a,bD

αvα. (2)

Definition 3 Let δx denotes the functional derivative operator such that∫
δxF (z)ϕ(z) dz = lim

ε→0

F [x+ εϕ]− F [x]

ε
=

[
d

dε
F [x+ εϕ]

]
ε=0

, (3)

where ϕ is an arbitrary function.

Definition 4 Let X be the space of vector-valued smooth functions on [0,∞]×Z (energy configu-
rations), and Fd be the space of vector value smooth functions on Z (distributed flows). Assume that
Ed ≡ Fd is its dual (distributed efforts). Moreover, denote by J a skew-adjoint constant differential
operator, and by Gd a constant differential operator.

Let H : X → R be the Hamiltonian functional such that

H(x) =

∫
Z
H(z, x)dV, (4)

where H : Z × X → R is the energy density. Denote by W the space of vector-valued smooth
functions on ∂Z representing the boundary terms W := {w|w = BZ(δxH,u)} defined by the
boundary operator BZ . Then, the general formulation of a multivariable dPHS Σ with constant
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Stokes–Dirac structure is fully described by1

Σ(J,R,H, G) =


∂x
∂t = (J −R)δxH+Gdu

y = G∗
dδxH

w = BZ(δxH,u),

(5)

where R is a constant differential operator taking into account energy dissipation and (u,y) ∈
Fd × Ed. With the state x(t, z) ∈ Rn (also called energy variable) at time t ∈ R≥0 location z ∈ Z
and the I/O ports u,y ∈ Rm.

Remark 1 We focus here on the multivariate distributed Port-Hamiltonian system with constant
Stokes–Dirac structure.

Generally speaking, the interconnection of the elements in the dPHS is defined by the J matrix,
whereas the Hamiltonian H characterizes their dynamical behavior. In PDE systems, the constitu-
tion of the J matrix predominantly involves partial differential operators. The port variables u and
y are conjugate variables in the sense that their duality product defines the energy flows exchanged
with the environment of the system, for instance, currents and voltages in electrical circuits or forces
and velocities in mechanical systems, see Van der Schaft (2000) for more information.

2.2. Gaussian Process Regression

The Gaussian Process model is a nonparametric model widely used in machine learning to perform
regression and prediction tasks, see Williams and Rasmussen (1995). Compared to other learning
methods in regression tasks, GPs enable a natural quantification of uncertainty instead of just point
estimates. The observations of the system are usually limited in practice. However, GPs can provide
good predictions with relatively small data sets by leveraging the structure of the data through the
kernel.

A GP can be fully defined by giving a mean function m and a covariance function k. For
each pair of observation x,x′, the kernel function k(x,x) describes the covariance between these
points. Before observing any data, we define a prior distribution over functions. For a set of input
points, the prior is a multivariate (zero-mean) Gaussian process: f ∼ GP (m(x), k(x,x′)). Let
{X = x{1},x{2}, ...,x{N}} denotes the input data set, together with {Y = y{1},y{2}, ...,y{N}},
the output data set, to compose the training data D with N data points. The output data might be
corrupted by zero-mean Gaussian noise with variance σ2

n. After obtaining the data D, we update
our belief about the function f using the Bayes’ Theorem to get the posterior distribution given a
test input x∗. The posterior is again a Gaussian process with updated mean and covariance

µ(y∗|x∗) = k(x∗, X)[K(X,X) + σ2
nI]

−1Y (6)

Σ(y∗|x∗) = k(x∗,x∗)−K(x∗, X)[K(X,X) + σ2
nI]

−1K(x∗, X). (7)

1. Vectors a and vector-valued functions f(·) are denoted with bold characters. Matrices are described with capital
letters. In is the n-dimensional identity matrix and 0n the zero matrix. The expression A:,i denotes the i-th column
of A. For a positive semidefinite matrix Λ, ∥x − y∥2Λ = (x − y)⊤Λ(x − y). R>0 denotes the set of positive
real number whereas R≥0 is the set of non-negative real numbers. Ci denotes the class of i-th times differentiable
functions. The operator ∇x with x ∈ Rn denotes [ ∂

∂x1
, . . . , ∂

∂xn
]⊤
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In the formulation, K(x∗, X) is the covariance between the new point and the training points, and
k(x∗,x∗) is the prior variance at the new point. The predictive distribution p(y∗|x∗, X, Y ) provides
both a mean estimate and a measure of uncertainty for the predictions at a new point x∗, which is
the essence of uncertainty quantification in the GP regression learning model.

