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Abstract

Online safe reinforcement learning (RL) involves training a policy that maximizes task efficiency
while satisfying constraints via interacting with the environments. In this paper, our focus lies in
addressing the complex challenges associated with solving multi-constraint (MC) safe RL problems.
We approach the safe RL problem from the perspective of Multi-Objective Optimization (MOO) and
propose a unified framework designed for MC safe RL algorithms. This framework highlights the
manipulation of gradients derived from constraints. Leveraging insights from this framework and
recognizing the significance of redundant and conflicting constraint conditions, we introduce the
Gradient Shaping (GradS) method for general Lagrangian-based safe RL algorithms to improve the
training efficiency in terms of both reward and constraint satisfaction. Our extensive experimentation
demonstrates the effectiveness of our proposed method in encouraging exploration and learning a
policy that improves both safety and reward performance across various challenging MC safe RL
tasks as well as good scalability to the number of constraints. The full paper with the appendix is
available on our website: https://sites.google.com/view/mc-grads/home.
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1. Introduction

Despite the great success of deep reinforcement learning (RL) in recent years (Levine et al., 2020;
Silver et al., 2017; Brunke et al., 2022; Li, 2023), ensuring safety (i.e., constraint satisfaction) is one
key challenge when deploying them to real-world applications (Hu et al., 2023; Liu et al., 2022; Zhao
et al., 2021; Xu et al., 2022; Wachi and Sui, 2020; Zhang et al., 2023). Safe RL has been a common
approach to address the difficulties faced by agents operating in complex and safety-critical tasks (Gu
et al., 2022; Thananjeyan et al., 2021; Zhang et al., 2020; Zhao et al., 2023; Cheng et al., 2023; Wachi
et al., 2021), such as autonomous driving (Isele et al., 2018; Hsu et al., 2023a), home service (Ding
et al., 2022; Hsu et al., 2023b), legged robots (Kim et al., 2023b), and UAV locomotion (Qin et al.,
2021; Zheng et al., 2021). Safe RL aims to maximize the cumulative reward within a constrained
policy set (Yang et al., 2022; Thananjeyan et al., 2021; Bharadhwaj et al., 2020; Khattar et al., 2022;
Yao et al., 2023; Ma et al., 2022). By explicitly incorporating safety constraints into the policy
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learning process, agents can adeptly navigate the trade-off between task performance and safety
constraints, rendering them well-suited for real-world tasks. (Brunke et al., 2021; Yao et al., 2023).

In real-world applications, agents often face multiple constraints (Kim et al., 2023b; Lin et al.,
2024). For example, an autonomous driving vehicle must avoid collisions, prevent over-speeding,
stay on the road, and adhere to various traffic rules and social norms simultaneously (Feng et al.,
2023). Nevertheless, despite the advancements in safe RL, the development of algorithms for MC
safe learning that can effectively handle multiple costs remains a challenging issue (Kim et al.,
2023a). Many existing methods only consider a single constraint during training (Achiam et al.,
2017). The extension of the Lagrangian method to MC settings is a potential solution. However, such
approaches can be sensitive to the initialization of Lagrange multipliers and the learning rate, leading
to extensive hyperparameter tuning costs (Xu et al., 2021; Achiam et al., 2017; Chow et al., 2019).
Furthermore, these methods may introduce instability issues in scenarios with multiple constraints,
thus limiting their scalability. CRPO method (Xu et al., 2021) has been proposed to randomly select
one constraint for policy consideration at each step to handle multiple constraints. Unfortunately,
considering one constraint at a time becomes inefficient with an increasing number of constraints.

Empirical findings have indicated that MC safe RL poses more challenges compared to single-
cost settings (Liu et al., 2023a; Kim et al., 2023a). In this study, we analyze the MC safe RL
problem through the lens of constraint types, identifying two challenging MC safe RL settings:
redundant and conflicting constraints. To address these challenges, we propose the constraint
gradient shaping (GradS) technique from the standpoint of Multi-Objective Optimization (MOO),
ensuring compatibility with general Lagrangian-based safe RL algorithms. The main contributions
are summarized as follows:

1. We introduce a unified framework for Lagrangian-based MC safe RL algorithms from
the perspective of Multi-Objective Optimization (MOO). Within this framework, the major difference
among Lagrangian-based MC safe RL methods is the strategy dealing with gradients induced by
constraints.

