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Abstract
Set-membership estimation (SME) outputs a set estimator that guarantees to cover the groundtruth.
Such sets are, however, defined by (many) abstract (and potentially nonconvex) constraints and
therefore difficult to manipulate. We present tractable algorithms to compute simple and tight over-
approximations of SME in the form of minimum enclosing ellipsoids (MEE). We first introduce
the hierarchy of enclosing ellipsoids proposed by Nie and Demmel (2005), based on sums-of-
squares relaxations, that asymptotically converge to the MEE of a basic semialgebraic set. This
framework, however, struggles in modern control and perception problems due to computational
challenges. We contribute three computational enhancements to make this framework practical,
namely constraints pruning, generalized relaxed Chebyshev center, and handling non-Euclidean
geometry. We showcase numerical examples on system identification and object pose estimation.
Keywords: Set-Membership Estimation, Minimum Enclosing Ellipsoid, Semidefinite Relaxations

1. Introduction
Model estimation and learning from measurements is a central task in numerous disciplines (Sten-
gel, 1994; Barfoot, 2017). Let θ ∈ Θ ⊆ Rn be an unknown model, and Z = {zi}Ni=1 ∈ ZN be
a set of N measurements such that, if zi is a perfect (noise-free) measurement, it holds r(θ, zi) =
0, i = 1, . . . , N, with r : Θ × Z → Rm a given residual function that is typically designed from
first principles describing how zi is generated from θ (see Examples 1-2 below).

Maximum Likelihood Estimation. The most popular approach to estimate θ from Z is max-
imum likelihood estimation (MLE). When the measurements are noisy, the residual is adjusted to

r(θ, zi) = ϵi, i = 1, . . . , N, (1)

with ϵi ∈ Rm some small noise. The most common distributional assumption is that ϵi ∼ N (0,Σ)
follows a Gaussian distribution, leading to the MLE estimator that is the solution of a nonlinear
least squares problem (Nocedal and Wright, 1999; Pineda et al., 2022)1

θ⋆MLE ∈ argmin
θ∈Θ

N∑
i=1

∥r(θ, zi)∥2Σ−1 . (2)

When the measurement set Z contains outliers, the least squares objective in (2) can be replaced by
a robust loss (Huber, 2004; Antonante et al., 2021). Despite significant interests and progress in the

1. Or maximum a posteriori estimation (MAP) if there is prior knowledge about the distribution of θ.
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literature, two shortcomings of the MLE framework exist. On one hand, the Gaussian assumption is
questionable. In fact, in Tang et al. (2023) we show noises generated by modern neural networks on
a computer vision example deviate far from a Gaussian distribution.2 On the other hand, in safety-
critical applications, provably correct uncertainty quantification of a given estimator is desired (e.g.,
how close is θ⋆MLE to the groundtruth). The uncertainty of the MLE estimator (2), however, is
nontrivial to quantify due to the potential nonlinearity in the residual function r.

Set-Membership Estimation. An alternative framework, known as set-membership estimation
(SME, or unknown-but-bounded estimation) (Milanese and Vicino, 1991), seeks to resolve the two
shortcomings of MLE. Instead of making a distributional assumption on the measurement noise (1),
SME only requires the noise to be bounded

∥ϵi∥= ∥r(θ, zi)∥≤ βi, i = 1, . . . , N, (3)

where ∥·∥ indicates the ℓ2 vector norm (one can choose ℓ1 or ℓ∞ norm and our algorithm would still
apply). Characterizing the bound of the noise is easier than characterizing the distribution of the
noise and can be conveniently done using, e.g., conformal prediction with a calibration dataset (An-
gelopoulos and Bates, 2021). Given (3), SME returns a set estimation of the model

S = {θ ∈ Θ | ∥r(θ, zi)∥≤ βi, i = 1, . . . , N} , (SME)

i.e., S contains all models compatible with the measurements Z under assumption (3). Clearly, the
groundtruth must belong to S , and the “size” of S informs the uncertainty of the estimated model.

Challenges. It is almost trivial to write down the set S as in (SME), which, however, turns into a
highly nontrivial object to manipulate. The reasons are (a) each of the constraints “∥r(θ, zi)∥≤ βi”
may be a nonconvex constraint, and/or (b) the number of constraints N may be very large. We use
two examples in control and perception, respectively, to illustrate the challenges.

