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Abstract
Designing stabilizing controllers is a fundamental challenge in autonomous systems, particularly
for high-dimensional, nonlinear systems that can hardly be accurately modeled with differential
equations. The Lyapunov theory offers a solution for stabilizing control systems, still, current
methods relying on Lyapunov functions require access to complete dynamics or samples of system
executions throughout the entire state space. Consequently, they are impractical for high-dimensional
systems. This paper introduces a novel framework, LYapunov-Guided Exploration (LYGE), for
learning stabilizing controllers tailored to high-dimensional, unknown systems. LYGE employs
Lyapunov theory to iteratively guide the search for samples during exploration while simultaneously
learning the local system dynamics, control policy, and Lyapunov functions. We demonstrate its
scalability on highly complex systems, including a high-fidelity F-16 jet model featuring a 16D state
space and a 4D input space. Experiments indicate that, compared to prior works in reinforcement
learning, imitation learning, and neural certificates, LYGE reduces the distance to the goal by 50%
while requiring only 5% to 32% of the samples. Furthermore, we demonstrate that our algorithm
can be extended to learn controllers guided by other certificate functions for unknown systems.1
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1. Introduction

Designing stabilizing controllers for high-dimensional systems with potentially unknown dynamics is
essential in autonomous systems, where Lyapunov-based control design plays a significant role (Par-
rilo, 2000). In recent years, methods have been proposed to automatically construct Lyapunov
functions and control Lyapunov functions (CLFs) for systems of varying complexity, encompassing
both optimization and learning-based methods (Giesl and Hafstein, 2015; Dawson et al., 2022a).
However, existing methods encounter two major challenges: scalability, i.e., applicability to high-
dimensional systems, and model transparency, i.e., the necessity of knowing the system dynamics.

Traditional optimization-based control design involves finding controllers and Lyapunov func-
tions by solving a sequence of semi-definite programming (SDP) problems (Parrilo, 2000; Majumdar
et al., 2013; Ahmadi and Majumdar, 2016). However, scalability to high-dimensional systems is hin-
dered by the exponential growth of the number of decision variables with system dimension (Lofberg,
2009) and numerical problems (Permenter and Parrilo, 2018), including strict feasibility and numeri-
cal reliability issues. Although recent advancements have produced scalable SDP solvers (Yurtsever
et al., 2021), they depend on assumptions such as the sparsity of the decision matrix. Neural network
(NN)-based representations of Lyapunov functions have gained popularity (Chang et al., 2019; Han

1. Project website: https://mit-realm.github.io/lyge-website/. The appendix can be found on the project website.
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et al., 2020; Chang and Gao, 2021; Dawson et al., 2022b) and can to some extent alleviate dimen-
sionality limitations when finding a CLF. However, due to their reliance on state-space sampling,
learning techniques still face exponential growth in sample complexity for high-dimensional systems.

Additionally, most optimization-based and learning-based methods require system dynamics to
be known as ordinary differential equations (ODEs), limiting their applicability and practicality for
real-world systems. For instance, the F-16 fighter jet model (Heidlauf et al., 2018) investigated in this
paper is represented as a combination of look-up tables, block diagrams, and C programs. Accurately
describing the complex behavior of the system using an ODE is highly challenging. For systems
with unknown dynamics, previous works have attempted to first use system identification, (e.g., learn
the ODE model with NNs), then find a controller with a CLF (Dai et al., 2021; Zhou et al., 2022).
However, using a single NN to fit the dynamics of the entire state space of a high-dimensional system
requires a vast number of training samples to cover the entire state space, and these surrogate NN
models can exhibit substantial prediction errors in sparsely sampled regions of the state-action space.

Our work is motivated by the fact that for high-dimensional systems, collecting data across the
entire state space is both infeasible and unnecessary, as only a small subset of the state space is
reachable for the agent starting from a set of initial conditions. Therefore, obtaining a model for the
entire state space is excessive (Kamalapurkar et al., 2016). Instead, we learn a model valid only in the
reachable subset of the state space and update the controller according to guidance, e.g., the learned
CLF, to continuously expand the subset towards the goal. Constructing such a subset is non-trivial, so
we assume access to some imperfect and potentially unstable demonstrations as initial guidance for
reachable states. Starting from these demonstrations, our objective is to update the controller, guide
exploration of necessary regions in the state space, and ultimately stabilize the system at the goal.

To achieve this, we propose a novel framework, LYapunov-Guided Exploration (LYGE), to
jointly learn the system dynamics in the reachable subset, a controller, and a CLF to guide the
exploration of the controller in high-dimensional unknown systems. We iteratively learn the dynamics
in the reachable states using past experience, update the CLF and the controller, and perform
exploration to expand the subset toward the goal. Upon convergence, we obtain a stabilizing
controller for the high-dimensional unknown system. The main contributions of the paper are:
1) We propose a novel framework, LYGE, to learn stabilizing controllers for high-dimensional
unknown systems. Guided by a learned CLF, LYGE explores only the useful subset, thus addressing
the scalability and model transparency problems; 2) We show that the proposed algorithm learns
a stabilizing controller; 3) We conduct experiments on benchmarks including Inverted Pendulum,
Cart Pole, Cart II Pole (Brockman et al., 2016), Neural Lander (Shi et al., 2019), and the F-16
model (Heidlauf et al., 2018) with two tasks. Our results show that our learned controller outperforms
other reinforcement learning (RL), imitation learning (IL), and neural-certificate-based algorithms in
terms of stabilizing the systems while reducing the number of samples by 68% to 95%.

