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Abstract

This paper introduces the Safe Pricing for Network Utility Maximization with Gradual Variations
(SPNUM-GV) algorithm, addressing challenges in pricing-based distributed resource allocation
for safety-critical systems with non-stationary utility functions. Focusing on domains where 1)
users’ optimal demand can only be induced through posted prices, 2) real-time two-way communi-
cation with the users is not available, 3) the induced demand must always belong to an arbitrarily
shaped convex and compact feasible set in spite of price response uncertainty, and 4) the users’
response to prices are evolving over time, we design SPNUM-GV to generate prices that ensure
stage-wise safety of the induced demand while achieving sublinear regret. SPNUM-GV ensures
safety by determining a “desired demand” within a shrunk feasible set using a projected gradient
method and updating the prices to induce a demand close to the desired demand by leveraging an
estimate of the users’ price response function. By tuning the amount of shrinkage to account for
the error between the desired and the induced demand, we prove that the induced demand always
belongs to the feasible set. In addition, we prove that the regret incurred by the induced demand
is O(

p
T (1 + VT )) after T iterations, where VT is an upper bound on the total gradual variations

of the users’ utility functions. Numerical simulations demonstrate the efficacy of SPNUM-GV and
support our theoretical findings.
Keywords: Distributed Optimization, Network Utility Maximization, Safe Optimization

1. Introduction

As contemporary multi-user optimization paradigms expand into domains with stringent safety re-
quirements, the need for mechanisms that can provide such safety guarantees has grown signifi-
cantly. One such domain is multi-user resource allocation over networks, which classically has had
applications in power distribution systems Samadi et al. (2010), congestion control in data networks
Kelly et al. (1998), wireless cellular networks Chiang and Bell (2004), and congestion control in
urban traffic networks Mehr et al. (2017). The common optimization goal is to solve the underlying
Network Utility Maximization (NUM) problem, which aims to find the utility-maximizing resource
allocation while meeting the safety-critical constraints of the system.

In this work, we are interested in multi-period NUM problems, where the utility functions of the
users are gradually changing over time. Our work is motivated by resource allocation applications
where two-way real-time communication with the users is not possible and the resource demand can
only be impacted through posted prices. In spite of the general popularity of the NUM framework,
the framework studied in this paper presents a unique combination of challenges not addressed by
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the existing literature. Firstly, the users’ resource demand can only be determined by the users
according to their own profit-maximizing price-response function, with the actual demand only be-
coming observable ex-post. Secondly, we allow no negotiations between the central coordinator and
the users before posting prices. We assume that there is no private information revealing commu-
nication from the users to the central coordinator and the only information the central coordinator
observes is the induced demand in response to prices. Thirdly, the systems in question have safety-
critical hard constraints forming arbitrary convex and compact sets and the induced demand must
meet these constraints at all times for the safe operation of the system, in spite of uncertainty about
the users price response. Lastly, the utility functions of the users and therefore their response to
prices are changing over time, which adds a layer of uncertainty to the problem. These challenges
are however warranted, given that problems of this form appear in many real-world applications.
For example, in price-based demand response, users determine their own electricity consumption in
response to prices that must be set such that the realized demand does not violate the power flow
constraints of the grid Vardakas et al. (2014). Power flow constraints are nonlinear and nonconvex
in general (Molzahn et al. (2017)) and often solved with (nonlinear) convex relaxations (e.g. Bai
et al. (2008); Farivar and Low (2013)).

Our algorithm, called Safe Pricing for NUM with Gradual Variations (SPNUM-GV), addresses
the aforementioned challenges in pricing-based resource allocation frameworks with non-stationary
users. SPNUM-GV determines a desired demand by moving the current demand vector along the
direction of the current price vector and projecting it onto a shrunk feasible set, which behaves as a
projected gradient method. Then, using estimates of the price response functions of the users around
the current prices, it determines the updated prices that would induce a demand close to the desired
demand. By carefully adjusting the amount of shrinkage to account for the estimation errors as well
as the gradual variations of the utility functions, it ensures safety.
Related Work: Scholars have extensively studied pricing algorithms for NUM with stationary
utility functions. Restricting the relevant literature to the first-order methods that are closest to our
setup, the majority of studies focus on linear constraints Nedić and Ozdaglar (2009); Beck et al.
(2014); Necoara and Nedelcu (2013, 2015), or on non-linear constraints with the assumption of
separability and full user knowledge of these constraints Simonetto and Jamali-Rad (2016); Falsone
et al. (2017); Notarnicola and Notarstefano (2019). However, none of the aforementioned studies
propose an iterative pricing algorithm that induces resource demand satisfying the hard constraints
of the problem during the iterative optimization process. Instead, these studies only provide bounds
on the infeasibility amount of the resource demand (e.g., Beck et al. (2014); Necoara and Nedelcu
(2015)). Lastly, Turan et al. (2023b) proposes a stage-wise safe pricing-based method for NUM
problems with general convex feasible sets, however, is restricted to stationary utility functions.

