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Abstract
In the context of safe exploration, Reinforcement Learning (RL) has long grappled with the chal-
lenges of balancing the tradeoff between maximizing rewards and minimizing safety violations,
particularly in complex environments with contact-rich or non-smooth dynamics, and when deal-
ing with high-dimensional pixel observations. Furthermore, incorporating state-wise safety con-
straints in the exploration and learning process, where the agent must avoid unsafe regions with-
out prior knowledge, adds another layer of complexity. In this paper, we propose a novel pixel-
observation safe RL algorithm that efficiently encodes state-wise safety constraints with unknown
hazard regions through a newly introduced latent barrier-like function learning mechanism. As
a joint learning framework, our approach begins by constructing a latent dynamics model with
low-dimensional latent spaces derived from pixel observations. We then build and learn a la-
tent barrier-like function on top of the latent dynamics and conduct policy optimization simulta-
neously, thereby improving both safety and the total expected return. Experimental evaluations
on the safety-gym benchmark suite demonstrate that our proposed method significantly reduces
safety violations throughout the training process, and demonstrates faster safety convergence com-
pared to existing methods while achieving competitive results in reward return. Source code:
https://github.com/SimonZhan-code/Step-Wise_SafeRL_Pixel.
Keywords: State-wise Safety, Safe Model-based RL, High-dimensional Observations

1. Introduction

Reinforcement Learning (RL) has demonstrated promising achievements in addressing control prob-
lems across diverse domains including robotics (Zhao et al., 2020), games (Silver et al., 2016),
buildings (Xu et al., 2022; Wei et al., 2017) and various cyber-physical systems (Yu et al., 2021; Liu
et al., 2020; Wang et al., 2020; Li et al., 2017). Despite its potential, the occurrence of state-wise
safety violations during the learning exploration phases has restrained industries from integrating
RL methods into safety-critical applications such as traffic control (Wei et al., 2018), autonomous
driving (Kiran et al., 2021), and power grid (Duan et al., 2019).
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Conventional safe RL methods are based on the Constrained Markov Decision Process (CMDP)
paradigm (Altman, 2021), which encodes the safety constraints through a cost function of safety
violation and reduces the exploration space to where the trajectory-level discounted cumulative ex-
pected cost below a predefined threshold. However, a fundamental issue arises from the soft nature
of the safety constraints in CMDP, which can hardly capture and enforce stringent reachability-based
state-wise safety constraints (Wang et al., 2023b). On the other hand, the state-of-the-art theoret-
ical control approaches such as barrier theory (Ames et al., 2019), contraction theory (Tsukamoto
et al.), and reachability analysis (Bansal et al., 2017; Xue et al., 2023; Wang et al., 2024) have
their advantages in effectively encoding and optimizing state-wise safety. There are attempts to
combine the aforementioned methods with model-based RL techniques (Choi et al., 2020; Daw-
son et al., 2022b; Wang et al., 2023a,b) to train an RL policy with safety guarantee. Nonetheless,
those control-theoretical RL methods encounter significant challenges and limitations when oper-
ating in unknown environments with pixel observations (Zhu et al., 2020). Overall, we summarize
the challenges when dealing with pixel-observation state-wise safe RL problems as follows.

• Challenge 1: The existing CMDP problem is too soft to encode the state-wise safety constraint.
• Challenge 2: Control-theoretical approaches typically rely on relatively low-dimensional state

spaces with clear physical interpretations, making it challenging for them to scale and adapt to
the complexities posed by high-dimensional pixel observations.

• Challenge 3: Control-theoretical approaches typically rely on prior knowledge of the unsafe
regions and require explicit models of the environment dynamics which are often smooth (ODE,
SDE, etc.). However, such requirements become impractical in the context of unknown contact-
rich and non-smooth environments, with no prior knowledge about the hazard regions, a common
scenario in RL setups.