2. We propose the gradient shaping (GradS) method for MC safe RL algorithms. The
proposed method can tackle the challenging redundant and conflicting MC safe RL settings. Our
theoretical analysis further provides insights into the convergence of our approach.

3. We conduct extensive evaluations of our method: The proposed GradS method and
baselines are evaluated on the MC safe RL tasks modified from common safe RL. benchmarks
Bullte-Safety-Gym (Gronauer, 2022) and Safety-Gymnasium (Ji et al., 2023). The results
demonstrate that GradS can significantly improve safety and reward performance in MC tasks.

2. Related Work

Safe RL has been approached through various methods. Researchers have proposed many techniques
employing constrained optimization techniques to learn a constraint-satisfaction policy (Garcia and
Ferndndez, 2015; Gu et al., 2022; Flet-Berliac and Basu, 2022), such as the Lagrangian-based ap-
proach (Bhatnagar and Lakshmanan, 2012; Chow et al., 2017; As et al., 2022; Ding and Lavaei, 2023),
where the Lagrange multipliers can be optimized along with the policy parameters (Liang et al.,
2018; Tessler et al., 2018; Ray et al., 2019). Alternatively, some works approximate the constrained
RL problem with Taylor expansions (Achiam et al., 2017) or through variational inference (Liu et al.,
2022). They then solve for the dual variable using convex optimization (Yu et al., 2019; Yang et al.,
2020; Gu et al., 2021; Kim and Oh, 2022). For MC settings, many works propose to consider all the
constraints equally (Fernando et al., 2022; As et al., 2022), some techniques consider the constraints
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that violate the most, and other methods randomly activate one constraint for policy update. One
recent concurrent work (Kim et al., 2023a) proposes the gradient integration method to manage
infeasibility issues in MC Safe RL. However, this method is limited to the TRPO-based methods and
is hard to generalize to other algorithms. The systematical analysis for MC safe RL is still a largely
unexplored area.

Multi-Objective Optimization (MOOQO) considers how to train a single model that can meet a variety
of different requirements (Huang et al., 2022; Yu et al., 2020; Caruana, 1997). The MOO formulation
has been extended to many different settings, including supervised learning (Yang and Hospedales,
2016; Zamir et al., 2018), and reinforcement learning (Wilson et al., 2007; Sodhani et al., 2021). For
the Multi-Objective RL (MORL), existing works learn a policy that is optimal in the Pareto Frontier
with a given trading-off among tasks (Roijers et al., 2013; Zhang and Golovin, 2020). In recent years,
researchers also interpreted safe RL from the perspective of MORL. However, they are primarily
focusing on multiple task rewards and preference settings (Huang et al., 2022) and single-constraint
settings (Liu et al., 2023b), but not particular MC safe RL problems.

3. Unified Framework for MC Safe RL
In this section, we introduce the proposed unified framework for Lagrangian-based MC safe RL.
3.1. Preliminary

Constrained Markov Decision Process (CMDP) M is defined by the tuple (S, A, P, r, ¢, o) (Alt-
man, 1998), where S is the state space, A is the action space, P : S x A x § — [0,1] is the
transition function, 7 : S x A x § — R is the reward function, and o : S — [0, 1] is the initial
state distribution. CMDP augments MDP with an additional element ¢ : S x A x S — RY,
to characterize the cost of violating the constraint, where N is the cost dimension. An MC
safe RL problem is specified by a CMDP and a constraint threshold vector € € R]>VO. Let
7:S x A — [0,1] denote the policy and 7 = {s1, a1, ...} denote the trajectory. The value functions
are Vrﬂ-(MO) = ETNW,SONMO [Ztoio Vtr(t)]v ‘/07:(/110) = ETN7T7SON#O [Z;ﬁo Vtci(t)]’i =12,.,N,
which is the expectation of discounted return under the policy 7 and the initial state distribution
o- Denote < as an element-wise partial order, the goal of MC safe RL is to find the policy that
maximizes the reward return while constraining the cost return under the pre-defined threshold e:

™ =argmax V", st. VI =€ (V7 eRY, ecRY)). (1)
To solve this problem, Lagrangian-based safe RL algorithms can be formulated to find:

(7", A") = argm)z\ixminj(ﬂ, A), JmA)=-VT+A(VT —¢) (2)

where XA = [A1, A2, ..., Aw]7 is the Lagrangian multiplier corresponding to the primary problem (1).
In practice, we can update (7, A) iteratively (Stooke et al., 2020).

3.2. Unified framework: MC Safe RL as MOO

In multi-objective optimization (MOO), we are given K > 2 different tasks, each associated with a
loss function (Fernando et al., 2022). With this, at ¢-th step, updating 7; via solving (2) is to find:

m; = argmin [— V" + v — e, ©)
Tt



GRADIENT SHAPING FOR MULTI-CONSTRAINT SAFE REINFORCEMENT LEARNING

For simplicity, we will omit the subscript ¢ and superscript 7 in the following. The gradient V J for
policy 7 is:
VJ=-VV,+VJ., Vi.=w'G, )

where G := [g1, ..., gn] is the constraint gradient vector, g; = \; V'V, is the i-th constraint gradient,
and w > 0 is a non-negative weight vector of the constraint gradients. With this formulation, many
commonly used methods for MC Safe RL can be categorized as:

(1) Vanilla Method: For common safe RL algo-
rithms (Fernando et al., 2022; As et al., 2022), they con-
sider all the constraints equally, with a uniform weight:

© 7(st)
Current policy
Current policy

w=1 S)

(2) CRPO! Method: Methods such as CRPO Xu Lane-keeping gradient
et al., 2021) that randomly select constraints for policy — m——————————
update at each time can be formulated as:

|lwllo=1, w;=1, i~ uniform(1,N) (6)

(3) Min-Max method: Safe RL methods that pe-
nalize the cost that violates the constraint the most for
policy updates at each time can be formulated as:

Low-speed gradient

Figure 1: Illustration of constraint types.
&) (7) A is the lane-keeping cost, c3 is the col-
lision avoidance cost, and c3 is the low-
speed cost.

|lwlo =1, w =1, i" =argmax(V;, —

4. Gradient Shaping for MC Safe RL

Based on empirical findings in both previous works (Liu et al., 2023a; Kim et al., 2023a) and this
work, MC safe RL presents greater difficulty compared to single-constraint ones. Thus, before
delving into the proposed method, we outline the critical conditions essential for understanding MC
safe RL, particularly focusing on various constraint types.

4.1. Constraint Types in MC Safe RL

Selected cost gradient

Based on the constraint gradient similarity, we de-
fine the relationship between two distinct constraints
VI < € and Vc’; < €; fori # j given a policy 7.
Note that the gradients are closely related to the cur-
rent policy 7. We utilize the cosine similarity, which
has been used in many previous works (Du et al.,
2018), as the similarity function sim(-, ). Denote 6 Figure 2: Illustration of elimination area.
as the parameter for the policy .

Remaining gradient
k-redundant area (cone)
0-independent area (plane)

o-conflicting area (cone)

Definition 1 (c-conflicting constraints) The constraints V. < €; and Vg; < € are o-conflicting
constraints if and only if:

sim(VeV,, Vng]r_) < —o, ®)

Conflicting constraints drive the policy in conflicting directions if both are activated.

1. We modify the original CRPO to a Lagrangian version. Please refer to the experiment and appendix for more details.
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Definition 2 (+-redundant constraints) The constraints V.. < €; and V. < €; are r-redundant
constraints if and only if:

sim(Vo V., VQVZ;) > K, 9)

Redundant constraints drive the policy in almost the same direction if both are activated.

Definition 3 (n-independent constraints) The constraints V[ < €; and ngr < €, are n-independent
constraint if and only if:
— 1 < sim(VoVI, VgVi) <1, (10)

Independent constraints drive the policy in “independent” directions if both are activated.