Example 1 (System Identification (Kosut et al., 1992; Li et al., 2023)) Consider a discrete-time
dynamical system with state x ∈ Rnx , control u ∈ Rnu , and unknown system parameters θ ∈ Rn

xk+1 = ϕ0(xk, uk) +
n∑

i=1

θiϕi(xk, uk) + ϵk = Φ(xk, uk)θ̃ + ϵk, k = 0, . . . , N − 1, (4)

where Φ(xk, uk) = [ϕ0(xk, uk), . . . , ϕn(xk, uk)] ∈ Rnx×(n+1) is a (nonlinear) activation function,
ϵk ∈ Rnx , k = 0, . . . , N − 1 are unknown noise vectors assumed to satisfy (3),3 and θ̃ = [1, θT]T.
Given a system trajectory {x0, u0, . . . , xN−1, uN−1, xN}, the SME of the parameters θ is

S =
{
θ ∈ Rn | ∥xk+1 − Φ(xk, uk)θ̃∥≤ βk, k = 0, . . . , N − 1

}
. (5)

Example 2 (Object Pose Estimation (Hartley and Zisserman, 2003; Yang and Pavone, 2023))
Consider a 3D point cloud {Yi}Ni=1 and a camera, at an unknown rotation and translation θ =
(R, t) ∈ SE(3),4 observing the point cloud as a set of 2D image keypoints

yi = Π(RYi + t) + ϵi, i = 1, . . . , N, (6)

2. One can replace the Gaussian assumption with more sophisticated distributional assumptions, but the resulting opti-
mization often becomes more difficult to solve.

3. Note that our algorithm can allow θ to appear nonlinearly in the dynamics, but it is sufficient to restrict to dynamics
linear in θ as in (4) for system identification tasks in many real applications.

4. SE(3) := SO(3)× R3 with SO(3) := {R ∈ R3×3 | RTR = RRT = I, detR = +1}.
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where Π : R3 → R2,Π(v) = [v1/v3, v2/v3]
T denotes the projection of a 3D point onto the 2D

image plane and ϵi ∈ R2 denotes measurement noise satisfying (3). Given pairs of 3D-2D corre-
spondences {y1, Y1, . . . , yN , YN}, the SME of the camera pose θ is

S = {θ ∈ SE(3) | ∥yi −Π(RYi + t)∥≤ βi, i = 1, . . . , N} . (7)

The SME (5) is convex –defined by quadratic inequality constraints– but N can be large given a
long trajectory. The SME (7), shown by (Yang and Pavone, 2023, Proposition 3) to be defined by N
quadratic inequalities and N linear inequalities, is unfortunately nonconvex despite that N < 10.

Contributions. We propose tractable algorithms based on semidefinite programming (SDP) to
simplify the set-membership estimator (SME) while maintaining tight uncertainty quantification.
Specifically, we seek to find the minimum enclosing ellipsoid (MEE) of (SME), i.e., the ellipsoid
that contains S with minimum volume. Such an ellipsoid allows us to (i) use the center of the ellip-
soid as a point estimator, (ii) provide a (minimum) worst-case error bound for the point estimator,
and (iii) generate samples in S via straightforward rejection sampling (i.e., sample inside the ellip-
soid and accept the sample if inside S).5 Our algorithms are based on the sums-of-squares (SOS)
relaxation framework proposed in Nie and Demmel (2005), revisited in Kojima and Yamashita
(2013), for computing a hierarchy of enclosing ellipsoids that asymptotically converge to the MEE
of a basic semialgebraic set, i.e., a set defined by finitely many polynomial (in-)equalities, to which
both (5) and (7) belong.6 When the SME is convex, together with the celebrated Löwner-John’s
ellipsoid theorem (Henk, 2012), we give an algorithm that can provide a certificate of convergence
when the MEE has been attained by the SOS hierarchy. We show this vanilla algorithm already
outperforms the confidence set of least-squares estimation (Abbasi-Yadkori and Szepesvári, 2011)
in a simple instance of Example 1. Unfortunately, applying this algorithm to Example 1 with large
N and Example 2 encounters three challenges. (C1) A long system trajectory (e.g., N = 1000)
in Example 1 renders high-order SOS relaxations overly expensive. We therefore introduce a pre-
processing algorithm to prune redundant constraints in the set (5) (e.g., over 900 constraints are
deemed redundant). (C2) We empirically found for (SME) sets that are nonconvex or defined by
many constraints, the SDP solver would encounter serious numerical issues and simply fail. To cir-
cumvent this, we propose a two-step approach, where step one draws random samples from (SME)
to approximate the shape matrix of the enclosing ellipsoid, and step two minimizes the size of the
ellipsoid with a fixed shape. The second step, coincidentally, becomes a strict generalization of the
relaxed Chebyshev center method proposed in Eldar et al. (2008). (C3) The last challenge is to
handle the non-Euclidean geometry when enclosing an (SME) of SO(3). By leveraging the spe-
cial geometry of unit quaternions, we show a reduction of computing the MEE on a Riemannian
manifold to computing the MEE in Euclidean space. With these computational enhancements, we
conduct experiments on system identification (including those that are hard to learn (Tsiamis and
Pappas, 2021)) and object pose estimation that were not possible to perform in existing literatures.