To address these challenges, we introduce a novel state-wise safety-constrained RL framework tai-
lored for image observation in unknown environments. Our framework aims to optimize control
policies and minimize safety violations during the training and exploration stages. Specifically, for
Challenge 2, we learn to compress the pixel observation into a low-dimensional latent space. For
Challenge 3, with the compressed latent space, we further learn the latent MDP-like dynamics in
it to deal with the data from contact-rich and non-smooth unknown environments. We establish a
latent barrier-like function on it to encode the state-wise safety constraint for Challenge 1.

Our framework jointly conducts the latent modeling, latent barrier-like function learning, and
policy optimization in an actor-critic framework, leading to improvements in both safety and overall
return. Compared to model-free approaches, our approach is sample-efficient by generating training
data from the latent model to avoid unsafe interactions with environmental hazards. In comparison
to existing model-based methods, our approach directly enforces safety by the power of the bar-
rier function, resulting in fewer state-wise safety violations during the training process and faster
convergence of cost return, while achieving similar total reward return.

The paper is organized as follows. Section 2 introduces related works; Section 3 elaborates
on the formulation of our problem; Section 4 presents our joint learning framework, including
latent modeling, latent barrier-like function learning, and policy optimization; Section 5 showcases
experiments setup and results; Section 6 concludes our paper.
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2. Related Works

Safe RL by CMDP with High-Dimensional Input: The primal-dual approaches have been widely
adopted to solve the Lagrangian problem of CMDP in a model-free manner, such as PDO (Chow
et al., 2017), OPDOP (Ding et al., 2021), CPPO (Stooke et al., 2020), FOCOPS (Zhang et al.,
2020b), CRPO (Xu et al., 2021), and P3O (Shen et al., 2022), which typically deal with state input
rather than RGB pixels as in our work. The RL community has recently shown a growing interest
in the challenge of learning policies from rich, high-dimensional data inputs (Rafailov et al., 2021;
Zhang et al., 2020a; Hafner et al., 2019, 2020; Hansen et al., 2022). Recent efforts have been made
to address CMDP with pixel observations (Yarats et al., 2021). However, the model-free CMDP
approaches are sample-inefficient in dealing with the high dimensional image input (Shang et al.,
2021) and thus lead to a large number of safety violations during the exploration. Recent approaches
have aimed to mitigate these issues by mapping image observations to low-dimensional spaces to
reduce sampling complexity and number of safety violations (As et al., 2022; Hogewind et al., 2022)
in a model-based manner for CMDP. Despite this, CMDP approaches still have difficulty enforcing
the state-wise safety constraints (Xiong et al., 2023; Wang et al., 2023b).

Safe RL with Sate-wise Constraint and High-Dimensional Input: There are some efforts to
combine classic control theory methods to enforce safety in safe RL, such as reach-avoid RL (Hsu
et al., 2021), contraction RL (Sun et al., 2021). Among them, barrier function is one of the most
powerful approaches. The barrier function is a formal certificate that is affiliated with a control
policy to prove state-wise safety of a dynamical system (Ames et al., 2016; Dawson et al., 2023).
In classical control theory, a common approach is to relax the conditions of the barrier function
into optimization formulations such as linear programs (Wang et al., 2023a; Yang et al., 2016) and
quadratic programs (Ames et al., 2019; Choi et al., 2020). Recent work (Wang et al., 2023b,a;
Cheng et al., 2019; Qin et al., 2021; Dawson et al., 2022b) proposes to jointly learn control policy
and neural barrier function to optimize state-wise safety constraints in RL. However, a major prob-
lem of these approaches is their limited scalability to a higher-dimensional system let alone pixel
observation. Efforts to encode state-wise safety using barrier functions derived from visual inputs
have been made in (Dawson et al., 2022a; Tong et al., 2023; Cui et al., 2022; Abdi et al., 2023).
However, these methods typically rely on a known dynamic model or require depth/distance infor-
mation from the perception beyond the scope of unknown environments with RGB pixel observa-
tions as assumed in our work. Additionally, there have been attempts to transform high-dimensional
state spaces into lower-dimensional representations and utilize sampling-based in-distribution bar-
rier functions (Castañeda et al., 2023). Nonetheless, this approach is limited to a perfect continuous
dynamic model and necessitates the presence of an existing reference controller.