2.3. Problem Setting

We are considering building a physical-constrained learning system for a class of PDE systems.
For many physical systems, their dynamics can be written in distributed Port-Hamiltonian form,
see (5). In our case, the evolution of the states of a PDE system x(t, z) ∈ Rn over time t ∈ Rn

≥0

and spatial domain z ∈ Z should be defined by the equation with initial state x(0, z) as described
in Section 2.1. The Hamiltonian functional H ∈ C∞ is assumed to be completely unknown due
to unstructured uncertainties in the system imposed by, e.g., nonlinear stress/strain curve in soft
materials, physical coupling effects, or highly nonlinear electrical and magnetic fields. Thus, we
aim to learn a dPHS model

∂x

∂t
= (J −R)δxĤ+Gdu (8)

with an estimated Hamiltonian functional Ĥ based on observations of the system (5). To address
the problem, we need to introduce the following assumptions.

Assumption 1 The structure of the system matrices J , R, and G are assumed to be known, with
the exception of a finite set of parameters Θ ⊂ RnΘ , where nΘ is the total number of unknown
parameters inside of these matrices.

Assumption 2 We can observe the state of the PDE system (5) at some temporal ti and spatial
points zj to generate a set of observations {x(t1, z1), . . . , x(t1, zNz) . . . ,x(tNt , z1), . . . ,
x(tNt , zNz)}.

Assumption 3 There exists a unique and smooth solution x(t, z) for the PDE system under the
known boundary conditions w (5).

Assumption 1 is only mildly restrictive since J and G are typically matrix differential operators,
given by prior knowledge of the PDE system to be learned. Even though we imply knowing the
dissipation matrix R, we allow unknown parameters such that only the general structure needs to
be known, e.g., the friction model but not the parameters. Assumption 2 ensures that we can collect
data from the PDE system, requiring observability of the state. If that is not the case, an observer
needs to be implemented. Finally, Assumption 3 guarantees the existence of a solution so that the
derivation of a model is meaningful.

3. Gaussian Process dPHS

In this section, we propose the Gaussian Process Distributed Port-Hamiltonian system (GP-dPHS).
The objective of the proposed method is to develop a data-driven model for the learning of low-
dimensional but nonlinear PDE systems, which is characterized as a distributed Port-Hamiltonian
system with a structure as delineated in (5). The main challenge of extending this approach to high-
dimensional problems is that the later represented kernel function leads to a Gram matrix K, whose
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size grows with an increase of the dimension of system state x. Thus, calculating the inverse of
the covariance matrix would be relatively expensive. First, we create a dataset that consists of state
and state derivatives of the PDE dynamics. On the basis of this data set, we can train a GP model
with a physics-constrained kernel function to learn the PDE dynamics. Finally, we use the model to
predict future states.

3.1. GP-dPHS data generation

As stated in the problem setting, we consider the observations as follows

D = {ti, zj ,x(ti, zj),u(ti)}i=Nt,j=Nz

i=1,j=1 , (9)

where x(ti, zj) encapsulates the observed state at time ti and spatial point zj for Nt time steps and
Nz spatial points, corresponding to the input sequence {u(t1),u(t2), ...,u(tNt)}. With this time-
sequenced observational data D at our disposal, the first step in modeling the PDE system through
the GP-dPHS is the procurement of the system’s state derivatives ∂x

∂t . Furthermore, we typically
have only a small set of spatial observation points Nz due to technical limitations. Referencing
the equation detailed in (3), and employing a smooth kernel k such as the squared exponential
kernel, our approach is to construct n distinct GPs for the training sets D. To expound for each
l-th dimension of the state vector, we have a training set Dl = {ti, zj , xl(ti, zj),u(ti)}i=Nt,j=Nz

i=1,j=1 ,

where l = 1, . . . , n. Based on these data sets, we train n separate GP models with {ti, zj}i=Nt,j=Ne

i=1,j=1

as input data and {xl(ti, zj)}i=Nt,j=Nz

i=1,j=1 as output data.
By differentiating the kernel function k, we can then acquire the desired derivative ∂xl

∂t of the
corresponding states xl. The properties of ∂xl

∂t can be fully described by the GP mean function
µ(∂xl

∂t |t,Dl) and the variance function Σ(∂xl
∂t |t,Dl). Thus, we can obtain a new dataset E , which

contains the states X = [x̃(t1), . . . , x̃(tNt)] and the state derivative Ẋ = [∂x̃(t1)∂t , . . . ,
∂x̃(tNt )

∂t ],
where x̃(ti) = [x(ti, z1)

⊤, . . . ,x(ti, zNe)
⊤]⊤ denotes the spatially stacked state at time ti. Note

that we upsampled the number of spatial points from Nz to Ne >> Nz by evaluating the GP models
on new spatial points. We visualize this step in Fig. 2.