On the other hand, the online convex optimization (OCO) literature handles non-stationary util-
ity functions we are interested in this work. For instance, Zinkevich (2003); Jadbabaie et al. (2015);
Hazan et al. (2016); Guo et al. (2022); Chaudhary and Kalathil (2022) ensure stage-wise safety
through projection-based methods, which optimize the primal variables directly. However, a key
challenge in our setup is that users exclusively control the demand, i.e., the primal variables. While
a feasible demand can be determined using a projected gradient method, the corresponding prices
for inducing such demand remain unknown due to the privacy of utility functions. Accordingly, the
distributed OCO literature, e.g., Mahdavi et al. (2012); Chen et al. (2017); Yuan et al. (2017); Li
et al. (2020); Yu and Neely (2020), pursue optimization through pricing-type signals in multi-user
settings. However, their safety guarantees are not strict and stage-wise, but in the form of sublinear
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cumulative constraint violation. Additionally, they adopt primal-dual optimization methods to solve
the Lagrangian dual problem, which restricts the users to follow a primal update method that cannot
be enforced in the resource allocation framework where users only care about maximizing their own
profit. As such, our setup brings unique challenges not addressed by the prior art.
Notation and Basic Definitions: For vectors, k · k denotes the standard Euclidean norm. Given a
positive integer n > 0, [n] denotes the set of integers {1, 2, . . . , n}. Given a vector x 2 Rn, xi 2 R
denotes the i’th entry of x. For a matrix A 2 Rm⇥n, Aj denotes the j’th row of A. For two vectors
x, y 2 Rn, hx, yi denotes the inner product of x and y and x  y implies element-wise inequality.
Given a function f : X ✓ Rn

! R (including n = 1), rf denotes the gradient of f , r
k
f denotes

the k’th order gradient of f , and domf denotes the domain X of f . Given a set X ⇢ Rn, X
int

denotes the interior of X . Given a convex and compact set X ⇢ Rn and a point x 2 Rn, ⇧X (x)
denotes the Euclidian projection of x onto X . We denote the closed Euclidean ball with radius r

centered at origin as B̄(r).

Definition 1 A differentiable function f(·) is said to be µ-strongly concave over the domain X if
there exists µ > 0 such that the following holds for all x1, x2 2 X :

hrf(x2) � rf(x1), x1 � x2i � µkx1 � x2k
2
. (1)

Definition 2 A differentiable function f(·) is said to be L-smooth over the domain X if there exists
L > 0 such that the following holds for all x1, x2 2 X :

krf(x1) � rf(x2)k  Lkx1 � x2k. (2)

Definition 3 A function f(·) is said to be M -Lipschitz continuous over the domain X if there
exists M > 0 such that the following holds for all x1, x2 2 X :

kf(x1) � f(x2)k  Mkx1 � x2k. (3)

2. Network Utility Maximization with Gradual Variations

2.1. Problem Setup

We study the online version of the standard NUM problem Kelly et al. (1998), where the goal is to
allocate resources to n users subject to a set of coupling constraints such that the total utility of the
users over a horizon of T is maximized. It can be formulated as the following optimization problem:

max
{xt2domf t✓Rn,8t2[T ]}

TX

t=1

f
t(xt) =

TX

t=1

nX

i=1

fi(x
t
i) (4a)

subject to x
t
2 X , 8t 2 [T ], (4b)

where f
t
i (·) is the concave utility function of user i at time t that is a function of the resource demand

x
t
i and X ⇢ Rn is the convex and compact set of feasible resource allocations.