3. Problem Formulation

We consider an RGB-pixel-observation safe RL problem with an unknown environment. As-
sume the environment can be modeled as a finite-horizon Markov Decision Process (MDP)M ∼
(S,O,A,P, r, γ). S ⊂ Rn(n ∈ Z+) stands for a continuous state space,A ⊂ Rm(m ∈ Z+) stands
for a continuous action space, and st+1 ∼ P(·|st, at) stands for the unknown transition dynamic
function of the environment, where st ∈ S and at ∈ A. O ⊂ Rco×ho×wo(co, ho, wo ∈ Z+) is
the observation space captured by the camera module on the agent, r : S × A × S → R is the
reward function of RL, and γ ∈ [0, 1] is a discount factor. The observation space is dependent on
the state space as there exists an unknown function that maps an underlying st ∈ S to the ot ∈ O
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captured by the agent. We assume the control policy πθ by the agent generates control actions at
by consuming the underlying state ot, i.e., at ∈ A ∼ π(·|ot). It is a realistic assumption as in the
real world, the agent usually is not able to get the ground truth of its state and takes actions based
on the observed image. We consider state-wise safety for this MDP formulation. Assume there
exists some unknown unsafe spaces as a set Su ⊂ Rn, the state-wise safety violation is defined as
st ∈ Su, assuming there exists a safety detector κ that can check the safety violation. Overall, the
state-wise safe RL problem with pixel observation is defined as

max
θ

J(πθ) = EP(·|st,at)

[
T∑
t=0

γtr(st, at, st+1)

]
, s.t.,

T∑
t=0

κ(st) ≤ D, at ∼ πθ(·|ot). (1)

where κ(st) ∈ {0, 1} indicates safety violation, D ∈ R is a safety violation budget. In real-life
safety-critical systems, we would like the safety violations as few as possible, therefore we would
like to minimize the number of safety violations towards zero during learning, e.g., D → 0.

4. Our Approach

Agent

Real Environment

Sample Trajectory in Real Env Latent State Space & Model

Update Safe Policy

Policy/Barrier Optimization

Policy Network

Barrier Network

MDP Nature

Encoder Decoder

MDP-form Dynamic

Encode/Decode 
Latent State Space

Figure 1: Overview logistic diagram of our joint learning framework. We sample pixel-observation data from
real environments, learn to compress the image data to a low-dimensional latent model with MDP-like latent
dynamics, and then learn a latent barrier-like function on top of it to encode state-wise safety constraints and
conduct policy optimization for safe exploration and performance improvement simultaneously.

We introduce our joint learning framework for state-wise safe RL with pixel observations. Fig-
ure 1 shows the high-level overview of our approach including latent modeling, barrier-like function
learning, and policy optimization. To alleviate the complexity of the high-dimensional pixel obser-
vations (Challenge 2), we first design our approach to learn to compress the image observation into
a low-dimensional latent vector by reconstructing it in a VAE-like manner and further build forward
dynamics within this latent space, i.e., latent dynamics. Due to the power of learning, such a latent
modeling approach can consume the data from the non-smooth contact-rich environment observa-
tions and is able to learn the unsafe regions by our design of latent safety predictor (Challenge 3).
Hence, the MDP-like latent model functions as a generative model for producing synthetic data used
in training. Consequently, our approach operates in a model-based fashion, minimizing interactions
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with the actual environment and thereby reducing safety violations. With the foundation of latent
dynamics, we then build a latent barrier-like function on top of the latent model to encode state-wise
safety constraints to further improve safety (Challenge 1) by training from the synthetic data with
the safety labels from a learned latent safety predictor. It is worth noting that the training gradient
from the barrier-like function can back-propagate to the control policy for safer actions. Meanwhile,
we conduct policy optimization to improve the total expected return in a model-based manner. The
overview of our approach is in Algorithm 1. Next, we are going to introduce each component by
each subsection.