Paper Organization. We first present the SOS-based MEE framework in Section 2. We de-
scribe in Section 3 our computational enhancements. We present numerical experiments in Section 4
and conclude in Section 5.

Related works, proofs, extra experiments, and preliminaries are presented in (Tang et al., 2023).

5. Clearly, this would also allow us to obtain an estimate of the volume of S by counting the acceptance rate.
6. Surprisingly, the SOS-based MEE framework seems unexploited in the context of Examples 1-2.
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2. Minimum Enclosing Ellipsoid by SOS Relaxations

Consider a basic semialgebraic set defined by a finite number of polynomial constraints

S = {θ ∈ Rn | gi(θ) ≥ 0, i = 1, . . . , lg, hj(θ) = 0, j = 1, . . . , lh} (8)

with gi, hj ∈ R[θ] real polynomials in θ. We use the same notation S here as in (SME), (5), (7)
because the membership sets we consider are all basic semialgebraic sets. Let ξ = (θi1 , . . . , θid) =
Pθ be a d-dimensional subvector of θ (with P a selection matrix), Sξ := {Pθ | θ ∈ S} be the
restriction of S on ξ, and consider a d-dimensional ellipsoid

E = {ξ ∈ Rd | 1− (ξ − µ)TE(ξ − µ) ≥ 0}, (9)

with µ ∈ Rd the center and E ∈ Sd++ the shape matrix (E is positive definite). We want to find the
ellipsoid E with minimum volume that encloses Sξ

max
µ∈Rd,E∈Sd++

{log detE | ξ ∈ E , ∀ξ ∈ Sξ} , (MEE)

where detE is inversely proportional to the volume of E (i.e., (MEE) minimizes the volume of E).
We remark that considering an ellipsoid in the subvector ξ is general and convenient as (i) P = I
recovers the n-dimensional ellipsoid, (ii) in Example 2 it is desired to enclose the rotation R and
translation t separately because R lives in SO(3) and t lives in R3, and (iii) having ξ = θi ∈ R for
some dimension i allows the ellipsoid Ei to be a line segment that encloses θi and hence E1×. . .×En
forms an enclosing box of S .

Problem (MEE) is generally intractable even when S is convex.7 However, denoting e(ξ) :=
1− (ξ−µ)TE(ξ−µ) in (9) as the polynomial in ξ, we observe the constraint in (MEE) simply asks
e(ξ) to be nonnegative on the set S . This observation allows a hierarchy of convex relaxations of
(MEE) based on sums-of-squares (SOS) programming (Lasserre, 2001; Blekherman et al., 2012).

