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Abstract
In this paper, we study the problem of robust cooperative multi-agent reinforcement learning (RL) where a large
number of cooperative agents with distributed information aim to learn policies in the presence of stochastic and non-
stochastic uncertainties whose distributions are respectively known and unknown. Focusing on policy optimization
that accounts for both types of uncertainties, we formulate the problem in a worst-case (minimax) framework, which
is is intractable in general. Thus, we focus on the Linear Quadratic setting to derive benchmark solutions. First,
since no standard theory exists for this problem due to the distributed information structure, we utilize the Mean-
Field Type Game (MFTG) paradigm to establish guarantees on the solution quality in the sense of achieved Nash
equilibrium of the MFTG. This in turn allows us to compare the performance against the corresponding original
robust multi-agent control problem. Then, we propose a Receding-horizon Gradient Descent Ascent RL algorithm
to find the MFTG Nash equilibrium and we prove a non-asymptotic rate of convergence. Finally, we provide
numerical experiments to demonstrate the efficacy of our approach relative to a baseline algorithm.

1. Introduction

Reinforcement Learning (RL) has had many successes, such as autonomous driving (Sallab et al., 2017), robotics
(Kober et al., 2013), and RL from human feedback (RLHF) (Ziegler et al., 2019), to name a few. These successes
have been focused on single-agent scenarios, but many scenarios involving, e.g., financial markets, communica-
tion networks, distributed robotics involve multiple agents. Prevailing algorithms for Multi-Agent Reinforcement
Learning (MARL) (Zhang et al., 2021b; Li et al., 2021), however, do not model the distinct effects of modeled
and un-modeled uncertainties on the transition dynamics, which can result in practical instability in safety-critical
applications (Riley et al., 2021).

In this paper we consider a large population multi-agent setting, with stochastic and non-stochastic (un-modeled,
possibly adversarial) uncertainties. These types of formulations have been studied under the guise of robust con-
trol in the single-agent case (Başar and Bernhard, 2008). The uncertainties (modeled and un-modeled) affect the
performance of the system and might even lead to instability. Robust control seeks the robust controller which
guarantees a certain level of performance for the system in under a worst-case hypothesis on these uncertainties.
We employ here the popular Linear-Quadratic (LQ) setting in order to rigorously characterize and synthesize the
solution to the robust multi-agent problem in a data-driven manner. The LQ setting entails a class of models in
which the dynamics are linear and the costs are quadratic in the state and the action of the agent. This setting has
been used extensively in the literature due to its tractability: the optimal decisions can be computed analytically or
almost analytically, up to solving Riccati equations, when one has access to all system matrices. Instances of appli-
cations include permanent income theory (Sargent and Ljungqvist, 2000), portfolio management (Cardaliaguet and
Lehalle, 2018), and wireless power control (Huang et al., 2003)), among many others. In the absence of knowledge
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of system parameters, model-free RL methods have also been developed (Fazel et al., 2018; Malik et al., 2019) for
single agent LQ settings. We refer to (Recht, 2019) for an overview. When one goes from single to multiple agents,
the issue of communicating local state and control information among agents exhibit scalability problems, and in
particular, practical algorithms require sharing state information that can scale exponential in the number of agents.
Instead, here we consider a distributed information structure where each agent has access only to its own state and
the average of states of the other agents. This distributed information structure causes the characterization of the
solution to be very difficult, in that previous gradient dominance results from (Fazel et al., 2018) no longer hold.
To overcome this difficulty, we utilize the mean-field game and control paradigm, first introduced in the purely
non-cooperative agent setting in (Lasry and Lions, 2006; Huang et al., 2006), which replaces individual agents by
a distribution over agent types, which enables characterization and computation of the solution. The approach has
then been extended to the cooperative setting through the notion of mean field control (Bensoussan et al., 2013;
Carmona and Delarue, 2018). Building on this paradigm, this work is the first to develop scalable algorithms for
MARL that can handle model mis-specification or adversarial inputs in the sense of robust control in the very large
or possibly infinite number of agents defined by the mean-field.

We start Section 2 by formulating a robust multi-agent control problem with stochastic and non-stochastic
(un-modeled) noises. The agents have distributed information, such that they have access to their own states and
the average behavior of all the agents. Solving this problem entails finding a noise attenuation level (noise-to-
output gain) for the multi-agent system and the corresponding robust controller. As in the single-agent setting
(Başar and Bernhard, 2008), the robust multi-agent control problem is reformulated into an equivalent zero-sum
min-max game between the maximizing non-stochastic noise (which may be interpreted as an adversary) and the
minimizing controller. Solving this problem is not possible in the finite agent case due to the limited information
available to each agent. Thus, in Section 3 we consider the mean-field (infinite population) version of the problem,
that we call the Robust Mean-Field Control (RMFC) problem. As in the finite-population setting, RMFC has
an equivalent zero-sum min-max formulation, referred to as the 2-player Zero-Sum Mean-Field Type Game (ZS-
MFTG) in (Carmona et al., 2020, 2021), where the controller is the minimizing player and the non-stochastic
disturbance is the maximizing one.

