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Abstract
This investigation focuses on the issues of finite-time stochastic stabilisation and non fragile control
design for inductively coupled power transfer systems (ICPTSs) in the presence of stochastic dis-
turbances. Primarily, the observer system exploits the information obtained from the output of the
ICPTSs to accurately reconstruct the states of the ICPTS. The observer-based non fragile control
is put forward by including the estimated states of the system and gain fluctuations, which assist in
achieving the desired finite-time stochastic stabilisation of the addressed system. Furthermore, via
the use of Lyapunov stability theory and Ito’s formula, conditions based on linear matrix inequal-
ities are derived, which serve as adequate criteria for affirming the desired results. In conclusion,
the results of the simulation that have been offered provide evidence that the proposed theoretical
outcomes and control system are viable propositions.
Keywords: Inductively coupled power transfer system; Stochastic disturbance; Non-fragile con-
trol; State estimation; Finite-time stability.

1. Introduction

Wireless power transfer systems (WPTSs), covering both inductive and resonant WPTSs, have been
effectively used in multiple sectors throughout the last few decades. More specifically, it’s a method
that facilitates two separate objects to transfer electrical energy to one another by resorting to elec-
tromagnetic induction. Academic scholars are progressively interested in it because of its reputation
as a cutting-edge tool that is dependable, effective, and adaptable; it also shows potential for use
in industry (Li et al. , 2019; Dai et al. , 2022). With the proliferation of user-friendly wireless
technologies, inductively coupled power transfer systems (ICPTS) have recently seen a meteoric
rise in popularity (Yu et al. , 2019). Specifically, this technology exhibits residue-free operation and
is capable of functioning well in hazardous conditions, unaffected by external factors such as ice,
water, and dirt (Dai et al. , 2016). This stands in contrast to traditional charging techniques, which
lack this capability. Various causes, such as temperature fluctuations, electromagnetic interference
from nearby electronic devices, load variations, and other variables, may lead to disruptions in the
power system (Li et al. , 2013). Hence, it is essential to set up a robust control mechanism capable
of resisting the disturbances taking place inside the system.

On a separate note, the design of a conventional controller relies essentially on the pretence that
the course of action is actually exact when applied to a dynamical system. However, as the system
operates throughout the industrial phase, the control parameters will experience fluctuations. These
fluctuations can be triggered by untoward shifts in the operating conditions, environmental factors,
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equipment malfunctions, component ageing, errors in number circulation, and actuator demise (Xu
et al. , 2023). As a result, the operation’s precision would be impacted. Hence, scientists endeavour
to design a controller that is impervious to variations in its coefficient, leading to the emergence of
a non-fragile control. Moreover, it is noteworthy that external events might potentially influence
the occurrence of changes in control gain. Consequently, in this situation, fluctuations in gain can
happen in a probabilistic fashion. In recent years, many remarkable research investigations have
been undertaken on the occurrence of random gain variations, taking this issue into consideration
(Huang et al. , 2021; Pan et al. , 2022). Taking into account these advancements, this research
includes variations in the control design to enhance the ICPTSs’ capacity to endure gain changes
and attain the desired stabilisation.

Furthermore, the concepts of exponential and asymptotic stability elucidate the long-term dy-
namic behaviour of control systems. Nevertheless, in many practical situations, the spotlight is
often centred on the dynamics of systems during a fixed time frame, since excessively large state
values are seen as undesirable. When considering this scenario, it is of the utmost importance to
investigate the transient behaviour of the system during a finite-time (FT) period (Wan et al. , 2021).
As a consequence of this, the theory of FT stability is put forth, which evaluates the transient be-
haviour of the system and ensures that the system trajectories continue to exist within a limit that is
acceptable during a brief amount of time (Zhang et al. , 2021).

Besides, from a practical standpoint, the state configuration of the system is habitually unknown
or only partially known, and it is neither conveniently measurable nor easily monitorable. In such
circumstances, the conventional state-feedback controller may lack the capability to provide ade-
quate performance, resulting in system instability. To remedy this limitation, the observer approach
is used, which recalibrates and estimates the system’s state by means of the data from the input
and output dynamics Meng et al. (20222). Following the aforementioned process, it is customary
to employ state estimates of the system in a configured controller in order to effectively modulate
the behaviour of the system under consideration. The concept of observer strategy has garnered
significant attention within research communities due to its advantageous characteristics. Conse-
quently, numerous noticeable findings have been documented (see Han et al. (2022) and references
cited therein). In light of the notable findings derived from these groundbreaking inquiries, it is
imperative to pragmatically incorporate the observer mechanism into ICPTSs, aiming to assess the
dynamics of the system’s state.