Theorem 1 (MEE Approximation by SOS Programming) Assume S is Archimedean,8 consider
the SOS program with an integer κ such that 2κ ≥ max{2, {deg(gi)}

lg
i=1, {deg(hj)}

lh
j=1}

max
E,b,c,σi,λj

log detE (10a)

subject to 1− (ξTEξ + 2bTξ + c) =
∑lg

i=0 σi(θ)gi(θ) +
∑lh

j=1 λj(θ)hj(θ) (10b)

σi(θ) ∈ SOS[θ], deg(σigi) ≤ 2κ, i = 0, . . . , lg (10c)

λj(θ) ∈ R[θ], deg(λjhj) ≤ 2κ, j = 1, . . . , lh (10d)[
E b
bT c

]
⪰ 0 (10e)

where g0(θ) := 1, SOS[θ] is the set of SOS polynomials in θ, and deg(·) denotes the degree of a
polynomial. Let (E⋆, b⋆, c⋆) be an optimal solution of (10), then,

(i) for any κ, we have ξTE⋆ξ + 2bT⋆ ξ + c⋆ = (ξ − µ⋆)
TE⋆(ξ − µ⋆) with µ⋆ = −E−1

⋆ b⋆, and the
ellipsoid Eκ = {ξ ∈ Rd | (ξ − µ⋆)

TE⋆(ξ − µ⋆) ≤ 1} encloses Sξ;

7. When S is a set of points, then (MEE) is easy to solve (Gärtner, 1999; Magnani et al., 2005; Moshtagh et al., 2005).
8. The definition of Archimedeanness is given in (Blekherman et al., 2012, Def. 3.137). One can make the Archimedean

condition trivially hold by adding a constraint Mθ − θTθ ≥ 0 to (8), which is easy for Examples 1-2.
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(ii) Vol(Eκ) decreases as κ increases, and Eκ tends to the solution of (MEE) as κ→∞.

Although it seems that Equation (10b) is hard to satisfy because the LHS only contains a subset
of variables comparing to the RHS, we claim that it is not the case. This is because the inequalities
{gi} and equalities {hj} contain all variables. Thus, monomial cancellation is easy to happen. The-
orem 1 is inspired by Nie and Demmel (2005); Magnani et al. (2005). Problem (10) is convex and
can be readily implemented by YALMIP (Lofberg, 2004) and solved by MOSEK (ApS, 2019). Its
intuition is simple: (10b)-(10d) ensures 1− (ξTEξ+2bTξ+c) is nonnegative on S and hence every
feasible solution is an enclosing ellipsoid, (10e) uses a lifting technique to convexify the bilinearity
of µ and E in the original ellipsoid parametrization (9), and the objective (10a) seeks to minimize
the volume. The convergence of the hierarchy follows from Putinar’s Positivstellensatz (Putinar,
1993).

Certifying Convergence. Unlike applying SOS relaxations to polynomial optimization, where
a certificate of convergence is known (Henrion and Lasserre, 2005), detecting the convergence of
(10) is in general difficult (Lasserre, 2015). However, when the set S is convex, it is possible to
leverage Löwner-John’s ellipsoid theorem (Xie, Miaolan, 2016) to derive a simple convergence
certificate. We present such a certificate and a numerical example in Tang et al. (2023).

3. Computational Enhancement

The SOS-based algorithm (10) works very well on simple examples. In this section, we describe
three challenges of applying (10) and present three techniques to enhance its performance.
3.1. Pruning Redundant Constraints

The first challenge arises when the number of inequalities lg is very large, in which case the convex
optimization (10) has lg+1 positive semidefinite (PSD) variables (whose sizes grow quickly with the
relaxation order κ). In system identification (Example 1), a large lg = N is common as practitioners
often collect a long system trajectory to accurately identify the system.

Nevertheless, since the dimension n of the parameter θ is usually much smaller than the trajec-
tory length N , one would expect many constraints in (5) to be redundant. The difficultly lies in how
to identify and prune the redundant constraints. When all the constraints are linear, algorithms from
linear programming can identify redundancy (Caron et al., 1989; Telgen, 1983; Paulraj et al., 2010;
Cotorruelo et al., 2020). To handle the quadratic constraints in (5), we propose Algorithm 1.

Algorithm 1: Prune Redundant Constraints in (5)

1 Input: Constraint set {gk(θ)}k∈[N−1] with gk(θ) := β2
k − ∥xk+1 − Φ(xk, uk)θ̃∥2 (cf. (5))

2 Output: Pruned set of constraints {gk(θ)}k∈I
3 Initialize I = [N − 1]
4 for k ← 0 to N − 1 do
5 Solve g

k
≤ g⋆k = minθ {gk(θ) | gi(θ) ≥ 0, i ∈ I\{k}} ◁ First-order moment-SOS hierarchy

6 if g⋆
k
≥ 0 then I ← I\{k} ;