In Section 4 we propose a bi-level RL algorithm to compute the Nash equilibrium for the ZS-MFTG (which
equivalently yields the robust controller for the robust multi-agent problem) in the form of Receding-horizon Gra-
dient Descent Ascent (RGDA) (Algorithm 1). The upper-level of RGDA, uses a receding-horizon approach, i.e., it
finds the controller parameters starting from the last timestep T − 1 and moving backwards-in-time (à la dynamic
programming). The receding-horizon policy gradient approach was used in Kalman filtering (Zhang et al., 2023)
and LQR problems (Zhang and Başar, 2023). The present work builds on this approach to multi-agent problems,
which helps in simplifying the complex nature of the cost landscape (known to be non-coercive (Zhang et al.,
2021a)) and renders it convex-concave. The lower-level employs gradient descent-ascent to find the saddle point
(Nash equilibrium) for each timestep t. The convex-concave nature of the cost (due to the receding-horizon ap-
proach) proves to be a key component in proving linear convergence of the gradient descent-ascent to the saddle
point (Theorem 4). Further analysis shows that the total accumulated error in the RGDA is small given that the
lower level of RGDA has good convergence (Theorem 5). The gradient descent-ascent step requires computation
of the stochastic gradient. We use a zero-order method (Fazel et al., 2018; Malik et al., 2019) which only requires
access to the cost to compute stochastic gradients, and hence is truly model-free.

Literature Review: Robust control gained importance in the 1970s when control theorists realized the short-
comings of optimal control theory in dealing with model uncertainties (Athans et al., 1977; Harvey and Stein,
1978). The work of (Başar, 1989) was the first one to formulate the robust control problem as a zero-sum dynamic
game between the controller and the uncertainty. Robust RL first introduced by (Morimoto and Doya, 2005) has
recently had an increase in interest in for the single agent setting, where its ability to process trajectory data without
explicit knowledge of system parameters can be used to learn robust controllers to address worst-case uncertainty
(Zhang et al., 2020a; Kos and Song, 2017; Zhang et al., 2021c). Some recent works consider RL in scenarios with
reward uncertainties (Zhang et al., 2020b), state uncertainty (He et al., 2023) or uncertainty in other agents’ policies
(Sun et al., 2022). There have been some works on the intersection of RL for robust and multi-agent control (Li
et al., 2019; He et al., 2023), yet there has not been any significant effort to provide (1) sufficient conditions for

2



ROBUST COOPERATIVE MARL

solvability of the multi-agent robust control problem i.e. determining the noise attenuation level of a system and
(2) provable Robust multi-agent RL (RMARL) algorithms in the large population setting, as proposed in this paper.

This is made possible due to the mean-field game and control paradigm, which considers the limiting case as
the number of agents approaches infinity. This paradigm was first introduced in the context of non-cooperative
game theory as Mean-Field Games (MFGs) concurrently by (Lasry and Lions, 2006; Huang et al., 2006). Since
then, the question of learning equilibria in MFGs has gained momentum, see (Laurière et al., 2022b). In particular,
there have been several works dealing with RL for MFGs (Guo et al., 2019; Elie et al., 2020; Perrin et al., 2020;
Zaman et al., 2020; Xie et al., 2021; Anahtarci et al., 2023), deep RL for MFGs (Perrin et al., 2021; Cui and
Koeppl, 2021a; Laurière et al., 2022a), learning in multi-population MFGs (Pérolat et al., 2022; Zaman et al., 2021,
2023b), independent learning in MFGs (Yongacoglu et al., 2022; Yardim et al., 2023), oracle-free RL for MFGs
(Angiuli et al., 2022; Zaman et al., 2023a) and RL for graphon games (Cui and Koeppl, 2021b; Fabian et al., 2023).
There have also been several works on RL for MFC, which is the cooperative counterpart, see e.g. (Carmona et al.,
2019a,b; Gu et al., 2021; Mondal et al., 2022; Angiuli et al., 2022). But these works require ability to sample from
the true transition model, and hence are inapplicable in the case of mis-specification or modeling errors. To address
this setting, we introduce the Robust MFC problem. We will connect this problem to MFTGs Tembine (2017),
which contain mixed cooperative-competitive elements. Zero-sum MFTG model a zero-sum competition between
two infinitely large teams of agents. Prior work on the theoretical framework of zero-sum MFTG include (Choutri
et al., 2019; Tembine, 2017; Cosso and Pham, 2019; Carmona et al., 2021; Guan et al., 2024). Related to RL,
the works (Carmona et al., 2020, 2021) propose a data-driven RL algorithm based on Policy Gradient to compute
the Nash equilibrium between the two coalitions in an LQ setting but do not provide a theoretical analysis of the
algorithm.