For all i 2 [n], we define xi = minx2Xxi and x̄i = maxx2Xxi, which indicate the minimum
and the maximum values of user i’s resource demand can take in the feasible region, and let Xi =
[xi, x̄i]. Note that, if x 2 X , then xi 2 Xi and if x 2 X

int, then xi 2 X
int
i hold by definition. We

make the following assumptions on the feasible set X , and on the utility functions over Xi, 8i 2 [n].
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Assumption 1 Let domf =
TT

t=1 domf
t. The feasible set X is a subset of domf , i.e., X ✓ domf .

The diameter of the feasible set X is bounded by R, i.e., kx � yk  R, 8x, y 2 X . There exists a
vector x̃ in the interior of X such that x̃ 2 X

int.

Assumption 2 For all i 2 [n] and t 2 [T ], the utility function f
t
i (·) is µ-strongly concave, L-

smooth, M -Lipschitz continuous, and has �-smooth gradient over Xi.

Example 1 (Utility function) For instance, take f
t
i (xi) = f↵(xi) to be an ↵-fair utility function

(see Mo and Walrand (2000)) and let Xi = [xi, x̄i] with xi > 0. We have that rf
t
i (xi)  1/x

↵
i ,

�↵/x
↵+1
i  r

2
f
t
i (xi)  �↵/x̄

↵+1
i , and ↵(↵+1)/x̄

↵+2
i  r

3
f
t
i (xi)  ↵(↵+1)/x

↵+2
i , 8x 2 Xi.

Therefore, fi(xi) is ↵/x̄
↵+1
i -strongly concave, ↵/x

↵+1
i -smooth, and 1/x

↵
i -Lipschitz continuous,

and has ↵(↵ + 1)/x
↵+2
i -smooth gradient over Xi.

In non-stationary environments, achieving meaningful findings often involves bounding tempo-
ral changes using diverse metrics. Within the realm of online convex optimization, the consideration
typically revolves around the bounded total variation of the functions, the optimal solutions, or the
function gradients over a horizon of T . In this paper, we adopt a stage-wise bounded variation in
the gradients, which is formalized as follows:

Assumption 3 For all users i 2 [n] and for all t 2 [T ], there exists a known bound V
t on the

change in the gradients:
sup
xi2Xi

krf
t
i (xi) � rf

t+1
i (xi)k  V

t
. (5)

This type of variation in the gradients was first introduced in Chiang et al. (2012), however, using a
bound on the total variation over a horizon of T (i.e.,

P
t2[T ] V

t in our setup). The known bound on
the stage-wise gradual variation assumption we impose is more restrictive, however, it is necessary
to ensure the stage-wise safety of any pricing algorithm. For brevity of notation, we define VT =P

t2[T ] V
t be the total gradual variation over T periods.

Since f
t
i (·) are private to the users, (4) cannot be solved centrally. Therefore, pricing-based

distributed optimization methods have been proposed in the literature (e.g., Palomar and Chiang
(2006) for the case when X is a polytope and f

t(x) = f(x), 8t 2 [T ], but without stage-wise
safety) in order to incentivize selfish users with private utility functions to follow the optimal global
solution. The common high-level idea is to divide the main problem into subproblems that the
individual users can solve upon observing a pricing signal, and iteratively design prices {p

0
, p

1
, . . . }

to achieve near-optimal resource allocation. In this framework, upon observing a price pi 2 R, each
user i 2 [n] determines their own decision variable, i.e., resource demand, according to their own
profit maximization problem:

g
t
i(pi) = arg max

xi2domf t
i

f
t
i (xi) � hpi, xii. (6)

We call gti(·) the price response function of user i at time t and let gt(p) = [gt1(p1), g
t
2(p2), . . . , g

t
n(pn)]

be the concatenated vector of price responses given a price vector p 2 Rn.
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2.2. Performance and Safety Metrics

Regarding the performance of induced resource demand {x
t
}t2[T ] = {g

t(pt)}t2[T ] in response
to online prices {p

t
}t2[T ], we adopt the static regret as a metric. The static regret measures the

difference between the utility gain of an online pricing algorithm and that of the best fixed resource
allocation in hindsight. It can be written as

R(T ) =
TX

t=1

f
t(x?) � f

t(xt), (7)

where

x
? = arg max

x2X

TX

t=1

f
t(x) (8)

Under Assumption 2, the optimization problem (8) is strongly concave with coefficient µ and
therefore has a unique solution denoted by x

?.

Remark 4 Although the term static refers to x
? being the static solution for all time periods, it

necessitates a dynamic pricing scheme to implement the solution. This is because the users’ demand
is dictated by (6) and according to the first-order optimality condition, rf

t
i (x

?
i ) = p

t
i. Therefore,

even if x
? is static, the actual actions (prices {p

t
}t2[T ]) to implement this solution are dynamic.