7 end
8 Return: I

Intuitively, line 5 of Algorithm 1 seeks to minimize gk(θ) when the rest of the constraints hold.
If g⋆k ≥ 0, then gk(θ) is redundant as it is implied by the rest of the constraints. The optimization
in line 5, however, is nonconvex because gk(θ) is a concave polynomial. Therefore, we use the
first-order moment-SOS hierarchy to obtain a lower bound g

k
≤ g⋆k: if g

k
≥ 0, then g⋆k ≥ 0 must
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hold and gk(θ) is deemed redundant. In practice, the first-order moment-SOS hierarchy is very
efficient and easily scales to N = 1000. In a pendulum system identification experiment presented
in Section 4.1.4, we show Algorithm 1 effectively prunes over 90% constraints.

3.2. Generalized Relaxed Chebyshev Center

The second challenge comes from the “log detE” objective in (10). Maximizing the “log det”
of E is convex (Vandenberghe et al., 1998), yet it cannot be written as a standard linear SDP.9

Consequently, it is often replaced by the geometric mean (Lofberg, 2004) and modelled with an
exponential cone constraint (ApS, 2019), causing serious numerical issues in our experiments.10

Even after pruning redundant constraints using Algorithm 1, we found problem (10) still difficult to
solve. Similar observations have been reported in (Lasserre, 2023, page 950).

This motivates solving the following generalized Chebyshev center (GCC) problem

η⋆ = min
µ∈Rd

max
ξ∈Sξ

∥µ− ξ∥2Q (GCC)

with a given Q ≻ 0 (recall ξ = Pθ is a subvector of θ). When Q = I , (GCC) reduces to the usual
Chebyshev center problem (Milanese and Vicino, 1991; Eldar et al., 2008). In (GCC), given any µ,
the inner “maxξ” computes the maximum Q-weighted distance from µ to the set Sξ, denoted as η⋆µ.
Therefore, the ellipsoid EQ,µ = {ξ | ∥ξ−µ∥2Q≤ η⋆µ}must enclose the set Sξ. Via the outer “minµ”,
(GCC) seeks the µ such that EQ,µ is the smallest enclosing ellipsoid with a given shape matrix Q.
We found (GCC) to be much easier to solve than (10) due to removing the “log detE” objective.

Estimating Q from Samples. Intuitively, (GCC) may be more conservative than (MEE) be-
cause (GCC) assumes Q is given while (MEE) optimizes the shape matrix. However, if we can
uniformly draw samples (ξ1, . . . , ξNs) from Sξ, then a good estimate of Q can be obtained as

Q =
1

Ns

Ns∑
i=1

(ξi − ξ̄)(ξi − ξ̄)T, ξ̄ =
1

Ns

Ns∑
i=1

ξi. (11)

We can use three different algorithms to uniformly sample Sξ. (i) When S is convex, we can use
the hit-and-run algorithm (Bélisle et al., 1993), where each iteration involves solving a convex
optimization. (ii) For Example 2, Yang and Pavone (2023) proposed a RANSAG algorithm, where
each iteration involves solving a geometry problem. (iii) We can first solve (GCC) with Q = I to
obtain an enclosing ball, then perform rejection sampling inside the enclosing ball. We use (iii) in
our experiments as it is general and does not require convexity.

Convex Relaxations for (GCC). Problem (GCC) is still nonconvex, but we can design a hier-
archy of SDP relaxations that asymptotically converges to η⋆.

Theorem 2 (Generalized Relaxed Chebyshev Center) Let S in (8) be Archimedean, κ be an in-
teger such that 2κ ≥ max{2, {deg(gi)}

lg
i=1, {deg(hj)}

lh
j=1}, and sn(d) :=

(
n+d
d

)
, consider the

following convex quadratic SDP

−η⋆κ = min
z∈Rsn(2κ)

Lz(θ)
TPTQPLz(θ)− ⟨C,Mκ(z)⟩ (12a)

subject to Mκ(z) ⪰ 0, M0(z) = 1 (12b)

Mκ−⌈deg(gi)/2⌉(giz) ⪰ 0, i = 1, . . . , lg (12c)

Lz(hj [θ]2κ−deg(hj)) = 0, j = 1, . . . , lh (12d)