2. Formulation

In this section we introduce the robust multi-agent control problem by first defining the dynamics of the multi-agent
system along with its performance and noise indices. The performance and noise indices have been introduced in
the literature (Başar and Bernhard, 2008) in order to quantify the affect of the accumulated noise (referred to as
noise index) on the performance of the system (called the performance index). The noise attenuation level is then
defined as an upper bound on the ratio between the performance and noise indices given that the agents employ a
robust controller. Hence the robust multi-agent problem is that of finding the robust controller under which a certain
noise attenuation is achieved. In order to solve this problem, we reformulate it as a min-max game problem as in
the single-agent setting (Başar and Bernhard, 2008). Consider an N agent system. We let [N ] = {1, . . . , N}. The
ith agent has dynamics which are linear in its state xit ∈ Rm, its action u1,it ∈ Rp, and the mean-field counterparts,
x̄t and ūit. The disturbance u2,it is referred to as non-stochastic noise1 since it is an un-modeled disturbance and can
even be adversarial. This is similar in spirit to the works of (Simchowitz et al., 2020). Let T be a positive integer,
interpreted as the horizon of the problem. The initial condition of agent i’s state, i ∈ [N ], is xi0 = ω0,i + ω̄0, where
ω0,i ∼N(0,Σ0) and ω̄0 ∼N(0, Σ̄0) are i.i.d. noises. For t ∈ {0, . . . , T − 1},

xit+1 = Atx
i
t + Ātx̄t +Btu

1,i
t + B̄tū

1
t + u2,it + ū2t + ωi

t + ω̄t,∀i ∈ [N ] (1)

where u1,it is the control action of the ith agent, x̄t :=
∑N

i=1 x
i
t/N is referred to as the state mean-field and

ūjt :=
∑N

i=1 u
j,i/N for j ∈ {1, 2} are the control and noise mean-fields respectively. Each agent’s dynamics

are perturbed by two types of noise: ωi
t and ω̄t are referred to as stochastic noises since they are i.i.d. and their

distributions are known (ωi
t ∼N(0,Σ) and ω̄t ∼N(0, Σ̄)). All of our results (excluding the finite-sample analysis

of the RL Algorithm) can be readily generalized for zero-mean non-Gaussian disturbances with finite variance.

1. The non-stochastic noise is assumed to have identity coefficient in the dynamics (1) for simplicity of analysis but can be easily changed
to some other matrix of appropriate size.
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In order to define the robust control problem we define the performance index of the population which penalizes
the deviation of the agents from their (state and control) mean-fields and also regulates the mean-fields:

JN (u1,u2) =
1

N

N∑
i=1

E
T−1∑
t=0

[
∥xit − x̄t∥2Qt

+ ∥x̄t∥2Q̄t
+ ∥u1,it − ū1t ∥2 + ∥ū1t ∥2

]
+ ∥xiT − x̄T ∥2QT

+ ∥x̄T ∥2Q̄T
(2)

where the matrices Qt, Q̄t > 0 are symmetric matrices, uj = (uj,i)i∈[N ] where each uj,i for j ∈ {1, 2} is adapted
to the distribution information structure i.e. σ-algebra generated by xit and x̄t and U1,U2 represent the set of all
possible u1,u2, respectively. We define the noise index of the population in a similar manner

ϖN (u1,u2) =
1

N

N∑
i=1

E
T−1∑
t=0

[
∥u2,it − ū2t ∥2 + ∥ū2t ∥2 + ∥ωi

t∥2 + ∥ω̄t∥2
]
. (3)

The robust control problem for this N agent system is that of finding the range of noise attenuation levels γ > 0
such that:

∃u1 ∈ U1, ∀u2 ∈ U2, JN (u1,u2) ≤ γ2ϖN (u1,u2) (4)

Any γ for which the above inequality is satisfied is referred to as a viable attenuation level and the least among them
is called the minimum attenuation level. The controller u1 which ensures a particular level γ of noise attenuation
is referred to as the robust controller corresponding to γ (or robust controller in short). Since the inequality (4) can
also be reformulated as JN (·)/ϖN (·) ≤ γ2, a viable attenuation parameter γ2 is also an upper bound on the noise-
to-output gain of the system. As outlined in (Başar and Bernhard, 2008) for a single agent problem the condition
(4) is equivalent to finding the range of value of γ > 0 such that

inf
u1

sup
u2

(
JN (u1,u2)− γ2ϖN (u1,u2)

)
≤ 0, (5)

where the infimizing controller u1 is the robust controller and the supremizing controller u2 is the worst-case
non-stochastic noise. If we define the robust N agent cost Jγ

N as follows

Jγ
N (u1,u2) =JN (u1,u2)− γ2E

1

N

N∑
i=1

T−1∑
t=0

(
∥u2,it − ū2t ∥2 + ∥ū2t ∥2

)
,

then using (2) and (3), the robust N agent control problem (5) can be equivalently written as

inf
u1

sup
u2

Jγ
N (u1,u2)− γ2E

1

N

N∑
i=1

T−1∑
t=0

(∥ωi
t∥2 + ∥ω̄t∥2) ≤ 0. (6)

Due to the distributed information structure of the agents the standard theory of single-agent robust control does
not apply in this setting. Hence we are unable to provide sufficient conditions for a given γ > 0 to be a viable
attenuation level, and we resort to the mean-field limit as N → ∞, which is of independent interest. The next
section formulates the Robust Mean-Field Control (RMFC) problem and its equivalent 2-player zero-sum Mean-
Field Type Game (ZS-MFTG) representation, and provides sufficient conditions for solvability of both.