On the other hand, one could compare the performance of the online pricing algorithm to that of
the best static prices. However, in Appendix I of the full online version of this paper Turan et al.
(2023a), we show that a static pricing policy is in general infeasible, i.e., not safe. Additionally,
in Appendix G of the full online version Turan et al. (2023a), we extend our analysis to bound the
dynamic regret performance of our algorithm.

In addition to the regret as a performance metric, we require that the demand induced by the
prices remain in the feasible set of the problem. This can formally be stated as

g
t(pt) 2 X , 8t 2 [T ]. (9)

This is a natural requirement for the static regret to be a valid choice of performance metric for NUM
problems with hard constraints, which is common for multi-user resource allocation frameworks
with physical limitations. The definition for static regret in (7), measures the cumulative sum of
instantaneous regrets f

t(x?)�f
t(xt) for t 2 [T ], where the instantaneous regret at time t quantifies

the difference between utility gained by the resource demand x
? and that of x

t. Accordingly, for
the users to gain the utility f

t(xt) at time t, the demand x
t should be realized, which must meet the

hard constraints for the safe operation of the physical system.

3. Safe Pricing for NUM with Gradual Variations

In this section, we present the Safe Pricing for NUM with Gradual Variations (SPNUM-GV) al-
gorithm, outlining a price update method that induces feasible resource demand at every iteration.
Our approach involves leveraging definitions and findings from Hutchinson et al. (2023) concerning
the geometric characteristics of convex and compact sets. Although Hutchinson et al. (2023) pri-
marily delves into a linear stochastic bandit setup, which differs significantly from the NUM setup
under examination, the definitions of the shrunk set provided therein remain relevant to our current
context.
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Algorithm 1: Safe Pricing for NUM with Gradual Variations (SPNUM-GV)
Input: p

0, �t = �
t + ✏

t, �
t, ⌘

t.
// Initialization Stage

1 Each user i 2 [n] receives p
0
i , p

0,s
i = p

0
i + ⌘

0 and solves:

[x0
i , x

0,s
i ] = [g0i (p

0
i ), g

0
i (p

0,s
i )] (10)

// Safe Price Update Stage
2 for t = 0 to T � 1 do

3 Compute x̂
t+1 = ⇧X�t (x

t + �
t
p
t).

4 Set p
t+1
i = p

t
i +

pt,si �pti
xt,s
i �xt

i

(x̂t+1
i � x

t
i), for all i 2 [n].

5 Each user i 2 [n] receives p
t+1
i , p

t+1,s
i = p

t+1
i + ⌘

t+1 and solves

[xt+1
i , x

t+1,s
i ] = [gt+1

i (pt+1
i ), g

t+1
i (pt+1,s

i )] (11)

6 end

3.1. Geometric Properties of the Feasible Set

The main ingredient that ensures the safety of SPNUM-GV is that it operates on a shrunk feasible
set, which is formally defined as follows:

Definition 5 For a compact set X ⇢ Rn and a positive scalar � 2 R+, we define the shrunk
version of X as X� := {x 2 X : x + v 2 X , 8v 2 B̄(�)}.

Example 2 (Shrunk polytope) Let A 2 Rm⇥n and X = {x 2 Rn : Ax  c} be a polytope. The
shrunk version of X is defined as X� = {x 2 Rn : A

>
j x  cj � �kAjk, j 2 [m]}.

Remark 6 If X is convex and compact, then X� is also convex and compact.1

Given the above definition of the shrunk version of a set, one can consider the maximum shrinkage
that a set can withstand while still being nonempty. We introduce the maximum shrinkage of a set
in the following definition.

Definition 7 For a compact set X ⇢ Rn, we define the maximum shrinkage of X , as HX :=
sup{� : X� 6= ;}.