9. SDPT3 (Toh et al., 1999) natively supports log det but empirically we found it performs worse than MOSEK.
10. Particularly, MOSEK returns a solution with large duality gap.
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where z ∈ Rsn(2κ) is the pseudomoment vector in θ of degree up to 2κ, Lz(u) and Mκ(uz) are
both linear functions of z given coefficients of a certain polynomial u(θ), and C is a constant
matrix whose expression is given in Tang et al. (2023). Let z⋆,κ be an optimal solution to (12) and
µ⋆,κ = Lz⋆,κ(θ), then,

(i) for any κ, the ellipsoid EQ,κ := {∥ξ − µ⋆,κ∥2Q≤ η⋆κ} encloses Sξ;

(ii) η⋆κ ≥ η⋆ for any κ and η⋆κ converges to η⋆ as κ→∞.

The proof of Theorem (2), together with a lifting technique to write (12) as a standard linear
SDP, is given in Tang et al. (2023). The basic strategy is to first apply the moment-SOS hierarchy,
with order κ, to relax the inner “maxξ∈Sξ

” (a polynomial optimization) as a convex SDP whose
decison variable is z ∈ Rsn(2κ), the pseudomoment vector constrained by (12b)-(12d). Then, by
invoking Sion’s minimax theorem (Sion, 1958), one can switch “minµ” and “maxz”, after which
the “minµ” admits a closed-form solution µ = Lz(θ) and leads to a single-level optimization with
cost (12a). It is worth noting that letting κ = 1 (and Q = I) in (12) recovers the relaxed Chebyshev
center in Eldar et al. (2008) for bounded error estimation. For this reason, we call µ⋆,κ the general-
ized relaxed Chebyshev center of order κ (GRCC-κ). As we will see in Section 4.1.2, the enclosing
balls at GRCC-κ with κ ≥ 2 is significantly smaller than those of the RCC.

3.3. Handling the non-Euclidean Geometry of SO(3)

With the (GCC) formulation, we can approximate the minimum ellipsoid that encloses St, the trans-
lation part of the SME in Example 2. The last challenge lies in enclosing SR, the rotation part of (7).
Since the concept of an ellipsoid is not well defined on a Riemannian manifold such as SO(3), it
is natural to seek an enclosing geodesic ball. This is closely related to the problem of finding the
Riemannian minimax center of SR, defined as (Arnaudon and Nielsen, 2013)

µR,⋆ = argmin
µ∈SO(3)

max
R∈SR

dSO(3)(µ,R), (13)

where, given two rotations µ,R ∈ SO(3), dSO(3)(µ,R) denotes the geodesic distance on SO(3)

defined by dSO(3)(µ,R) = arccos((tr
(
µTR

)
− 1)/2). Clearly, if we can find µR,⋆, then we have

found the best point estimate from which the worst-case error bound is the smallest.
Unfortunately, problem (13) cannot be directly solved using Theorem 2 because (i) µ ∈ SO(3)

is constrained (instead of in (GCC) µ ∈ Rd is unconstrained), and (ii) the objective “dSO(3)(µ,R)”
is not a polynomial. The next result resolves these issues by leveraging unit quaternions.

Theorem 3 (Minimum Enclosing Ball for Rotations) Suppose there exists a 3D rotation R̄ such
that dSO(3)(R̄, R) ≤ π

2 , ∀R ∈ SR, and let q̄ ∈ S3 := {q ∈ R4 | ∥q∥ = 1} (or −q̄) be any one of the
two unit quaternions associated with R̄. Consider the following Chebyshev center problem in R4

µ⋆ = argmin
µ∈R4

max
q∈R4

{
∥µ− q∥2| q ∈ S3,R(q) ∈ SR, q̄Tq ≥ 0

}
, (14)

whereR : S3 → SO(3) maps a unit quaternion to a 3D rotation matrix (whose expression is given
in Tang et al. (2023)). Then the projection of µ⋆ onto S3 is the solution to (13), i.e., µR,⋆ = µ⋆/∥µ⋆∥.
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Theorem 3 states that we can solve the original Riemannian minimax problem (13) by solving
(14), which is easily verified to be an instance of (GCC) and hence can be approximated by the SDP
relaxations in Theorem 2. Theorem 3 requires the existence of R̄ such that all rotations in SR are
reasonably close to R̄ and similar assumptions are needed in Arnaudon and Nielsen (2013). In other
words, SR needs to have relatively small uncertainty. This assumption can be numerically verified
by first using the RANSAG algorithm in Yang and Pavone (2023) to compute R̄ and then compute
the maximum distance between R̄ and SR, which we found empirically to be below π

2 for a majority
of the test problems.