3. Robust Mean-Field Control

Consider a system with infinitely many agents, where the generic agent has linear dynamics of its state xt for a
finite-horizon t ∈ {0, . . . , T − 1}:

xt+1 = Atxt + Ātx̄t +Btu
1
t + B̄tū

1
t + u2t + ū2t + ωt + ω̄t, (7)
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where u1t is the control action of the generic agent, x̄t := E[xt|(ω̄s)0≤s≤t−1] is referred to as the state mean-field
and ūjt := E[ujt |(ω̄s)0≤s≤t−1] for j ∈ {1, 2} are the control and noise mean-fields respectively. The initial condition
of the generic agent is x0 = ω0 + ω̄0, where ω0 ∼ N(0,Σ0) and ω̄0 ∼ N(0, Σ̄0) are i.i.d. noises. The stochastic
noises ωi

t and ω̄t are i.i.d. such that ωi
t ∼ N(0,Σ) and ω̄t ∼ N(0, Σ̄), whereas the non-stochastic noise u2t are

un-modeled uncertainties. Similar to the N agent case, we define the robust mean-field cost Jγ as follows

Jγ(u1,u2) =E
T−1∑
t=0

[
∥xt − x̄t∥2Qt

+ ∥x̄t∥2Q̄t
+ ∥u1t − ū1t ∥2 + ∥ū1t ∥2 − γ2

(
∥u2t − ū2t ∥2 + ∥ū2t ∥2

)
(8)

+ ∥xT − x̄T ∥2QT
+ ∥x̄T ∥2Q̄T

]
.

Now the robust mean-field control problem which is the mean-field analog to (6) is defined as follows.

Definition 1 (Robust Mean-Field Control problem) If for a given γ > 0 the following inequality is satisfied,
then γ is a viable noise attenuation level for the robust mean-field control problem.

inf
u1

sup
u2

Jγ(u1,u2)− γ2E
T−1∑
t=0

∥ωt∥2 + ∥ω̄t∥2 ≤ 0. (9)

Moreover, the infimizing controller u1 in (9) is a robust controller (corresponding to γ).

Now, under the condition of interchangability of the inf and sup operations, the problem of finding
infu1 supu2 Jγ(u1,u2) is that of finding the Nash equilibrium (equivalently, saddle point, in this case) of the
Zero-sum 2-player Mean-Field Type Game; see (Carmona et al., 2020, 2021) for a very similar LQ setting without
the theoretical analysis of the RL algorithm. In the following section we provide sufficient conditions for existence
and uniqueness of a solution to this saddle point problem along with the value of infu1 supu2 Jγ(u1,u2).
2-player Zero-sum Mean-Field Type Games: Let us define yt = xt− x̄t, zt = x̄t. The dynamics of yt and zt can
be written as

yt+1 = Atyt +Bt(u
1
t − ū1t ) + u2t − ū2t + ωt − ω̄t, zt+1 = Ãtzt + B̃tū

1
t + 2ū2t + 2ω̄t,

where Ãt = At+ Āt and B̃t = Bt+ B̄t. The optimal controls are known to be linear (Carmona et al., 2020), hence
we restrict our attention the set of linear controls in yt and zt,

u1t = u1
t (xt, x̄t) = −K1

t (xt − x̄t)− L1
t x̄t, u2t = u2

t (xt, x̄t) = K2
t (xt − x̄t) + L2

t x̄t

which implies that ū1t = −L1
t x̄t and ū2t = L2

t x̄t. The dynamics of the processes yt and zt can be re-written as

yt+1 = (At −BtK
1
t +K2

t )yt + ωt − ω̄t, zt+1 = (Ãt − B̃tL
1
t + L2

t )zt + 2ω̄t. (10)

Since the dynamics of yt and zt are decoupled, we can decompose the cost Jγ into the following two parts:

Jγ(K,L) = Jγ
y (K) + Jγ

z (L),

Jγ
y (K) = E

[ T−1∑
t=0

y⊤t (Qt + (K1
t )

⊤K1
t − γ2(K2

t )
⊤K2

t )yt + y⊤T QT yT

]
, (11)

Jγ
z (L) = E

[ T−1∑
t=0

z⊤t (Q̄t + (L1
t )

⊤L1
t − γ2(L2

t )
⊤L2

t )zt + z⊤T Q̄T zT

]
.

The 2-player MFTG (7)-(8) has been decoupled into two 2-player LQ dynamic game problems as shown below:

min
K1,L1

max
K2,L2

Jγ((K1,K2), (L1, L2)) = min
K1

max
K2

Jγ
y (K) + min

L1
max
L2

Jγ
z (L)

where the dynamics of yt and zt are defined in (10). In the following section, using results in the literature, we
specify the sufficient conditions for existence and uniqueness of Nash equilibrium of the 2-player MFTG and also
present the value (Nash cost) of the game. Building on the techniques developed in (Başar and Olsder, 1998;
Carmona et al., 2020), we can prove the following result.