Algorithm 1 State-wise Safe RL with Pixel Observations
Data: Unknown environment with an initial policy πθ, generated horizon H , action repeat R, col-

lect interval C, batch size B, chunk length L, total episodes E, episode length T
Result: Policy πθ with barrier-like function Bθ and the latent model with ϕ
Initialize dataset D with random seed episodes, models with parameters θ, ϕ, and ω.
for epoch in E do

for update step in C do
Sample batch of sequence chunks {(ot, at, rt, κt)L+k

t=k }
B
i=1 ∼ D.

Train latent model 4.1 and calculate Lm from Equation (2).
Update ϕ← ϕ+ φ∇ϕLm. // Update the latent model in one pass

Generate trajectories {(zt, at, r̂t, κ̂(zt))τ+H
t=τ }

B×(L+k)
i=1 using current policy in latent space.

Compute Lb from Equation (4), Lp from Equation (5).
Update θ ← θ + α∇θLp. // Update barrier and policy in one pass

Update ω ← ω + α∇ω
∑ 1

2∥vω(zt)− V̂ π
ω (zt)∥. // Update value network

end
for i in T

R do
Compute zt and at from latent model and πθ, add exploration noise on top at.
rt, κt+1, ot+1 ←env.step(at). // Deploy in real env to collect traj

end
Add the new trajectory to D.

end

4.1. Pixels to Latent State Space with Latent Dynamics

Our framework first learns to transform the environment MDP (as in Section 3) into an MDP-like la-
tent model with a low-dimensional latent space (Z,A, T , r̂, κ̂, γ). The comprehensive depiction of
our latent space is illustrated in Figure 1. To streamline computational complexity, we utilize a VAE-
like Encoder(Eϕ)-Decoder(Dϕ) structure to encode pixel observations O into low-dimensional la-
tent state spaces Z (Z ∼ Eϕ(O), O ∼ Dϕ(Z)). In addition, we construct a reward predictor
and safety predictor model for predicting the reward r̂t(zt, at) and safety status κ̂t(zt) ∈ {0, 1}
associated with the respective latent state zt for a given ot. It is important to note that in our for-
mulated problem (see Formulation 3), we presume the existence of a safety detector κ(st), which
might be a fusion of different types of sensors. The role of the safety predictor κ̂(zt) is to predict
the output of this safety detector κ(st), such that the latent space can tell the safety violation within
it. Furthermore, to emulate the dynamics of the MDP in Section 3, an inference transition model
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T is applied to the latent state space. This model, taking a latent state zt and an action from the
policy at as input, outputs the Gaussian distribution of the zt+1, i.e., zt+1 ∼ T (·|zt, at). We note
that this latent model shares the same control policy with the real environment MDP. With these
components, we can fully capture the dynamical nature of the environment in the latent space (i.e.,
st+1 ∼ P(·|st, at)→ zt+1 ∼ T (·|zt, at)) with reward and safety signals. Besides, this latent model
can serve as a generative model to synthesize data for training the control policy, i.e., we can sample
latent trajectory data {(zt, at, r̂t, κ̂t)}Tt=0 and thus reduce the agent’s interactions with the real envi-
ronment during the training to avoid unsafe manners. We train our latent model by using trajectories
chunk with time length T from the data buffer of the real environment MDP, and we define the loss
function as follows.