Figure 2: Example of states observations and the upsampling process.
3.2. Modeling

After the generation of the data, we now introduce the GP-dPHS model. The central concept un-
derpinning this approach involves the employment of a Gaussian process to approximate the un-
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known Hamiltonian functional while simultaneously treating the parametric indeterminacies within
the matrices J , R, and G as hyperparameters. This requirement is accommodated by exploiting the
characteristic that GPs are invariant under linear transformations (Jidling et al., 2017), which al-
lows inclusion of the Hamiltonian functional derivative within the GP formulation. The dynamical
behavior of the system is thus expressed as a linear transformation of the Hamiltonian within the
Port-Hamiltonian (PH) model. This integration of the PHS dynamics into the GP is mathematically
represented as

∂x

∂t
∼ GP(ĜΘu, kdphs(x,x

′)), (10)

where the system dynamics are encapsulated within the probabilistic model. Specifically, the new
kernel function kdphs can be formally described as

kdphs(x,x
′) = σ2

f (ĴΘ − R̂Θ)δx exp

(
−||x− x′||2

2φ2
l

)
δ⊤x′(ĴΘ − R̂Θ)

⊤. (11)

This kernel function is based on the squared exponential function as the Hamiltonian functional
is a smooth function. The model can then be trained as a standard GP with the dataset E (10)
from the previous section. The matrices J , R and G of the dPHS system are inferred through the
estimate ĴΘ, R̂Θ, ĜΘ, where the unknown parameters given by Θ are treated as hyperparameters as
introduced in Section 2.3. The unknown hyperparameters Θ, φl, σf are minimized by means of the
negative log marginal likelihood. In this way, we complete the training of the proposed GP-dPHS.
By exploiting again the invariance under linear transformation, we can rewrite (10) as

∂

∂t
x(t, z) = (ĴΘ − R̂Θ)δxĤ+ ĜΘu, (12)

where the Hamiltonian Ĥ follows a GP. It can be seen that the dynamics describes a distribution over
distributed Port-Hamiltonian systems. Analogously to the approach delineated in (5), our strategy
uses data-driven techniques to infer the characteristics of the distributed physical system while rig-
orously maintaining compliance with intrinsic physical constraints. This multifaceted learning is
integrated to construct our Gaussian Process distributed Port-Hamiltonian systems, which embod-
ies a comprehensive model encapsulating the dynamical interplay within diverse domains.

3.3. Prediction

In pursuit of generating samples from the posterior distribution, we employ the joint distribution
with mean-adjusted output data at test states x∗ ∈ Rn[

X
f(x∗)

]
= N

(
ĜΘu,

[
Kdphs(X,X) Kdphs(X,x∗)
Kdphs(X,x∗)T Kdphs(x

∗,x∗)

])
, (13)

which facilitates the procurement of a vector field f that represents the right-hand side of (12). From
this distribution, we could sample a f , i.e., a sample of the learned dPHS system, and solve the
resulting PDE with a numerical solver. However, the demands of numerical integration necessitate
the ability to access this vector field at various points, which is computationally expensive (Beckers
and Hirche, 2022). Instead, the approach advocates to sample the estimated Hamiltonian functional
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variable named Ĥ, which leads to (12). Thus, we sample a deterministic Hamiltonian Ĥ from the
GP distribution and use a numerical PDE solver to compute a solution for (12). Since a sample
from GP is the deterministic function and the dPHS is designed to follow 5, it is fully compliant
with the Stokes-Dirac structure. This procedure guarantees that the solution of the learned dynamics
is physically correct in terms of the energy evolution, since it has to satisfy the dPHS form.