For simplicity, we will omit the subscript 0
in the following context. With the toy example
in Figure. 1, we illustrate the aforementioned
redundant and conflicting constraints, which are

Algorithm 1 Gradient Shaping (GradS)
Input: policy 7
Output: shaped constraint gradient V.J,.

two primary optimization issues in MC safe I Sth_ﬂmg the constrglnt 1ndlce§
RL. In this common autonomous driving sce- 2: b Initialize the candidate gradient set
nario, we consider three constraints: the lane- 3G {g:= /\%VVQ} )
keeping constraint to keep the car on the lane, 4> G?t the candidate gradient set G
the collision constraint to prevent accidents with > f01: 1=2 oM dp . .
other vehicles, and the minimum speed limit con- 6: if—o < szm(z, 7) <.R’ ,V] € {G} then
straint to prevent congestion. In the case shown 7 PAdd shis conSIraintinio e set
in Figure. 1, for current policy, the lane-keeping 8: g f_ GU{gi = AVVe}
constraint ¢; and the collision constraint co are 9. endif
10: end for

redundant, while c; and the low-speed constraint
cs are conflicting. Notably, redundant and con- .
flicting constraints are not inherently problem- = J¢ ™ uniform(G) o

atic. In fact, simply averaging constraint gradi- 13: Return: VJo = VV;" = g [G|/N

ents should lead to the optimal policy for MC safe RL problems. However, for online safe RL
algorithms, redundant constraints lead to over-conservativeness by over-estimating the effect of
constraints, while conflicting constraints result in exploration instability as getting stuck in local
optimum, both of which are detrimental to online safe RL agent learning.

—_

: > Select constraint gradient

—_
[\S)

4.2. Gradient Shaping

The objective of our approach is to address the challenges posed by redundant and conflicting
constraints, aiming to eliminate over-conservativeness resulting from redundant constraints and
escape local optima to resolve conflicting constraints. In this section, we outline our strategy for
shaping the constraint gradients. We also provide a theoretical analysis demonstrating that GradS
still guarantees convergence in the next section. The core idea for GradsS is to first get a candidate
constraint gradient set G via eliminating the redundant and conflicting constraints, then randomly
select one constraint gradient in set G for policy update. The proposed algorithm operates as follows:

(1) Initially, it shuffles the constraint gradients and computes the cosine similarity between each
pair of constraint gradients VV,, and VV,,. (2) Next, it initializes the candidate gradient set with
the first gradient G < {g1 := A\ V'V, }. (3) It then selects gradients sequentially: if a newly chosen
gradient g; is neither x-redundant nor y-conflicting with any other gradient in the set G, it is added
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Grads (Ours) Vanilla CRPO Min-Max | Activated gradient

H

Gradient for sampling
Ignored gradient
Redundant area

Conflicting area

shuffle indices  eliminate gradients  select gradient - activate all sample penalize the worst

Figure 3: Illustration for constraint gradients shaping.

to the set G <— G U {g; := \;VV,,}. Otherwise, it skips this constraint. (4) After the selection
process, the constraint candidate set G is obtained. Then it randomly samples a gradient from G, and
multiplied by a scaling factor as the constraint gradient VCG = g; |G|/N, where i denotes the index
for the selected constraint i ~ uniform(G), g; = G[i]. The scaling term |G|/N is used to ensure
stability. The process is described in Algorithm 1. The illustration of the proposed GradS method
and the comparison with baseline methods are shown in Figure 3.

The GradS method, although straightforward, mitigates constraints by excluding redundant and
conflicting gradients, which induce over-conservativeness and exploration issues for online safe RL,
and selects cost gradients that are independent, which makes the policy update more efficient as well
as considering most cost information as shown in Figure. 2. Moreover, it encourages exploration by
sampling from the gradients after the elimination process instead of aggregating them. In practice,
the GradS method can be applied to general Lagrangian-based safe RL algorithms (discussed in
this paper) and has the potential for extension to general safe RL algorithms. The proposed GradS
method also falls into the framework (4) as to find the weight w:

lwllo =1, w;=|G|/N, i~ uniform(index(G)), (an

where G is the set for candidate cost gradients as mentioned above and shown in Alg. 1, and the
sampling “~” means to sample from the corresponding indices of gradients in the candidate set.