Lm =
T∑
t=0

(KL(zt||Eϕ(ot)) + MSE(r̂t, rt) + MSE(κ̂t, κt) + MSE(ôt, ot)) (2)

The first KL-Divergence Loss measures the distribution difference between inferred latent state zt
and ground-truth compressed from real observation Eϕ(ot), which is used to update our transition
model T ; The second and third MSE Loss serve to learn reward predictor and safety predictor; And
the last MSE Loss captures loss of observation compression process through reconstruction from
latent space. All the components of the latent model share common parameters ϕ and therefore
are updated at the same backward pass. This low-dimensional latent model with assumptions on
the MDP nature of dynamics can learn the non-smooth transition to address the aforementioned
Challenge 2, 3. For implementation details, the probabilistic transition model T is implemented as
an RNN, The observation encoder and decoder are CNN and transposed CNN respectively, and the
reward predictor and safety predictor are all constructed as DNNs. We build our latent model on
top of existing RSSM structure (Hafner et al., 2019). It is worth noting that we leverage a different
notion of latent state space and learn the safety predictor of the environment.

4.2. Latent Barrier-like Function Learning

Based on the previous latent model, we introduce our barrier-like function on latent state space to
intuitively enforce the forward invariance for state-wise safety constraints where the safe and unsafe
latent states can be separated from the aforementioned safety predictor.

Definition 1 Given a policy πθ, Bθ is a barrier-like function of the latent state space if it satisfies
the conditions below:

Bθ(zs) > 0, Bθ(E(zt|zt−1))−Bθ(zt−1) + α(Bθ(E(zt|zt−1))) > 0, Bθ(zu) < 0 (3)

where zt ∼ T (·|zt−1, πθ(zt−1)), θ stands for the parameters of the barrier-like function and policy
network. zs ∈ Zs ⊂ Z stands for state in safe latent state set Zs, zu ∈ Zu ⊂ Z stands for state in
unsafe latent state set Zu, and α is a class-K function.

Note that Zs and Zu are categorized by safety predictor learned in the latent model 4.1, i.e.,
κ̂(zt) = 1, zt ∈ Zu, otherwise zt ∈ Zs. The latent barrier-like function offers a state-wise def-
inition of safety. The idea is to have the agent start in the zt ∈ Zs, B(zt) > 0 and, by encoding the
positivity of the time derivative (as approximated by the second condition in Equation (3)), ensure
that the expected subsequent state maintain this positivity, i.e., Bθ(E[zt+1]) > 0. This approach
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results in the invariance of the agent within the safe state set in expectation. However, due to par-
tial observability, there may be instances where the agent unintentionally enters the unsafe state
set. When this occurs, the barrier-like function yields a negative value. Still, the positivity of the
consecutive state function value difference guides the agent away from unsafe regions and towards
states characterized by a positive barrier value. In contrast, CMDP approaches primarily focus on
minimizing the total cost over an entire trajectory in expectation without considering this state-wise
encoding of safety.

Remark 2 In this study, we add a stochastic element to the mean of the distribution derived from
the transition model T and denote it as zt for subsequent computations. This approach is commonly
employed in various model-based methods (As et al., 2022; Hogewind et al., 2022). Our experimen-
tal findings reveal that without incorporating stochasticity into the mean significantly deteriorates
efficacy of the reconstruction process due to the deterministic shortcut from encoder output directly
to decoder input (Hafner et al., 2019). This, consequently, results in poor overall quality of latent
model learning and policy performance.

We implement the latent barrier-like function as a dense neural network and derive the following
loss vector with inspiration from (Qin et al., 2021).

Lb = [ReLU(η−Bθ(zs)),ReLU(η− (Bθ(zt)−Bθ(zt−1)+α(Bθ(zt)))),ReLU(η+Bθ(zu))]
(4)

The first term penalizes non-positive safe states; the second term enforces the positivity of the
approximated time derivative condition; the third term penalizes the non-negative unsafe states of
the function. We apply a nominal positive learning margin η ∈ R to make the optimization more
feasible. Note that since the problem possesses partial observability, the above formulation can only
enforce the forward invariance without a formal guarantee.