5
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Theorem 2 Assume for a given γ > 0,

γ2I −Mγ
t > 0 and γ2I − M̄γ

t > 0, (12)

where Mγ
t and M̄γ

t are positive semi-definite matrices which satisfy the Coupled Algebraic Riccati equations,

Mγ
t = Qt +A⊤

t M
γ
t+1Λ

−1
t At, Λt = I + (BtB

⊤
t − γ−2I)Mγ

t+1, Mγ
T = QT ,

M̄γ
t = Q̄t + Ã⊤

t M̄
γ
t+1Λ̄

−1
t Ãt, Λ̄t = I + (B̃tB̃

⊤
t − γ−2I)M̄γ

t+1, M̄γ
T = Q̄T (13)

Nγ
t = Nγ

t+1 +Tr(Mγ
t+1Σ), Nγ

T = 0, N̄γ
t = N̄γ

t+1 +Tr(M̄γ
t+1Σ), N̄γ

T = 0.

Then, u1∗t = −K1∗
t (xt − x̄t) − L1∗

t x̄t and u2∗t = K2∗
t (xt − x̄t) + L2∗

t x̄t (complete expressions provided in
Supplementary Materials) are the unique Nash policies. Furthermore, the Nash equilibrium (equivalently, saddle
point) value is

inf
u1

sup
u2

Jγ(u1,u2) = Tr(Mγ
0Σ

0) + Tr(M̄γ
0 Σ̄

0) +Nγ
0 + N̄γ

0 (14)

This result can be proved using techniques in proofs of Theorem 3.2 in (Başar and Bernhard, 2008) or Proposition
36 in (Carmona et al., 2021). We now use the Nash value of the game (14) to come up with a condition for the
attenuation level γ which solves the robust mean-field control problem (9). First we simplify expression in (9)
E
∑T−1

t=0 ∥ωt∥2 + ∥ω̄t∥2 = T Tr(Σ + Σ̄) using the i.i.d. stochastic nature of the noise. Combining this fact with
(14), we arrive at the conclusion that (9) will be satisfied if and only if

T∑
t=1

Tr((Mγ
t − γ2I)Σ + (M̄γ

t − γ2I)Σ̄) + Tr(Mγ
0Σ

0) + Tr(M̄γ
0 Σ̄

0) ≤ 0 (15)

Notice that the conditions (12) and (15) are different, as the first one requires positive definiteness of matrices
and the second one requires a scalar inequality. Now we solve the robust N agent control problem by providing
sufficient conditions for a given attenuation level γ satisfying (4).

Theorem 3 Let γ > 0. Assume, in addition to (12), that we also have

T∑
t=1

Tr((Mγ
t − γ2I)Σ + (M̄γ

t − γ2I)Σ̄) + Tr(Mγ
0Σ

0) + Tr(M̄γ
0 Σ̄

0) ≤ −CT

N
, (16)

where C is a constant which depends only on the model parameters and Mγ
t and M̄γ

t (13). Then γ is a viable
attenuation level for the Robust N agent control problem (4). Moreover the robust controller for each agent i is
given by u1,i∗t = −K1∗

t (xit − x̄t)− L1∗
t x̄t.

The proof of this result can be found in the full version of this paper (Zaman et al., 2024). The above theorem
states that, if for a given γ, conditions (12) and (16) are satisfied (given that Mγ

t and M̄γ
t are defined by (13)), then

not only is γ a viable attenuation level for the original Robust multi-agent control problem (1)-(4), but the Nash
equilibrium for the ZS-MFTG also yields the robust controller u1,i∗t = −K1∗

t (xit − x̄t) − L1∗
t x̄t for the original

finite-agent game. Condition (16) is strictly stronger than condition (15) but approaches (16) as N →∞.

4. Reinforcement Learning for Robust Mean-Field Control

In this section we present the Receding-horizon policy Gradient Descent Ascent (RGDA) algorithm to compute
the Nash equilibrium (Theorem 2) of the 2-player MFTG (7)-(8), which will also generate the robust controller for
a fixed noise attenuation level γ. For this section we assume access to only the finite-horizon costs of the agents
under a set of control policies, and not the state trajectories. Under this setting the model of the agents cannot be
constructed hence our approach is truly model free (Malik et al., 2019). Due to the non-convex non-concave (also
non-coercive (Zhang et al., 2020b)) nature of the cost function Jγ in (11), instead we solve the receding-horizon
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problem, for each t = {T − 1, . . . , 1, 0} backwards-in-time. This entails solving 2× T min-max problems, where
each problem is convex-concave and aims at finding (Kt, Lt) =

(
(K1

t ,K
2
t ), (L

1
t , L

2
t )
)

at time step t, given the set
of future controllers (controllers for times greater than t),

(
(K̃t+1, L̃t+1), . . . , (K̃T , L̃T )