For a summary of the whole workflow, see Tang et al. (2023).

4. Experiments
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Figure 1: Experimental results on system identification (Example 1).

4.1. System Identification (Example 1)
4.1.1. COMPARISON WITH LEAST SQUARES ESTIMATION

Consider a one-dimensional linear system xk+1 = A⋆xk + B⋆uk + wk with A⋆ = 0.8, B⋆ = 1.0,
and wk ∼ N (0, σ2

w).
11 Suppose we collected a system trajectory x0, u0, . . . , xN , we wish to find

a set S such that we can guarantee P[(A⋆, B⋆) ∈ S] ≥ 80%. (Abbasi-Yadkori and Szepesvári,
2011, Theorem 1) provides an ellipse centered at the least-squares estimator (LSE) that satisfies the
probabilistic coverage guarantee, which requires knowing a bound such that A2

⋆ + B2
⋆ ≤ K2. Let

K⋆ =
√

A2
⋆ +B2

⋆ be the best bound.
We can get much smaller coverage sets via the SME (5) and its enclosing ellipsoids without

knowledge on K⋆. Let β > 0 be the smallest number such that P[w2
k ≤ β] ≥ (80%)1/N , implying

P[w2
0 ≤ β, . . . , w2

N−1 ≤ β] ≥ 80% (assume wk’s are independent). Consequently, the SME (5)
covers (A⋆, B⋆) with probability at least 80%. Let E4 be the enclosing ellipse of (5) computed via
Theorem 1 using κ = 4 and ELSE be the confidence ellipse from Abbasi-Yadkori and Szepesvári

11. This is the same setup as in Li et al. (2023).
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(2011). We compute Vol(E2)/Vol(ELSE) as the volume ratio, which indicates SME finds a smaller
enclosing ellipse when it is below 1.

Fig. 1(a) boxplots the volume ratio (in log scale) under different choices of σw and K with fixed
N = 50 (we perform 20 random experiments in each setup). We observe that LSE outperforms SME
only when (i) LSE has access to a precise upper bound K⋆ (which we think is often unrealistic) and
(ii) the noise wk is large. In all other cases, the enclosing ellipse of SME is orders of magnitude
smaller than that of LSE. A sample visualization is provided in Fig. 1(a). The parameters are
K = K∗, σw = 0.1 and the number of sampled points is 5000.

However, it is worth noting that in order to apply SME, we need to know the noise bound (or
a high probability bound) β, while LSE does not neccessarily require such bounds or distributional
assumptions unless one wants to estimate the uncertainty.

4.1.2. IDENTIFICATION OF RANDOM LINEAR SYSTEMS

Consider a linear system xk+1 = A⋆xk +Buk +wk, k = 0, . . . , N − 1. We generate random A⋆ ∈
Rnx×nx , B ∈ Rnx×nu with each entry following a standard Gaussian distribution N (0, 1), then
truncate the singular values of A⋆ that are larger than 1 to 1. uk follows N (0, I), and wk is random
inside a ball with radius β. We treat B as known. We compute enclosing balls of the SME (5) using
two algorithms: the RCC algorithm in Eldar et al. (2008), and our GRCC algorithm presented in
Theorem 2. Fig. 1(b) plots the radii of the enclosing balls with N ∈ {20, 40, 60, 80, 100}, nx = 2,
and β ∈ {0.01, 0.1, 1.0} (each boxplot summarizes 20 random experiments). We observe that
(i) GRCC (κ = 1) leads to exactly the same result as RCC, verifying that our GRCC algorithm
recovers the RCC algorithm with κ = 1. (ii) The enclosing balls get much smaller with high-order
relaxations (i.e., larger κ). More results with nx = 3 and nx = 4, also the runtime for the nx = 2
experiment are presented in Tang et al. (2023).