4.3. Policy Optimization

To optimize the total rewards while considering state-wise safety, we formulate an actor-critic ap-
proach with barrier-like function learning in the loop within the latent model, by using the trajecto-
ries {zt, at, r̂t, κ̂t} generated by the latent model. With the encoder network embedded inside, the
policy DNN πθ(·|Eϕ(ot)) (or equivalently πθ(·|zt), zt ≈ Eϕ(ot)) outputs action at in a Gaussian
distribution, which is randomly sampled for training and provides mean action value for evaluation.
The value (critic) function of RL vω(zt) can be expressed as vω(zt) = Eπθ(·|zt)

[∑τ+T
t=τ γtr̂t

]
. We

define the total expected return as Jϕ(πθ) = vω(z0) and aim to reduce the following loss function
for the overall RL objective.

Lp = −max Jϕ(πθ) + βTLb (5)

where we add barrier loss function as a regularization term for safety. β here is a coefficient vec-
tor corresponding to each term in Equation (5). And we backward Lp through stochastic back-
propagation to update the policy network and barrier-like function in the same pass. Specifically,
for the critic network, we use the sampled synthetic latent trajectory {zt, at, r̂t, κ̂t} and Monte Carlo
approach to provide the learning target V̂ π

ω (zt) =
1
N

∑N
i=1

[∑T
τ=0 γ

τ r̂τ + γt+T vω(zt+T )
]

for it to

reduce the loss
∥∥∥vω − V̂

∥∥∥2. For the actor network, the policy gradient from Jϕ is well-established
as in (Sutton and Barto, 2018).
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PointButton1 PointPush1 PointGoal2 PointGoal1 CarGoal1 DoggoGoal1

Figure 2: This is a graphic expression of Safety Gym SG6 (Ray et al., 2019) environments. Figures at
the top row are with birdeye views of each benchmark. All images on the left-hand side in the bottom row
are pixel observations taken by the agents, and all on the right-hand side are reconstructed images from our
learned latent model, which appear similarly to the left observations.

5. Experiments

Ours Safe_SLAC LAMBDA

Figure 3: Left shows the Cost Return of LAMBDA
(green), Safe-SLAC (blue), and our approach (red) on
the Safety Gym benchmarks; Right illustrates the
Normalized Cost Regret with respect to PPO’s. Over-
all, we can tell that our approach achieves fewer safety
violations.

We adopt the widely used Safety Gym SG6
tasks (Ray et al., 2019) as test examples. For
our approach and baselines, the agents take in
3 × 64 × 64 pixels images from the agents’
point of view, as shown in Figure 2. To the
best of our knowledge, there is currently no
state-wise safe RL approach capable of han-
dling non-smooth environments encountered in
the Safety Gym framework with pixel ob-
servations. Therefore, we compare to popu-
lar model-free CMDP methods including CPO,
PPO-L, and TRPO-L, and pay more focus
on LAMBDA (As et al., 2022) and Safe-
SLAC (Hogewind et al., 2022), two state-of-
the-art model-based CMDP approaches that
study safe RL with pixel observations. We train
different algorithms with one million environ-
ment steps, except the DoggoGoal1 with two million steps. We measure the performance of all
approaches on the Cost Return and Cost Regret (Ray et al., 2019), corresponding to state-wise safety
in evaluation and training. In addition, we showcase the learning curve of our method compared
with others’ converged values after training.

• The average Cost Return for N episodes is defined as Ĵ(π) =
∑N

i=0

∑Tep
t=0 ct

N , where Tep is the
length of a single episode. Since ct is fixed for each step of safety violation in the Safety Gym
environment, we can interpret this metric as the average safety violations performance of policy
π after each training episode.

• The Cost Regret is the sum of costs during the whole training process over the total interaction

steps T . We defined as ρc(π) =
∑T

t=0 ct
T , T is the total environment interactions, and ct is the cost
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corresponding to each interaction. This metric represents total safety violations accumulated in
the entire training process.

• The average Reward Return for N episodes is defines as R̂(π) =
∑Tep

i=0 rt
N , where rt is the reward

received at time step t.