3.2. Description of the Algorithm

The algorithm, called Safe Prcing for NUM with Gradual Variations (SPNUM-GV), is outlined in
Algorithm 1. The algorithm is an online projected gradient method on the primal variables at its

1. We can equivalently define X� using Minkowski subtraction. The Minkowski subtraction of sets A,B ✓ Rn is
defined as A B := {a�b : a 2 A, b 2 B}, or equivalently, A B =

T
b2B(A�b). Therefore, X� = X  B(�)

is an intersection of convex and closed sets and hence is convex and closed (Schneider, 2014, Section 3.1). By
Definition 5, X� is a subset of X , and therefore bounded. A closed and bounded convex set is convex and compact.
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core, which determines a desired demand in Step 2. However, note that the primal variables, i.e.,
the resource demand, have to be induced through prices, and the users’ price response is not known.
As such, SPNUM-GV determines prices that would induce a resource demand close to the desired
demand in Step 3, given its current knowledge of the price response. To do so, the algorithm uses a
linear estimation of the price response function via two-point feedback in Step 4. Therefore, central
to the algorithm are two crucial steps that go hand-in-hand for safety:

Step 1: Given x
t

2 X
int and p

t, Step 2 can be seen as an online projected gradient step on X�t

to determine a desired demand x̂
t+1. This is due to the first-order optimality condition for

g
t(pt) = arg maxx2domf t f

t(x) � hp
t
, xi necessitating rf

t(xt) = p
t if x

t
2 X

int (since
Assumption 1 implies that domf

t
✓ X ). The projection is however done onto the shrunk set

X�t , where �t is the amount of shrinkage. This is essential to the algorithm’s safety because
the uncertainty in the price response functions may cause the actual induced demand x

t+1 in
response to the price vector p

t+1 to deviate from the desired demand x̂
t+1. Incorporating this

margin into the feasible set X ensures safety if kx
t+1

� x̂
t+1

k 2 B̄(�t).

Step 2: Upon determining the desired demand x̂
t+1, the task is to establish p

t+1
i to ideally induce

x̂
t+1
i for all i 2 [n]. Given the lack of knowledge of the price response function g

t+1
i (p), it is

not possible to determine p
t+1
i such that g

t+1
i (pt+1

i ) = x̂
t+1
i . Instead, the central coordinator

uses a linear approximation of the price response function g
t
i at the previous timestep around

p
t
i using the two-point feedback (xt

i, x
t,s
i ) to (pti, p

t,s
i ):

ĝ
t
i(p) = g

t
i(p

t
i) +

x
t,s
i � x

t
i

p
t,s
i � p

t
i

(p � p
t
i). (12)

By setting p = p
t+1
i , gti(p

t
i) = x

t
i, and ĝ

t
i(p

t+1
i ) = x̂

t+1
i , we get the price update rule in Step 3.

Finally, the central coordinator broadcasts p
t+1 and p

t+1,s to get the two-point feedback to
be used in the next iteration. Such two-point feedback mechanisms are common in the online
optimization literature, e.g., Gao et al. (2018); Cao and Başar (2021).

Using the Taylor series expansion g
t
i(p

t+1
i ) = g

t
i(p

t
i) + rg

t
i(p

t
i)(p

t+1
i � p

t) + R1 we can write the
induced demand x

t+1
i = g

t+1
i (pt+1

i ) as:

g
t+1
i (pt+1

i ) = g
t+1
i (pt+1

i ) � g
t
i(p

t+1
i ) + g

t
i(p

t
i) + rg

t
i(p

t
i)(p

t+1
i � p

t
i) + R1, (13)

where R1 includes the higher order terms. Comparing (13) and (12), we observe that for user
i, the error between x̂

t+1
i = ĝ

t
i(p

t+1
i ) and x

t+1
i = g

t+1
i (pt+1

i ) stems from three sources: 1) the
difference between the price response functions g

t
i(p

t+1
i ) and g

t+1
i (pt+1

i ), i.e., the gradual variations,
2) the difference between the estimated derivative (xt,s

i � x
t
i)/(pt,si � p

t
i) and rg

t
i(p

t
i), and 3) the

high order terms not captured by the linear approximation, i.e., R1. By properly choosing �t to
accommodate for the total error caused by those three sources, we can ensure safety. In particular,
we let �t = ✏

t + �
t and tune ✏

t to handle source 1 and �
t to handle sources 2 and 3.

For the algorithm to proceed as described above, the initial price vectors p
0
, p

0,s should induce
the demand vectors x

t
, x

t,s
2 X

int. Since this has to hold before getting any feedback from the
users, we make the following assumption:

Assumption 4 There exists a known price vector p
0 such that g

0(p0), g0(p0,s) 2 X
int.

7
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Remark 8 One way to satisfy Assumption 4 is to choose ⌘
0 such that Xp

n⌘0

µ

is non-empty and

p
0 such that g(p0) 2 Xp

n⌘0

µ

, which is proven in Appendix F of the full online version Turan et al.