4.3. Theoritical analysis

In this section, we theoretically analyze the performance of GradS with the convergence guarantee.
We first have these two common assumptions in safe RL:

Assumption 1 (Slater’s condition) The feasible policy exists, i.e., 3w, such that VI < e.

The feasibility assumption ensures that the Lagrangian A corresponding to the optimization problem
(2) is bounded.

Assumption 2 (Bounded and smooth gradients) Assuming the constraint gradient components
are bounded and smooth, i.e., for some constants G, L > 0,

IVVal <G, |[u" VPV u| < Ljul? VueR? (12)

where R? characterizes the policy gradient space. With these mild assumptions, we can ensure that
the constraint gradient after Grads is still bounded as shown in Theorem 4.
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Theorem 4 (Convergence analysis) Denote the number of removed r-redundant and o-conflicting
constraints at iteration time step t as Nr(k,t), No(o,t), the total optimized time step as T, the
learning rate for every optimization step is «, then for the safety performance, i.e., if we only consider
constraint gradient VVCG (0:), the policy gradient can be bounded as

Ve (00) — V&
To

13)

+ G? (B¢ [Nr(s,t)] + E¢ [Nc(o, 1)) + aCfL

G 2
B[ VVE @)]] <
The proof is available in the appendix. This bound consists of three terms. The first term relates to
the initialization parameters, the second term arises from the elimination of redundant and conflicting
constraints, and the third term is due to the sampling of gradients from the candidate set. The last
two terms result from the proposed GradS, which are our “noise ball” terms: the terms that are in

some sense “causing” GradS to converge not to a point with zero gradients but rather to some reason
nearby, thus we can improve the learning efficiency by avoiding getting stuck in local optimum.

S. Experiments

We aim to address three primary questions in the experiment section: (a) Can baseline methods
effectively learn policies that are both safe and rewarding in the challenging MC tasks? (b) How
does the proposed GradS method perform in the MC environments? (c) What is the scalability of the
proposed GradS method concerning the number of constraints in safe RL tasks? To answer these
questions, we employ the following experiment setup to assess GradS and the baseline approaches.

5.1. Experiment setup

Tasks. We utilize several continuous control tasks for robot locomotion commonly employed in
previous studies (Achiam et al., 2017; Chow et al., 2019; Zhang et al., 2020). The simulation
environments are sourced from public benchmark Bullet-Safety—-Gym (Gronauer, 2022) and
Safety-Gymnasium (Ji et al., 2023). We consider two tasks (Circle and Goal) as shown
in Figure 4 and train with various robots (Point, Ball, Car, and Drone). Inthe Circle
environment, agents are rewarded for following a circular path. In the Goal task, agents are rewarded
for reaching the goal cube. The details of the tasks can be found in the appendix. We name the task
as “Robot”-“task”, for example, BC means “Ball-Circle”, and CG means “Car-Goal”.

Constraints. In the aforementioned tasks, the orig-
inal environment only provides single-dimensional cost

information. To better simulate real-world scenarios, we :;

introduce three representative costs: Boundary/collision ® @ ® s
cost: agents incur a cost if they cross the boundary or .. o Vv
collide with the obstacles. High-velocity cost: agents i ® ®
receive a cost if they exceed the upper-velocity limit. Low- S0 SRR E

velocity cost: agents receive a cost if their speed falls (a) Circle task (b) Goal task

below the lower-velocity limit. All costs are binary. A de-
tailed explanation of the costs is provided in the appendix.
Intuitively, boundary/collision cost and high-velocity cost are likely redundant constraints since high
speed might also result in crossing the boundary or collision. High-velocity cost and low-velocity cost
are likely conflicting constraints as they potentially tend to pull the policy in conflicting optimization
directions if both are activated. We create tasks considering the first two types of constraints with the
suffix “~v2”, and tasks with all three types of constraints with the suffix “~v3” (more challenging).