)
are held constant. But

first we must approximate the mean-field term using finitely many agents.
Approximation of mean-field terms using M agents: Since simulating infinitely many agents is impractical, in
this section we outline how to use a set of 2 ≤ M < ∞ agents to approximately simulate the mean-field in a
MFTG. Each of the M agents has state xit at time t where i ∈ [M ]. The agents follow controllers linear in their
private state and empirical mean-field, xit and z̃t, respectively, u1t = −K1

t (x
i
t−z̃t)−L1

t z̃t, u
2
t = K2

t (x
i
t−z̃t)+L2

t z̃t,
where the empirical mean-field is z̃t := 1

M

∑M
i=1 x

i
t. Under these control laws, the dynamics of agent i ∈ [M ] are

xit+1 = (At −BtK
1
t +K2

t )(x
i
t − z̃t) + (Ãt − B̃tL

1
t + L2

t )z̃t + ωi
t+1 + ω̄t

and the dynamics of the empirical mean-field z̃t is z̃t+1 = (Ãt − B̃tL
1
t + L2

t )z̃t + ω̃0
t+1, where ω̃0

t+1 = ω̄t +
1
M

∑M
i=1 ω

i
t+1. The cost of each agent is

J̃ i,γ(u1, u2) =E
[ T−1∑

t=0

(xit − z̃t)
⊤[Qt + (K1

t )
⊤K1

t − γ2(K2
t )

⊤K2
t ](x

i
t − z̃t) + (xiT − z̃T )

⊤QT (x
i
T − z̃T )

+ z̃⊤t [Q̄t + (L1
t )

⊤L1
t − γ2(L2

t )
⊤L2

t ]z̃t + z̃⊤T Q̄T z̃T

]
.

Now, similarly to the previous section, we define yit = xit − z̃t. The dynamics of yit are yit+1 = (At − BtK
1
t +

K2
t )y

i
t + ω̃i

t+1, where ω̃i
t+1 = M−1

M ωi
t+1 − 1

M

∑
j ̸=i ω

j
t+1. The cost can then be decomposed in a manner similar

to (11):

J̃ i,γ
(
(K1

t ,K
2
t ), (L

1
t , L

2
t )
)
= J̃ i,γ

y (K1
t ,K

2
t ) + J̃ i,γ

z (L1
t , L

2
t ),

J̃ i,γ
y (K1

t ,K
2
t ) = E

[ T−1∑
t=0

(yit)
⊤[Qt + (K1

t )
⊤K1

t − γ2(K2
t )

⊤K2
t ]y

i
t + (yiT )

⊤QT y
i
T

]
, (17)

J̃ i,γ
z (L1

t , L
2
t ) = E

[ T−1∑
t=0

z̃⊤t [Q̄t + (L1
t )

⊤L1
t − γ2(L2

t )
⊤L2

t ]z̃t + z̃⊤T Q̄T z̃T

]
.

Receding-horizon approach: Similar to the approach in Section 2, instead of finding the optimal, K∗ and L∗

which optimizes J̃ in (17), we solve the receding-horizon problem for each t = {T − 1, , . . . , 1, 0} backwards-in-
time. This forms two decoupled min-max convex-concave problems of finding (Kt, Lt) =

(
(K1

t ,K
2
t ), (L

1
t , L

2
t )
)

at each time step t, given the set of controllers for times greater than t,
(
(K̃t+1, L̃t+1), . . . , (K̃T , L̃T )

)
min

(K1
t ,L

1
t )

max
(K2

t ,L
2
t )
J̃ i,γ
t (Kt, Lt) =

E
[
y⊤t (Qt + (K1

t )
⊤K1

t − γ2(K2
t )

⊤K2
t )yt +

T∑
k=t+1

y⊤k (Qt + (K̃1
k)

⊤K̃1
k − γ2(K̃2

k)
⊤K̃2

k)yk

]
︸ ︷︷ ︸

J̃i,γ
y,t

(18)

+ E
[
z⊤t (Q̄t + (L1

t )
⊤L1

t − γ2(L2
t )

⊤L2
t )zt +

T∑
k=t+1

z⊤k (Q̄t + L̃⊤
1,kL̃

1
k − γ2(L̃2

k)
⊤L̃2

k)zk

]
︸ ︷︷ ︸

J̃i,γ
z,t

,

for any i ∈ [M ] and yt ∼ N(0,Σy), zt ∼ N(0,Σz). This receding-horizon problem is solved using Receding-
horizon policy Gradient Descent Ascent (RGDA) (Algorithm 1) where at each time instant t the Nash control is
approached using gradient descent ascent. We anticipate a small approximation error between the optimal controller

7
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and its computed approximation K̃t (respectively L̃t). However, this error is shown to be well-behaved (Theorem
5), as we progress backwards-in-time, given that the hyper-parameters of RGDA satisfy certain bounds.
Receding-horizon policy Gradient Descent Ascent (RGDA) Algorithm: The RGDA Algorithm (Algorithm 1 is
a bi-level optimization algorithm where the outer loop starts at time t = T − 1 and moves backwards-in-time, and
the inner loop is a gradient descent (for control parameters (K1

t , L
1
t )) ascent (for control policy (K2

t , L
2
t )) update

with learning rate ηk. The gradient descent ascent step entails computing an approximation of the exact gradients
of cost J̃ i,γ

t with respect to the controls variables (K1
t , L

1
t ), (K

2
t , L

2
t ). To obtain this approximation in a data driven

manner we utilize a zero-order stochastic gradient ∇̃1J̃
i,γ
t (Kt, Lt), ∇̃2J̃

i,γ
t (Kt, Lt) (Fazel et al., 2018; Malik et al.,

2019) which requires cost computation under a given set of controllers (18) as shown below.