(2023a).

In the next section, we characterize a principled way to choose parameters �t, �
t, and ⌘

t in
order to induce feasible resource demand. Additionally, we prove that the regret incurred by the
demand induced by Algorithm 1 is O(

p
T (1 + VT )) after T iterations.

4. Safety and Regret Analysis

In order to prove the safety and the regret guarantees of our algorithm, we will need to bound the
distance between a point in x 2 X and its projection onto the shrunk set ⇧X�(x). The following
definition from Hutchinson et al. (2023) formalizes this notion called the sharpness of a set, which
is defined as the maximum distance from any point in a set to the projection of it onto the shrunk
version of that set.

Definition 9 For a convex and compact set X ⇢ Rn, we define the sharpness of X as

SharpX (�) := sup
x2X

k⇧X�(x) � xk, (14)

for all non-negative � such that X� is nonempty.

The following proposition establishes a bound on the sharpness of convex and compact sets as a
linear function of �:

Proposition 10 (Hutchinson et al., 2023, Corollary 11) For a convex, compact set X ⇢ Rn with
non-empty interior, we have that SharpX (�)  �X� where �X � 1 is a constant that depends
only on the geometry and the dimension of X .

Example 3 (Sharpness of a polytope Hutchinson et al. (2023)) Let X = {x 2 Rn : Ax  c} be
a polytope with a nonempty interior. Define IA to refer to the collection of all sets of d indices such
that for each {i1, i2, ..., id} 2 IA the vectors Ai1 , Ai2 , ..., Aid are linearly independent. For each
` 2 IA where ` = {i1, i2, ..., id}, we define A

` = [A>
i1 A

>
i2 ... A

>
id

]>. We have that SharpX (�) 
p

dKX�, where KX := max`2IA (A`) and (A`) is the condition number of A
`.

Example 4 (Sharpness of a ball in Rn
) Let X = {x 2 Rn : (x � x0)>(x � x0)  r

2
} be a ball

in Rn with radius r centered at x0. We have that SharpX (�) = �.

Although we do not specify a closed-form expression of �X for a general convex and compact set
X , it relates to the sharpness of polytopes that are contained in X , which have closed-form bounds
as given by Example 3. We refer the reader to Hutchinson et al. (2023) (Proposition 10) for a
detailed discussion.

In the following subsections, we will first characterize the choice of algorithm parameters that
guarantee primal feasibility at all iterations and then prove the regret of Algorithm 1 under this
choice of parameters.
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4.1. Feasibility Analysis

The following proposition characterizes the choice of the parameters �t, �
t, and ⌘

t to induce feasi-
ble resource demand:

Proposition 11 Suppose that

V
t
< min

⇢
µ
4

12n�L2�2
X

,
µHX
2
p

n

�
(15)

holds for all t 2 [T ]. Let �t = �
t + ✏

t and choose algorithm parameters satisfying

✏
t = 2

p
nV

t
/µ, (16)

�
t
 min

(s
(HX � ✏t)µ3

8�L2n3/2M2
,

µ
3

8�L2�XMn

)
, (17)

�
t =

8�L
2
n
3/2

M
2

µ3
(�t)2, (18)

⌘
t
< min

⇢
L(M

p
n�

t + �t�X )

2
,
µ�

t�1

4
p

n

�
. (19)

Then for all t � 0, kx̂
t+1

� x
t+1

k  3�
t
/4 + ✏

t and kx
t+1

� x
t+1,s

k < �
t
/4. Accordingly, the

demand vectors x
t and x

t,s induced by Algorithm 1 are in the strict interior of the feasible set.

Remark 12 The upper bound specified in (15) on the stage-wise gradual variation V
t is a sufficient

condition for the safety of the algorithm. Note that the shrinkage �t consists of two terms: �
t and ✏

t.
Intuitively, ✏

t accounts for the gradual variation V
t since ✏

t = O(V t) in (16). However, to account
for large variations V

t, ✏
t needs to be large. The analysis shows that the error kx̂

t+1
� x

t+1
k

has a dependency on ✏
t as O((✏t)2), which necessitates ✏

t and therefore V
t to be bounded by the

first argument in the minimum operator specified in (15). In addition, a large ✏
t due to a large V

t

could cause the shrunk set X�t to become empty. Accordingly, the second argument in the minimum
operator specified in (15) ensures that we can shrink X by an amount ✏t without causing it to become
empty, i.e., ✏

t
< HX . Furthermore, since � = O((�t)2) in (18), we ensure that �

t + ✏
t

< HX by
imposing the upper bound on �

t in (17) specified by the first argument of the minimum operator.