Figure 4: Task visualization.
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Metrics. We compare the methods in terms of episodic reward (the higher, the better) and
episodic constraint cost violations (the lower, the better), which have been used in many related
works (Liu et al., 2023b; Li et al., 2023). We normalized the cost, and reported the most-violated
cost among all the constraints (then the cost threshold becomes 1):

cost-N = max{c;/€; } (14)

Algorithms and baselines. For the safe RL algorithms, we select commonly used model-free
off-policy algorithms, SAC-Lag and DDPG-Lag, and model-free on-policy methods, PPO-Lag
and TRPO-Lag. As introduced in Section 3.2, the baseline methods are Vanilla, CRPO, and
Min-Max. For the CRPO method, we modify it to a Lagrangian version for a fair comparison.
More details and results including practical implementation, and training curves are provided in the
appendix.

GradS (ours) Vanilla CRPO Min-Max

Env Method Reward 1 Cost-N | Reward 1 Cost-N | Reward 1 Cost-N | Reward 1 Cost-N |

PPO-L  271.63+£24.08 1.03+0.12 2602+19.44 088+0.17 288.04+1579 185+0.11 24541+21.18 1.16+0.12

TRPO-L  329.85+10.39 120+0.06 283.88+35.16 1.01+0.04 362.35+£5.87 451+0.11 33141+10.69 1.24+0.11

BC-v2 SAC-L  229.00+33.64 1.09+024 22883+16.61 1.18+0.29 271.92+28.16 149+£0.26 22345+720 1.13+0.24
DDPG-L  170.10£50.92 1.06+0.18 177.46+48.51 1.03+0.15 195.66+3235 097+033 202.16x29.17 1.11+0.19

Average 250.15 1.10 237.59 1.03 279.49 2.38 200.61 1.16

PPO-L 220.71+9.63 1.04+0.15 137.02+15.09 0.61+026 23320+10.11 1.85+0.16 165.67+29.97 0.81+0.24

TRPO-L  242.69+8.69 1.01+£0.06 21847+13.85 1.03+0.11 26601 +791 2.14+0.16 239.51+£9.72 1.01£0.05

CC-v2  SAC-L  175.69+10428 140+0.86 3491+62.89 557+1224 14639+57.96 1.12+0.67 4639£57.96 1.08+1.35
DDPG-L  227.89+1.32 1.00£0.32 176.62+17.85 1.00+0.14 237.92+857 1.93+0.09 17575+18.65 1.13+0.69

Average 216.75 111 147.76 2.05 218.38 1.76 156.83 1.01

PPO-L  253.21£6549 0.88+0.15 137.87+36.57 0.80+0.16 186.30+59.54 098026 164.19+44.54 0.98+0.13

TRPO-L 404.16+£41.15 0.93+0.14 306.14+67.78 0.89+0.09 414.74+£69.34 1.72+0.83 359.51+£58.89 0.84 £0.09

DC-v2  SAC-L  413.30£76.61 0.96+0.12 281.47+76.09 0.71+045 544.76+68.24 3.01+028 211.14+£58.74 0.70+0.22
DDPG-L  399.05+44.12 092£0.12 195.77+44.53 0.94£0.14  555.65£52.31 3.12+£0.23 23445+1691 0.84£0.14

Average 367.43 0.92 230.3 0.84 425.36 221 242.32 0.84

PPO-L  214.00+57.16 098+0.12 4052+2533 1.02+0.54 339.23+72.88 1.85+049 28.89+3333 1.84+128

TRPO-L  309.96 £25.77 0.93£0.62 262.01+14.24 1.09+0.13 653.86£58.67 3.66+0.17 1436+10.01 132+1.73

BC-v3  SAC-L 25325+1.76  0.14£0.12 0.06 +2.88 3.57+0.06 85529+0.85 3.12+0.04 -10.89+44.52 3.14+1.96
DDPG-L 39523 +71.12 1.04+£0.60 354.78+10.97 1.04+0.15 936.82+83.08 3.06+0.04 363.11+1493 0.93+0.13