∇̃1J̃
i,γ
t (Kt, Lt) =

n

Mr2

M∑
j=1

J̃ i,γ
t ((Kj,1

t ,K2
t ), (L

j,1
t , L2

t ))ej ,

(
Kj,1

t

Lj,1
t

)
=

(
K1

t

L1
t

)
+ ej , ej ∼ Sn−1(r)

∇̃2J̃
i,γ
t (Kt, Lt) =

n

Mr2

M∑
j=1

J̃ i,γ
t ((K1

t ,K
j,2
t ), (L1

t , L
j,2
t ))ej ,

(
Kj,2

t

Lj,2
t

)
=

(
K2

t

L2
t

)
+ ej , ej ∼ Sn−1(r).

Stochastic gradient computation entails computing the cost of Nb different perturbed controllers, with a perturba-
tion magnitude if r also called the smoothing radius. This stochastic gradient provides us with a biased approxi-
mation of the exact gradient whose bias and variance can be controlled by tuning the values of Nb and r. Finally to
ensure stability of the learning algorithm, we use projection ProjD onto a D-ball such that the norm of the matrices
is bounded by D, ∥(Kt, Lt)∥2 ≤ D. The radius of the ball D is chosen such that the Nash equilibrium controllers
lie within this ball.

Algorithm 1 RGDA Algorithm for 2-player MFTG

1: for t = T − 1, . . . , 1, 0, do
2: Initialize Kt = (K1

t ,K
2
t ) = 0, Lt = (L1

t , L
2
t ) = 0

3: for k = 0, . . . ,K do

4: Gradient Descent
(
K1

t

L1
t

)
← ProjD

((
K1

t

L1
t

)
− ηk∇̃1J̃

i,γ
t (Kt, Lt)

)
,

5: Gradient Ascent
(
K2

t

L2
t

)
← ProjD

((
K2

t

L2
t

)
+ ηk∇̃2J̃

i,γ
t (Kt, Lt)

)
,

6: end for
7: end for

RGDA algorithm analysis: In this section we start by showing linear convergence of the inner loop gradient
descent ascent (Theorem 4), which is made possible by the convex-concave property of the cost function under
the receding horizon approach (18). Then we show that if the error accumulated in each inner loop computation is
small enough, the total accumulated error is well behaved (Theorem 5).

We first define some relevant notation. We define the joint controllers for each timestep t as K̄t = [(K1
t )

⊤, (K2
t )

⊤]⊤

and L̄t = [(L1
t )

⊤, (L2
t )

⊤]⊤, for the sake of conciseness. For each timestep t ∈ {T − 1, . . . , 1, 0} let us also de-
fine the target joint controllers ˜̄K∗

t = (K̃1∗
t , K̃2∗

t ), ˜̄L∗
t = (L̃1∗

t , L̃2∗
t ), as the set of policies which exactly solve

the receding-horizon min-max problem (18). Notice that the set of target controllers ˜̄K∗
t ,

˜̄L∗
t are unique (due to

convex-concave nature of (18)) but do depend on the set of future joint controllers (K̄s, L̄s)t<s<T . On the other
hand, the Nash joint controllers are denoted by K̄∗

t = (K1∗
t ,K2∗

t ) and L̄∗
t = (L1∗

t , L2∗
t ). Furthermore, the target

joint controllers are equal to the Nash joint controllers ( ˜̄K∗
t ,

˜̄L∗
t ) = (K̄∗

t , L̄
∗
t ) only if the future joint controllers are

also Nash (K̄s, L̄s)t<s<T = (K̄∗
s , L̄

∗
s)t<s<T .

Theorem 4 If the learning rate ηk is smaller than a certain function of model parameters, the number of inner
loop iterations K = Ω(log(1/ϵ)), the mini-batch size Nb = Ω(1/ϵ) and the smoothing radius r = O(ϵ), then at
each timestep t ∈ {T − 1, . . . , 1, 0} the optimality gaps are ∥K̄t − ˜̄K∗

t ∥22 ≤ ϵ and ∥L̄t − ˜̄L∗
t ∥22 ≤ ϵ.
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(a) (b)

Figure 1: Performance of RGDA Algorithm

Closed form expressions of the bounds can be found in the proof given in the full version of the paper (Zaman
et al., 2024). The linear rate of convergence is made possible by building upon the convergence analysis of descent
ascent in (Fallah et al., 2020) due to the convex-concave nature of the cost function (18). The proof generalizes
the techniques used in (Fallah et al., 2020) to stochastic unbiased gradients by utilizing the fact that the bias in
stochastic gradients ∇̃j J̃

i,γ
t for j ∈ {1, 2} can be reduced by reducing the smoothing radius r. This in turn causes

an increase in the variance of the stochastic gradient which is controlled by increasing the mini-batch size Nb.
Now we present the non-asymptotic convergence guarantee of the paper stating that even though each iteration

of the outer loop (as timestep t moves backwards-in-time) accumulates error, if the error in each outer loop iteration
is small enough, the total accumulated error will also be small enough. The proof can be found in the complete
version of the paper (Zaman et al., 2024).