4.1.3. LINEAR SYSTEMS THAT ARE HARD TO LEARN

Tsiamis and Pappas (2021) presented examples of linear systems that are hard to learn. We show
that SME and its enclosing balls are adaptive to the hardness of identification, i.e., one gets large
enclosing balls when the system is hard to learn. Consider the system xk+1 = Axk +Hwk with

A =

0 θ1 0
0 0 θ2
0 0 0

 , H =

1 0
0 0
0 1


where wk is a random disturbance with noise bound 0.1. Consider (i) an easy-to-learn system with
θ2 = 1, and (ii) a hard-to-learn system with θ2 = 10−5. Let θ1 = 1. Fig. 1(c) boxplots the radii of
the enclosing balls for the SME of (θ1, θ2) with κ = 2 and increasing N . Clearly, we observe that
the radii for hard-to-learn systems are much larger than that for easy systems.

4.1.4. CONSTRAINTS PRUNING IN A LONG TRAJECTORY

Consider the continuous-time dynamics of a simple pendulum[
x1
x2

]
=

[
x2

− b
ml2

x2 +
1

ml2
u− g

l sinx1

]
=

[
0 1 0 0

0 − b
ml2

1
ml2

−g
l

]
x1
x2
u

sinx1


where x = (x1, x2) is the state (angle and angular velocity), b is the damping ratio, m is the mass,
l is the length of the pole, and g is the gravity constant. We wish to identify θ1 = b

ml2
, θ2 = 1

ml2
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and θ3 = g
l . To do so, we discretize the dynamics using Euler method with dt = 0.01, add random

disturbance wk that has bounded norm 0.1, and collect a single trajectory of length N = 1000.
Without constraint pruning, we can only run the GRCC algorithm with κ = 3 . We then prune the
constraint set using Algorithm 1, which leads to a much smaller set of 19 constraints (only 1.9%
of the original number of constraints). We can then increase the relaxation order of GRCC and the
resulting enclosing ellipsoid and ball become much smaller as visualized in Fig. 1(d). The volume
of the enclosing ball with κ = 7 is only 1.08 × 10−6, indicating the SME has almost converged to
a single point. The time result is provided in Tang et al. (2023).
4.2. Object Pose Estimation (Example 2)
We follow the same procedure as Yang and Pavone (2023), i.e., we use conformal prediction to
calibrate the norm bounds βi for the noise vectors ϵi (cf. (6)) generated by the pretrained neural
network in Pavlakos et al. (2017) and form the SME (7). We then use the GRCC algorithm in
Theorem 2 with κ = 3 to compute enclosing balls (for the rotation we apply GRCC in Theorem 3 to
compute enclosing geodesic balls). We compare the radii of the enclosing balls obtained by GRCC
with the radii of the enclosing balls obtained by RANSAG of Yang and Pavone (2023).12 Fig. 2(a)
shows the empirical cumulative distribution function (CDF) of the translation bounds and rotation
bounds, respectively (there are 7035 translation problems and 6661 rotation problems). We observe
that the error bounds obtained by GRCC are smaller than those obtained by RANSAG. Examples of
enclosing balls and ellipsoids for the translation SME are shown in Fig. 2(b), where we observe that
the enclosing ellipsoid precisely captures the shape of the SME. Fig. 2(b) also plots the enclosing
balls of the rotation SME using stereographic projection.
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(a) CDF plots. Left: translation, right: rotation (b) Enclosing balls/ellipsoids. Left: translation, right: rotation.

Figure 2: Experimental results on object pose estimation (Example 2).
For extra experiments, we refer the readers to Tang et al. (2023).

5. Conclusions

We introduced a suite of computational algorithms based on semidefinite programming relaxations
to compute minimum enclosing ellipsoids of set-membership estimation in system identification
and object pose estimation. Three computational enhancements are highlighted, namely constraints
pruning, generalized relaxed Chebyshev center, and handling non-Euclidean geometry. These al-
gorithms are still limited to small- and medium-sized problems (though these problems are already
interesting) due to computational challenges in semidefinite programming. Multiple future research
directions are possible, e.g., applying SME to system identification with partial observations, ex-
tending SME on object pose estimation to more perception problems, and integrating SME with
adaptive control and reinforcement learning.

12. RANSAG first estimates an average rotation and translation, then uses SDP relaxations to compute the inner “max”
problem in (GCC). In other words, RANSAG does not seek to find a better estimate with smaller error bounds.
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