CarGoal1 PointGoal1 PointGoal2

PointPush1 PointButton1DoggoGoal1

Ours cpo ppo_lagrangian trpo_lagrangian LAMBDA Safe SLAC

Figure 4: Dash-lines are Cost Return of the model-free CPO, PPO-L, TRPO-L trained for 10M steps except
DoggoGoal1 with 50M training steps. Our approach shows faster cost convergence in all benchmarks
compared with other approaches. Besides, for the majority of the benchmark, our approach can achieve the
lowest converged cost return.

5.1. Safety Evaluation during Learning Explorations

Figure 3 shows Cost Return and normalized Cost Regret of our approach and baselines, where we
normalize the Cost Regret by dividing it by the Cost Regret achieved by the PPO method, i.e.,
ρ̂ours = ρours

ρppo
. It is worth noting that model-free approaches in principle lead to more safety

violations (As et al., 2022) and thus we mainly focus on model-based Safe-SLAC and LAMBDA
for a fair comparison in Figure 3. Compared to these two baselines, our approach exhibits a notable
enhancement for Cost Return in all benchmarks and consistently demonstrates lower Cost Regret,
except the PointGoal2 environment. The results affirm the advantages of our latent barrier-
like function learning for encoding state-wise safety constraints over the CMDP formulation in the
baselines. In addition, from Figure 4, we can tell that our approach shows faster convergence in
the Cost Return. The reason is that during the training, our latent model quickly identifies and
captures the majority of unsafe latent states by supervised learning. With more interactions, the
latent barrier-like encoding hard state-wise safety constraint progressively forces the agent to take
safer actions, leading to significantly lower Cost Return compared to CMDP approaches.

Remark 3 Safety violations are unavoidable in our setup as the agent only receives partial image
observations from a single front-view camera in an unknown environment without state information,
where zero violation fundamentally is a hard problem to solve. In addition, due to learning errors,

9



ZHAN WANG WU JIAO HUANG ZHU

our latent model may not always accurately differentiate the safe and unsafe images, which could
lead to safety violations.

Ours cpo ppo_lagrangian trpo_lagrangian LAMBDA Safe SLAC

CarGoal1 PointGoal1 PointGoal2

PointPush1 DoggoGoal1 PointButton1

Figure 5: Reward Return: The model-free methods CPO, PPO-L, and TRPO-L are trained for 10M steps
except on DoggoGoal1 with 50M steps. The model-based Safe-SLAC and LAMBDA are trained with 1M
steps except on DoggoGoal1 with 2M environment steps. Our approach can achieve similar performance
as model-free methods or slightly better as other model-based methods.

5.2. Reward Performance of the Learned Policies

In principle, model-free approaches could obtain higher total expected return after convergence
since model-based approaches face model-mismatch errors in the learning process (Altman, 2021).
Surprisingly, in Figure 5, our approach can achieve similar performance as model-free methods and
slightly surpass other model-based methods across most of the benchmarks, except PointPush1.
This pheromone indicates our latent model can accurately compress and reconstruct the image ob-
servation space, as shown in Figure 2. In PointPush1, model-free methods outperform all model-
based methods including ours. Our hypothesis is based on the observation in Figure 2, which sug-
gests that, in PointPush1, the agent’s ability to capture additional visual information is severely
limited when attempting to push the yellow box, which results in inaccurate model learning.

6. Conclusion

This paper introduces a model-based state-wise safe RL framework with pixel observations. We first
learn to compress the high-dimensional image into a latent model where we establish a latent barrier-
like function to encode state-wise safety constraints. We jointly conduct latent modeling, barrier-like
function learning, and policy optimization to improve safety and performance simultaneously. Our
approach significantly enhances safety while maintaining performance levels comparable to other
established model-free and model-based safe RL methods. A possible future direction is to consider
the distribution-based barrier function under the MDP setting for safe and unsafe states by encoding
the forward invariance within the distributions, rather than the current sampled state sets.
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