Average 293.11 0.77 164.35 1.68 503.8 2.92 98.87 1.81

PPO-L 19942 £28.33 0.62+049 1785+46.46 3.13+333 211.08+1637 185+049 -6.86+1494 599+145

TRPO-L 17553 £36.64 0.65+0.89 33.83+8595 1.18+0.66 220.11£50.05 1.99+193 36.77+98.88 1.01+0.53

CC-v3  SAC-L 199.66 £56.06 1.18£1.22 -66.29+36.21 523+£0.98 207.12+£19.21 1.12+0.73 -12.37+21.65 2.69 +1.09
DDPG-L 21497 +4.05 0.44+0.06 103.78+60.52 220+1.65 213.63+837 0.88+0.44 1.07 £36.21 1.24 £0.49

Average 197.38 0.72 22.29 2.94 212.99 1.44 4.65 2.73

PPO-L  41634+59.33 097+0.11 257.29+21.35 154+0.14 42694+61.96 1.92+0.27 21596+12553 1.52+0.57

TRPO-L 55444 +5520 1.05£0.12 53591£57.58 2.01£0.10 539.57+21.83 230+0.82 52527+56.78 2.11£0.14

DC-v3 SAC-L 590.60+224.05 1.00+0.12 11494+£80.11 1.48+0.79 728.02+217.83 357+142 19409+117.81 1.49+1.16
DDPG-L  643.25+77.19 1.01+0.04 33891+3098 198+048 839.36+52.66 443+142 322.05+86.86 1.68+0.46

Average 551.15 1.01 311.76 1.75 633.47 3.06 314.34 1.70

Table 1: Evaluation results of the Bullet-safety-gym tasks. The cost threshold is 1. 1/ |: the higher/lower, the
better. Each value is averaged over 20 episodes and 5 seeds. Shade : the two most rewarding agents, bold: all
the safe agents (cost-N < 1) or two safest agents if none is absolutely constraint-satisfactory.
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GradS (ours) Vanilla CRPO Min-Max
Reward 1 Cost-N | Reward 1 Cost-N | Reward 1 Cost-N | Reward 1 Cost-N |

PG-v2  PPO-L 1674+£205 0.84+046 154+1.16 1.03+£029 1827+6.13 1.75+0.70 6.76+6.39 1.39+0.59
CG-v2 PPO-L 3057+1.77 1.11+£034 0.18+041 1.12+0.64 3135+132 1.03£0.12 2.65+4.67 120+0.76
Average 23.66 0.98 1.72 1.08 24.81 1.39 4.71 1.30
PG-v3  PPO-L 18.09+2.74 1.04+0.81 7.26+7.87 085+032 19.11+246 1.68+042 135+£398 1.19+1.54
CG-v3 PPO-L  222+520 098£0.16 -222+£520 128+045 9.75£539 193+£033 -1.15%1.89 1.63+1.01
Average 10.16 1.01 2.52 1.07 14.43 1.81 0.10 1.16

Env Method

Table 2: Evaluation results of the Safety-gymnasium tasks. The cost threshold is 1. 1/ J: the higher/lower,
the better. Each value is averaged over 20 episodes and 5 seeds. Shade : the two most rewarding agents, bold:
all the safe agents (cost-N < 1) or two safest agents if none is absolutely constraint-satisfactory. We selected
PPO-Lag for the base safe RL algorithm since the original single-cost envs are already challenging for others
such as SAC-Lag as reported by Liu et al. (2023a).

5.2. Challenges for MC Safe RL

The performance of the baseline method Vanilla is summarized in Table. 1, 2 and Figure. 5.
It is evident that in “~v2” settings, Vanilla struggles to learn a rewarding policy due to the
over-conservativeness caused by redundant constraints. In “~v3” settings, Vanilla encounters
difficulties in exploration induced by the conflicting constraints, ultimately leading to the failure
to learn a reasonable policy. This observation highlights the challenges posed by MC settings for
safe RL, as (1) redundant constraints contribute to over-conservativeness in the policy update, since
the agent would overestimate the effort to ensure safety, and (2) conflicting constraints restrict
the exploration capabilities of online safe RL algorithms, causing the policy to converge to a
local optimum around the initial points, resulting in the agent getting stuck due to the dominating
gradients of conflicting constraints if it deviates from this point. The unsatisfactory reward and safety
performance of Vanilla methods in MC safe RL settings underscore the importance of exploring
efficient MC safe RL algorithms.