Building upon the aforementioned research inquiries and identified gaps, the primary objective
of this study is to delve into the topic of FT stability for ICPTSs. The main contributions of this
paper’s research are, in brief, as follows:

• With the aid of observer-based non fragile control, the issue of FT stochastic stabilisation for
ICPTSs prone to stochastic disturbances has been dealt with. Meanwhile, the observer system
is structured to estimate the state of the system under scrutiny.

• Following that, an observer-based control is established by utilising the information received
from the observer that is specified. On top of that, variations are included in the controller
with a view to raising the controller’s resilience.

• Moreover, the inquiry employs Ito’s formula and the theory of Lyapunov’s stability to figure
out the requisite criteria in terms of linear matrix inequalities, ensuring the realisation of the
primary objective.
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• A numerical example is provided at the conclusion of this study, showcasing the simulation
results to underline the precision and feasibility of the put-up controller.

2. Model Description and Preliminaries

This part commences by delineating an ICPTS framework. In particular, ICPTSs consist of two
coupled circuits that are aided by a magnetic coupling mechanism. Through the use of space elec-
tromagnetic coupling technology, the main power source is able to transmit electricity to electrical
devices without using physical contact. In addition, the circuit architecture of ICPTS has been
shown in Figure 1. The LC resonant circuit on the left is referred to as the main side, while the one
on the right is referred to as the secondary side. Furthermore, C1 and C2 stand for the capacitance of
the main and secondary sides, respectively. Additionally, R1 and R2 indicate the parasitic resistance
on both sides. M specifies the mutual inductance among the two sides, whereas RL reflects the resis-
tance of the load. L1 and L2 stand for the self-inductance. u1(t), i1(t), u2(t), and i2(t) represent
the voltage and current associated with capacitance.

As stated in circuit theory, resonance in the ICPTS can only be achieved if the main and sec-
ondary sides fulfil the ensuing criteria Yu et al. (2019):

y0L1 =
1

y0C1
, (1)

y0L2 =
1

y0C2
, (2)

where y0 specifies the resonant angular frequency. In addition, the analogous circuit for the ICPTSs
is depicted schematically in Figure 2. The noise-perturbed framework, described in Dai et al.
(2022) and Yu et al. (2019), is constructed using Kirchhoff’s law. The framework is shown below:

S(t)EDC = u1(t) + i1(t)R1 + L1
di1
dt + Mdi2

dt + d1i1(t)F(t),

0 = L2
di2
dt + Mdi1

dt + i2(t)R2 + u2(t) + i2(t)RL + d2i2(t)F(t),

C1
du1
dt = i1(t) + d1i1(t)F(t),

C2
du2
dt = i2(t) + d2i2(t)F(t),

(3)

where where S(t) specifies the inverter; EDC indcates input DC; d1 and d2 stand for the noise inten-
sity; F(t) symbolizes the Gauss process.

2.1. State Space Modeling of ICPT System

By using the prior differential equations, the ensuing state space representation of the ICPTSs is
provided, taking into account stochastic disturbances:

dρ(t) =Cρ(t)dt+Dc(t)dt+ Eρ(t)dδ(t),

α(t) =Gρ(t),
(4)

where ρ(t) is the state vector and ρ(t) = [i1(t) u1(t) i2(t) u2(t)]; c(t) stands for the control input;
δ(t) indicates n-dimensional Wiener process; C, D and E symbilize the real matrices and their form

3



SATHEESH SAKTHIVEL

Figure 1: Circuit topology Dai et al. (2022) and Yu et
al. (2019)

Figure 2: Equivalent circuit Dai et al. (2022) and
Yu et al. (2019)

is presented hereunder:

C =


R1L2

M2−L1L2
L2

M2−L1L2
(R2+RL)M
L1L2−M2

M
L1L2−M2

1
C1

0 0 0
R1M

L1L2−M2
M

L1L2−M2
(R2+RL)L1
M2−L1L2

L1
M2−L1L2

0 0 1
C2

0

 , D =
[

L2
L1L2−M2 0 M

M2−L1L2 0
]T

and

E =


−d1 0 M

L2
0

d1
C1

0 0 0
M

L1L2−M2 0 L1d2
M2−L1L2 0

0 0 d2
C 2

0

 .
2.2. Configuration of observer System

It is crucial to note that in the context of studying dynamical systems, there are instances when it is
impossible to possess comprehensive insight into the system states. And, with the intent to measure
the system state, the observer system is framed, and its state space representation is offered below:

dρ̂(t) =
[
Cρ̂(t) +Dc(t) +H(α(t)− α̂(t))

]
dt, (5)

α̂(t) =Gρ̂(t), (6)

where ρ̂(t) and α̂(t) symbolize the estimation of ρ(t) and α(t), respectively; H indicate the gain
matrices of observer model.

2.3. Control Configuration

Moreover, while setting up robust controllers for real-time systems, it is crucial to keep in mind that
the gain parameters of the controller can vary due to many factors. Hence, it is essential to develop a
controller that can withstand a certain degree of fluctuation linked to its gain value. Taking this into
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consideration, an observer-based non fragile control that has the following structure has sprouted
up:

c(t) = (P + g(t)∆P(t))ρ̂(t), (7)

where P indicates the gain matrix of the controller which will be reckoned thereafter. ∆P(t) is
the fluctuations in the control segment and it has the frame ∆P(t) = Aκ(t)B in which A and B
are known real matrices and κ(t) satisfies the frame κT (t)κ(t) < I. g(t) signifies the stochastic
variables satisfy the relations Prob{g(t) = 1} = E{g(t)} = ḡ, Prob{g(t) = 0} = 1− E{g(t)} =
1− ḡ, for given scalar ḡ ∈ [0, 1].

Subsequently, by setting up the error system κ(t) = ρ(t)− ρ̂(t) and altering the control (7), we
can promptly gain the subsequent set of equations:

dρ(t) =[Cρ(t) +D[P + g(t)∆P(t)]ρ̂(t)]dt+ Eρ(t)dδ(t),

dκ(t) =
[
[C −HG]κ(t)−HzGρ(t)

]
dt+ Eρ(t)dδ(t).

(8)

To streamline the scrutiny, the equation (8) can be modified in an appropriate way, as shown
below: {

dρ(t) = τ1(t)dt+ θ1(t)dδ(t),

dκ(t) = τ2(t)dt+ θ1(t)dδ(t),
(9)

where θ1(t) = Eρ(t); τ1(t), τ2(t) is the terms before dt in relation (8).

3. Main Results

This section will emphasise showcasing the FT stochastic stabilisation of ICPTSs via the imple-
mentation of the observer-based non-fragile control specified in the former section.

Theorem 1 For given scalars p > 0, ḡ ∈ [0, 1] and matrix K > 0, the ICPTS (4) is FT stochasti-
cally stabilized via the observer-based non fragile control (7), if the scalars q > 0, s1 > 0, s2 > 0
and matrices J > 0,M, N , J̆ exist, such that the ensuing conditions are met:

[ג] <0, (10)[
−q (JD −DJ̄ )T

∗ −I

]
< 0 (11)

epTu2v1m1 <z1m1, (12)

a1,1ג = sym{J C + DM} + ETJ E + ETJ E − pJ , a1,2ג = −DM, a1,3ג = ḡDJ̆A, a1,4ג = s1BT ,
a1,5ג = ḡDJ̆A, a2,2ג = sym{J C − NG} − pJ , a2,6ג = s2BT , a3,3ג = −s1I, a4,4ג = −s1I,
a5,5ג = −s2I and a6,6ג = −s2I. Moreover, the gain matrices can be reckoned utilizing the relation
P = J̄ −1M andH = J −1N .
Proof We have used Lyapunov stability theory as a means to prove this thesis. Further, pursuant to
equation (9), the Lyapunov function is stated as follows:

V(t) = ρT (t)J ρ(t) + κT (t)J κ(t). (13)
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In the meantime, complying with Ito’s formula, we acquire the following relation:

dV(t) = LV(t)dt+ ρT (t)J θ1(t)dδ(t) + ρT (t)J θ1(t)dδ(t), (14)

Subsequently, in line with (9), the infinitesimal operator L can be reckoned as

E{LV(t)} =E
{
∂V(t)

∂t
+
∂V(t)

∂ρ(t)
τ1(t) +

∂V(t)

∂κ(t)
τ2(t) +

1

2

(
θT1 (t)

∂2V(t)

∂2ρ(t)
θ1(t)

)
+

1

2

(
θT1 (t)

∂2V(t)

∂2ρ(t)
θ1(t)

)}
=E
{
sym(ρT (t)J τ1(t)) + sym(κT (t)J τ2(t)) + θT1 (t)J θ1(t)

+ θT1 (t)J θ1(t)
}

=E
{[
Cρ(t) +D(P + g(t)∆P(t))ρ̂(t)

]TJ [Cρ(t) +D(P + g(t)∆P(t))ρ̂(t)
]

+
[
(C −HG)κ(t)−DρP (t)

]TJ [(C −HG)κ(t)−DρP (t)
]

+ ρT (t)ETJ Eρ(t) + ρT (t)ETJ Eρ(t)

}
. (15)

In the subsequent phase, the aforesaid equation can be organised and put forward in the follow-
ing way:

E{LV(t) + pV(t)} = xT (t)[ℵ̆]x(t), (16)

where xT (t) =
[
ρT (t) κT (t)

]
, ℵ̆1,1 = sym{J C +JD(P + ḡ∆P(t))}+ ETJ E + ETJ E − pJ ,

ℵ̆1,2 = −JD(P + ḡ∆P(t)), ℵ̆2,2 = sym{J C − JHG} − pJ ,
Furthermore, conditions JD = DJ̄ , J̄ P = M, JH = N are applied to the matrix [ℵ̆]

to circumvent the nonlinearities that emerge as a result of the premise of unknown gain matrices.
Subsequent to this, by applying the Schur complement lemma to the resultant matrix, we grab the
matrix ג states in the relation (10). Moreover, if the requisite laid out in inequality (10) is satisfied,
then we have the criterion E{LV(t)+pV(t)} < 0. Therefore, on the basis of the Lyapunov stability
theory, we can deduce that the system (9) being investigated is stochastically stable. Therein, it is
important to note that the condition JD = DJ̄ can be equitably written as (11) since it is not a
strict linear matrix inequality.

The subsequent phase involves the demonstration of FT stability. To address this objective, we
integrate the inequality E{LV(t) + pV(t)} < 0 across the interval from 0 to Tu. Consequently, we
obtain

e−pTuE{V(t)} − E{V(0)} < 0 =⇒ E{V(t)} < epTuE{V(0)}. (17)

Apart from that, using a presumption J̆ = K−
1
2

1 JK
− 1

2
1 , we can readily derive the ensuing set

of relations for real matrices K1 > 0 and K2 > 0:

E{V(t)} ≥ E{ρT (t)J ρ(t)} =ρT (t)K
1
2 J̆ K

1
2 ρ(t)

≥zmin(J̆ )ρT (t)Kρ(t)

=z1ρ
T (t)Kρ(t). (18)
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R1 R2 L1 L2 C1 C2 RL M d1 d2
0.2Ω 0.2Ω 127µH 127µH 2µF 2µF 100 40 0.1 0.1

Table 1: Parameters

At the same time, it can be deduced from the onset of the Lyapunov function (13) that

E{V(0)} =ρT (0)J ρ(0) + κT (0)J κ(0)

≤zmax(J̆ )ρT (0)Kρ(0) + zmax(J̆ )κT (0)Kκ(0)

≤(z1ρ
T (0)Kρ(0) + z1κ

T (0)Kκ(0))

≤2z1†1
=%†1. (19)

Further, the subsequent inequality can be readily depicted by means of the constraints (17)-(19):

E{ρT (t)Kρ(t)} ≤ E{V(t)}
z1

=
epTu%†1

z1
. (20)

If the specifications set out in equation (12) are met, we could speculate from previous equation
(20) that E{ρT (t)Kρ(t)} < †2. Hence, by taking into account Definition 2 in Xiang et al. (2012),
we have determined that the ICPTS (9) is stochastically stable in the sense of FT. And with that, the
demonstration of the theorem has ended.