4. Numerical evaluation

For evaluating the proposed physics-constrained learning methodology, we aim to learn the dynam-
ics of the lateral vibration of a string with a nonlinear stress-strain curve. This system is succinctly
represented by the ensuing general equation

∂2x

∂t2
− s

(
∂x

∂z

)
∂2x

∂z2
= 0, (14)

where s denotes the stress/strain curve that is, for soft materials, a highly nonlinear function of the
stress ∂x

∂z . In our example, we assume that s follows a sigmoid function. To use our proposed GP-
dPHS model, we need to translate the system into dPHS form, where the functional Hamiltonian
H is assumed to be unknown. Recalling equation (5), it is postulated that the constant matrix
differential operators J , R, and G are structurally known differential operators. In our setting, we
are examining a string system with both ends fixed and the spatial domain z ∈ [0, 10]. For the sake
of simplicity, we assume no input and imply a nontrivial initial condition of the system to generate
a meaningful dataset. We set the damping factor to 0.01. Then, the desired system can be modeled
via a dPHS in the following form

∂

∂t

[
p(t, z)
q(t, z)

]
=

[
−0.01 ∂

∂z
∂
∂z 0

]
︸ ︷︷ ︸

J−R

δxH, (15)

where p = ∂x
∂t and q = ∂x

∂z . This transformation is necessary to ensure that J is an adjoint operator
as defined in Definition 2. The Hamiltonian is given by H =

∫
Z
∫
s(q)q(t, z)dq + p(t, z)2dz. We

refer to (15) as the ground truth.
Following the problem statement, we assume that the structure of (15) is known, but the Hamil-

tonian is unknown to us. This example demonstrates that this is a reasonable assumption as the
nonlinearity of the system is encapsulated in the Hamiltonian. At the time point t0, we set the initial
condition to x0 = exp(−(z − 5)2). We observe the ground truth system for 20 seconds with a time
step of ∆t = 0.01 seconds. The spatial domain is observed at Nz = 8 points. We upsample it to
Ne = 400 points by evaluating the GP models on new spatial points. To accelerate the training,
we flatten all the observations, apply a downsample rate = 50 to all the data, and train the proposed
GP-dPHS model using the steps mentioned above. Then, we compare the GP-dPHS model with the
ground truth for a new initial condition, i.e., x0 = sin(10zπ ). The movements of the string are visu-
alized in Fig. 3. It can be seen that the mean prediction of our proposed GP-dPHS model accurately
mimics the ground truth. Figure 4 shows the nonlinear ground truth and the learned derivative of the
Hamiltonian H. As shown in the figure, our proposed method learned the desired Hamiltonian sur-
face, which is very close to the ground truth. Also, we visualize 95% confidence interval guarantees
of uncertainty in the same figure to show that the proposed method offers confidence intervals for
uncertainty quantification instead of giving a deterministic prediction that can be inaccurate,
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Figure 3: Graphical illustration of string PDE system. Observe on the left figure of each time slice;
the deflection learned by GP-dPHS (cyan dotted) is close to the ground-truth trajectory
on each time step t. The mean prediction of time slice t = 600 and five samples of the
GP-dPHS model are shown on the right.

As a physics-constrained method, we expect that the model generalizes well even for small
datasets. The following figure on the right side shows that, using very limited observations, our
proposed method is capable of learning a relatively accurate physics-constrained model. Note, that
independently of the number of data points, the GP-dPHS model always leads to physically correct
solutions.

Figure 4: The left figure visualizes the nonlinear Hamiltonian derivative δqH . The learned surface
(red) is very close to the true surface (blue). The pink surfaces visualize the uncertainty
of the Hamiltonian derivative under a 95% prediction uncertainty guarantee. The figure
on the right shows the model error for different numbers of training points

5. Conclusion

In this paper, we propose GP-dPHS, a physics-constrained data-driven method for learning a class
of PDE systems based on data. Our approach guarantees the physical correctness of the model,
generalizes well for small datasets, and provides uncertainty quantification. In a numerical example,
we demonstrate the proposed approach for a simple nonlinear PDE problem. In the future, we will
take advantage of the dPHS framework to design a physics-based controller for PDE systems.
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Tom Bertalan, Felix Dietrich, Igor Mezić, and Ioannis G Kevrekidis. On learning Hamiltonian
systems from data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(12):121107,
2019.

Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M Stuart. Solving and learning
nonlinear PDEs with Gaussian processes. Journal of Computational Physics, 447:110668, 2021.
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