5.3. GradS performance comparison in MC Safe RL

The performance of GradS and other baseline methods CRPO and Min-Max is also summarized in
Table. 1, 2, and Figure. 5. In “-~v2” settings with redundant constraints, Min—Max exhibits strong
performance since it consistently penalizes the most violated constraint, thus eliminating the negative
impact of redundant constraints, and avoids over-conservativeness in the policy update. However, in
“—v3” settings with conflicting constraints, it struggles to achieve a rewarding policy as it becomes
trapped in local optima due to the lack of random exploration. Conversely, the CRPO method
explores well with a high reward in conflicting settings, benefiting from its stochastic constraint
gradient selection and resulted superior exploration capabilities, thereby avoiding entrapment in
local optima. Nevertheless, it fails to ensure constraint satisfaction in the presence of redundant
constraints due to potential imbalances between different types of cost. Specifically, if one type of
redundant constraints significantly outweighs others in terms of quantity, the CRPO method would
disproportionately activate constraints from this type, potentially overlooking other constraints.
The proposed GradS method demonstrates strong performance, exhibiting high rewards and
small cost violations across both “~v2” and “~v3” MC-safe RL tasks from both benchmarks. In
“—~v2” tasks involving redundant constraints, GradS overcomes issues of over-conservativeness akin
to those observed in the Vanilla method by eliminating redundant gradients. Furthermore, the
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Figure 5: Scalability analysis: The x-axis in each figure means the constraint number in the tasks. The first
two figures show the reward and normalized costs, while the remaining three show the representative cost
returns. The bar charts represent the mean value and the error bars represent the standard deviation. All plots
are averaged among 5 random seeds and 10 trajectories for each seed. 1/ |: the higher/lower, the better.

elimination of redundant constraints reduces the risk of neglecting minor constraints, a drawback of
the CRPO. In “~v3” scenarios with conflicting constraints, GradS excels in performance with high
reward and low cost violation compared to the baseline algorithm as it eliminates the conflicting
constraints and enables stochastic constraint gradients to encourage exploration.

5.4. Scalability analysis

The results of the cost dimension scalability experiment are shown in Figure. 5. We utilize the Ball-
Circle (BC-v3) task to evaluate the algorithms across various constraint quantities. Here we increase
the number of costs by creating new constraints with similar velocity thresholds and boundary
positions (see appendix for details). It is evident that the baseline methods vanilla and Min-max
struggle to learn safe policies, as they encounter difficulties in effectively exploring the action and
observation space in the MC tasks. The baseline method CRPO succeeds in learning a rewarding
yet unsafe policy, attributed to its lack of ability to manage imbalanced constraints. In contrast, the
proposed GradS method demonstrates consistent performance as the number of constraints varies,
highlighting the scalability of our approach.

6. Conclusion

In this paper, we proposed a unified framework for Lagrangian-based MC Safe RL algorithms
from the standpoint of Multi-Objective Optimization (MOO), and analyze the MC safe RL problem
through the lens of constraint types, identifying two challenging MC safe RL settings: redundant
and conflicting constraints. To address these challenges, we propose the constraint gradient shaping
(GradS) technique, ensuring compatibility with general Lagrangian-based safe RL algorithms. Our
analysis highlights the necessity of developing efficient and effective algorithms for handling multiple
costs, shedding light on the critical importance of addressing multi-cost constraints in safe RL settings.
The extensive experimental results reconfirm that GradS effectively solves the MC safe RL problems
in both redundant and conflicting constraint settings, and is safer, and more rewarding than baseline
methods. By proposing the GradS technique and providing a comprehensive analysis, we hope
to contribute to the advancement of safe RL algorithms and their successful implementation in
real-world complex and safety-critical environments. The limitation of this work is the additional
computational burden when calculating the gradient similarity. The future work contains the extension
to offline safe RL settings.
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