Remark 2 The observer-based finite-time control technique that has been developed has signifi-
cant prospects for being utilized in higher-dimensional inductively coupled power transfer systems.
The control technique exhibits efficacy in preserving stability and attaining intended performance,
even in systems with elevated complexity. Nevertheless, it is crucial to recognize that as the com-
plexity and dimension of the system increases, the computing requirements for applying the control
strategy also increase. Therefore, while the methods hold relevance for higher dimensional systems,
careful consideration of computational resources and efficiency becomes imperative for practical
implementation.

4. Simulation Verification

This section employs simulation results in a bid to corroborate the theoretical insights laid out in
the sections preceding it. Furthermore, the system parameters have been gathered from the work
Yu et al. (2019) and are depicted in Table 1. In addition, the relevant parameters for the FT theory
have been set as †1 = 2.5, †2 = 8, p = 1, K = I and Tu = 10. The matrices associated with
the gain variations are handpicked as A = 0.01 and B =

[
0.1 0.2 0.1 0.2

]
. Subsequently, we

used the MATLAB programme to resolve the constraints produced in Theorem 1 using the prior
supplied inputs, resulting in the acquisition of viable solutions. Following that, Table 2 displays the
gain matrices, which are calculated using the viable solutions as input.

In order to progress, the initial conditions are picked as

ρ(0) =
[
0.002 −0.0011 0.0011 −0.0011

]T
and ρ̂(0) =

[
0.002 −0.0011 0.0011 −0.0011

]T
.
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Figure 3: System response under developed con-
troller

0 5 10 15 20

Time (seconds)

0

4

8

12

16

S
ta

te
 r

e
sp

o
n

se
s

×10
-3

ρ1(t)

ρ2(t)

ρ3(t)

ρ4(t)

Figure 4: System response in the absence of con-
troller
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Figure 5: State and its estimation
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Figure 6: Evolution of estimation error
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Figure 7: Time profile of ρT (t)Kρ(t)

After considering the stated parameters, the simulations were carried out, and the resulting
outputs are shown in Figures 3-8. To be more specific, Figures 3 and 4 show the outcome of
state trajectories with and without a controller. Within, it is obvious that the system’s performance
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Figure 8: Control trajectories

P H
300.3177
−247.3975

47.9729
−45.0561


T 

2.2467
0.0849
−0.2254
0.1095


Table 2: Gain matrices

improves with the built controller compared to the absence of the controller. Even more so, Figure
5 displays the outcomes of the state estimate. In this case, it is trivial to witness and prove that
the observer states exactly mirror the ICPTS states in a short amount of time. Furthermore, the
results of the state estimation error are shown in Figure 6, where it is clear that the estimate error
decreases and eventually reaches zero as time goes on. Despite this, Figure 7 displays the trajectory
of ρT (t)Kρ(t) when the controller is applied, serving as evidence of the FT stochastic stability of
the ICPTSs. More precisely, it can be seen that the value of ρT (t)Kρ(t) stays below the specified
threshold of †2. At the end, a pictorial illustration of control trajectories is provided in Figure 8.

Overall, the simulations reveal that the set up observer-based non fragile control effectively
ensures the desired FT stochastic stability and accurate state estimation performance in the presence
of stochastic disturbances and variations in gain matrices.

5. Conclusion

During this phase of this inquiry, an observer-based non fragile control scheme has been built for
ICPTSs operating in environments with stochastic disturbances and gain fluctuations. Specifically,
an observer system has been set up to quantify the state dynamics of the ICPTSs in light of the output
of the system. Moreover, incorporating an uncertainty part into the controller’s gain matrix also
raises its resilience, which in turn delivers better performance. Subsequently, by melding Lyapunov
stability theory with convex optimisation techniques, we have gleaned sufficient conditions in the
form of linear matrix inequalities that ensures the desired FT stochastic stability of the examined
ICPTSs, and centred on these ailments, the gain matrices can be computed. Ultimately, we verify the
reliance and viable perks of the configured observer-based non fragile control through the analysis
of simulation results.
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