The proof of Proposition 11 can be found in Appendix A of the full online version Turan et al.
(2023a). Given that under Proposition 11, x

t for all t � 1 are feasible and therefore implementable,
the static regret (7) is a valid choice of performance metric. Next, we prove that the regret of
Algorithm 1 is O(

p
T (1 + VT )).

4.2. Regret Analysis

The following theorem establishes an upper bound on the regret incurred by Algorithm 1.

Theorem 13 Let �
t = � be a constant satisfying (17) for all t 2 [T ] and choose �

t, ✏
t, and ⌘

t

as in Proposition 11. Then for all t � 0, the demand vectors induced by Algorithm 1 are feasible.
Furthermore, the regret R(T ) for T � 1 satisfies

R(T )  O (�T + (1 + VT )/�) (20)

where O(·) hides other constants.

9
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The proof of Theorem 13 and the explicit constants of (20) can be found in Appendix B of the full
online version Turan et al. (2023a). Based on Theorem 13, we can arrive at the following corollary
regarding the optimal step size.

Corollary 14 Let � = c1

p
(1 + VT )/T for some c1 such that (17) holds for all t 2 [T ]. Then

R(T )  O

⇣p
T (1 + VT )

⌘
. (21)

The proof of Corollary 14 and the explicit constants of (21) can be found in Appendix C of the full
online version Turan et al. (2023a). Accordingly, Algorithm 1 with constant step size �

t = � =
O(

p
(1 + VT )/T ), 8t 2 [T ], produces feasible solutions that achieve a regret of O(

p
T (1 + VT )).

Hence, if the total variation VT is sublinear in T , Algorithm 1 achieves a sublinear regret.

Remark 15 In Hazan et al. (2016) it was shown that the lower bound for static regret with strongly
concave objective functions is ⌦(log(T )). Compared with (21), our result has a worse dependency
on T as

p
T , and furthermore a dependence on the total variation as

p
VT . This is the trade-off for

ensuring safety: The conservative approach through shrinkage of the feasible set results in an extra
O(

P
t2[T ] V

t
/�

t) term in the regret analysis. Therefore, we can not utilize diminishing step sizes in
the form of �

t = O(1/t) to exploit the strong concavity of the problem as common in the literature
to achieve faster convergence rates.

5. Numerical Study
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Figure 1: Results for the numerical

study on SPNUM-GV. The
regret divided by

p
t(1 + Vt)

is plotted in solid lines, and
constraint violation is plotted
in dashed lines, where con-
straint violation is 0 if x

t
2

X and 1 otherwise.

In this section, we numerically demonstrate the regret and
safety guarantees of SPNUM-GV on a problem with a
feasible set characterized by non-linear inequalities. We
select the feasible set X = {x 2 Rn : kxk  1} as the
unit ball in Rn centered at the origin, and the utility func-
tions as f

t
i (xi) = �0.5(xi �yi)2 �xi � (✓i +⌫

t
i ) log(1+

e
xi) for all i 2 [n], where ✓i is sampled uniformly from

[0.1, 0.9] and yi is sampled uniformly from [�2, 2] at ran-
dom at the beginning of each run. ⌫

t
i is a random variable

bounded as |⌫
t
i |  0.1, 8i 2 [n], t 2 [T ], and sampled at

each iteration to account for the gradual variations.
We studied 3 different configurations of ⌫

t
i , where at

each iteration t, ⌫
t
i is sampled uniformly from [�0.1, 0.1]

and scaled by {
1
t ,

1
t1/2

,
1

t3/4
}. Accordingly, we set V

t
2

{
0.2
t ,

0.2
t1/2

,
0.2
t3/4

} to be known upper bounds on the grad-
ual variations. For each configuration, we ran SPNUM
50 times for a horizon of T = 1000. The results are illus-
trated in Figure 1. The figure shows that 1) the regret of SPNUM-GV grows as O((

p
t(1 + Vt))

and 2) SPNUM-GV guarantees feasible demand at all iterations. Additional details of this numerical
study and other studies can be found in Appendix H of the full online version Turan et al. (2023a).
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