Theorem 5 If all conditions in Theorem 4 are satisfied, then maxj∈{1,2}∥K
j
t−K

j∗
t ∥ = O(ϵ) and maxj∈{1,2}∥L

j
t−

Lj∗
t ∥ = O(ϵ) for a small ϵ > 0 and t ∈ {T − 1, . . . , 0}.

The Nash gaps at each time t, ∥Kj
t −K

j∗
t ∥ and ∥Lj

t−L
j∗
t ∥ for j ∈ {1, 2} are due to a combination of the optimality

gap in the inner loop ∥K̄t − ˜̄K∗
t ∥22, ∥L̄t − ˜̄L∗

t ∥22 and the accumulated Nash gap in the future joint controllers
∥Kj

s − Kj∗
s ∥ and ∥Lj

s − Lj∗
s ∥ for j ∈ {1, 2} and t < s < T . The proof of Theorem 5 characterizes these two

quantities and then shows that if the optimality gap at each timestep t ∈ {0, . . . , T − 1} never exceeds some small
ϵ, then the Nash gap at any time t never exceeds ϵ scaled by a constant.

5. Numerical Analysis

First, we simulate the RGDA algorithm for time horizon T = 3, number of agents M = 1000 and the dimension
of the state and action spaces m = p = 2. For each timestep t ∈ {2, 1, 0}, the number of inner-loop iterations
K = 1000, the mini-batch size Nb = 5 × 104 and the learning rate ηk = 0.001. In Figure 1(a) we compare the
RGDA algorithm (Algorithm 1) with its exact version (E-RGDA) which has access to the exact policy gradients
∇1J̃

i,γ
t = δJ̃ i,γ

t /δ(K1
t , L

1
t ) and ∇2J̃

i,γ
t = δJ̃ i,γ

t /δ(K2
t , L

2
t ) at each iteration k ∈ [K]. The error plots in Figures

1(a) and 1(b) show the mean (solid lines) and standard deviation (shaded regions) of error, which is the norm
of difference between iterates and Nash controllers. In Figure 1(a) the blue plot shows error convergence of the
E-RGDA algorithm, which computes the Nash controllers for the last timestep t = 2 (using gradient descent
ascent with exact gradients) and moves backwards in time. Since at each timestep it has good convergence to
Nash policies, the convexity-concavity of cost function at the next timestep is ensured, which results in linear
convergence. The red plot in Figure 1(a) shows the error convergence in the RGDA algorithm which uses stochastic
gradients, which results in a noisy but downward trend in error. Notice that RGDA imitates E-RGDA in a noisy
fashion and at each timestep the iterates only approximate the Nash controllers. This approximation can be further
sharpened by increasing the mini-batch size Nb and decreasing smoothing radius r. Figure 1(a) shows the error
convergence of E-RGDA for a ZS-MFTG with T = 15 and state and action space dimensions m = p = 2.
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Figure 2: Comparison between E-RGDA and E-DDPG. The time-horizon is increasing from left to right with T = 2 (left-
most), T = 3 (center left), T = 4 (center right) and T = 5 (right-most)

Figure 2 compares the E-RGDA algorithm with the exact 2-player zero-sum version of the MADPG algorithm
(referred to as E-DDPG) (Lowe et al., 2017) which serves as a baseline as it does not use the receding-horizon
approach. The number of inner-loop iterations for E-RGDA is K = 70 and the learning rate for both algorithms is
η = 0.025. The four figures represent the comparisons for T = {2, 3, 4, 5} and the y-axis is scaled in a logarithmic
manner to best show the behavior of the algorithms. For all T > 1 the E-DDPG first diverges until it reaches the
projection threshold then eventually starts to converge. This is due to the fact that errors in later timesteps cause
the convexity-concavity condition to fail resulting in divergence in earlier timesteps. Over time the error decreases
in the later timesteps, which causes the error in earlier timesteps to gradually decrease as well. But as seen from
Figure 2, the convergence for E-DDPG takes significantly longer as the time-horizon increases.

6. Conclusion

In this paper, we solve an MARL problem with the objective of designing robust controllers in the presence of
modeled and un-modeled uncertainties. We introduce the concept of Robust Mean Field Control (RMFC) problem
as the limiting problem when the number of agents grows to infinity. We then establish a connection with Zero-Sum
Mean-Field Type Games (ZS-MFTG). We resort to the Linear-Quadratic (LQ) structure which, combined with the
mean-field approximation, helps to have a more tractable model and to help resolve the analytical difficulty induced
by the distributed information structure. This helps us obtain sufficient conditions for robustness of the problem as
well as characterization of the robust control policy. We design and provide non-asymptotic analysis of a receding-
horizon based RL algorithm which renders the non-coercive cost as convex-concave. Through numerical analysis
the receding-horizon approach is shown to ameliorate the overshooting problem observed in the performance of
the vanilla algorithm. In future work we would like to explore this type of robust mean-field problems beyond the
LQ setting and to develop RL algorithms which go beyond the gradient descent-ascent updates used in this paper.
Furthermore, our work is a first step in the direction of using mean-field approximations to study robust MARL
problems which occur in many real-world scenarios, but the study of concrete examples is left for future work.2
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ment learning with model uncertainty. Advances in neural information processing systems, 33:10571–10583,
2020b.
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