2. Related Work

Control Lyapunov Functions. Our work builds on the widely used Lyapunov theory for designing
stabilizing controllers. Classical CLF-based controllers primarily rely on hand-crafted CLFs (Choi
et al., 2020; Castaneda et al., 2021) or Sum-of-Squares (SoS)-based SDPs (Parrilo, 2000; Majumdar
et al., 2013; Ahmadi and Majumdar, 2016; Long et al., 2023). However, these approaches require
known dynamics and struggle to generalize to high-dimensional systems due to the exponential
growth of decision variables and numerical issues (Lofberg, 2009; Permenter and Parrilo, 2018). To
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alleviate these limitations, recent work uses NN to learn Lyapunov functions (Richards et al., 2018;
Abate et al., 2020, 2021; Gaby et al., 2021) and stabilizing controllers (Chang et al., 2019; Mehrjou
et al., 2021; Dawson et al., 2022b; Farsi et al., 2022; Zhang et al., 2023; Wang et al., 2023; Min et al.,
2023). Most of these works sample states in the entire state space and apply supervised learning to
enforce the CLF conditions. They either assume knowledge of the dynamics or attempt to fit the
entire state space’s dynamics (Dai et al., 2021; Zhou et al., 2022), making it difficult to generalize to
high-dimensional real-world scenarios where the number of required samples grows exponentially
with the dimensions. In contrast, our algorithm can handle unknown dynamics and does not suffer
from the curse of dimensionality caused by randomly sampling states in the entire state space.

Reinforcement Learning (RL) and Optimal Control. RL and optimal control have demonstrated
strong capabilities on problems without knowledge of the dynamics, particularly in hybrid sys-
tems (Schulman et al., 2015, 2017; Rosolia and Borrelli, 2019; So and Fan, 2023). However, they
struggle to provide results of the closed-loop system’s stability. Additionally, hand-crafted reward
functions and sample inefficiency impede the generalization of RL algorithms to complex environ-
ments. Recent works in the learning for control domain aim to solve this problem by incorporating
certificate functions into the RL process (Berkenkamp et al., 2017; Chow et al., 2018; Cheng et al.,
2019; Han et al., 2020; Chang and Gao, 2021; Zhao et al., 2021; Qin et al., 2021). Nevertheless,
they suffer from limitations such as handcrafted certificates (Berkenkamp et al., 2017) and balancing
CLF-related losses with RL losses (Han et al., 2020; Chang and Gao, 2021). Unlike these approaches,
our algorithm learns the CLF from scratch without prior knowledge of the dynamics or CLF candi-
dates and provides a structured way to design loss functions rather than relying on reward functions.
Furthermore, we can demonstrate the stability of the closed-loop system using the learned CLF.

Imitation Learning (IL). IL is another common tool for such problems. However, classical IL
algorithms like behavioral cloning (BC) (Pomerleau, 1991; Bain and Sammut, 1995; Schaal, 1999;
Ross et al., 2011), inverse reinforcement learning (IRL) (Abbeel and Ng, 2004; Ramachandran
and Amir, 2007; Ziebart et al., 2008), and adversarial learning (Ho and Ermon, 2016; Finn et al.,
2016; Fu et al., 2018) primarily focus on recovering the exact policy of the demonstrations, which
may result in poor performance when given imperfect demonstrations. A recent line of work on
learning from suboptimal demonstrations offers a possible route to learn a policy that outperforms
the demonstrations. However, they either require various types of manual supervision, such as
rankings (Brown et al., 2019; Zhang et al., 2021), weights of demonstrations (Wu et al., 2019; Cao
and Sadigh, 2021), or have additional requirements on the environments (Brown et al., 2020; Chen
et al., 2021), demonstrations (Tangkaratt et al., 2020, 2021), or the training process (Novoseller et al.,
2020). Moreover, none of them can provide results about the stability of the learned policy. Another
line of work learns certificates from demonstrations (Ravanbakhsh and Sankaranarayanan, 2019;
Robey et al., 2020; Chou et al., 2020; Boffi et al., 2021), but they need additional assumptions such
as known dynamics, perfect demonstrations, or the ability to query the demonstrator. In contrast,
we leverage the CLF as natural guidance for the exploration process and do not require additional
supervision or assumptions about the demonstrations or the environment to learn a stabilizing policy.

3. Problem Setting and Preliminaries

We consider a discrete-time unknown dynamical system

x(t+ 1) = h(x(t), u(t)), (1)
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where x(t) ∈ X ⊆ Rnx represents the state at time step t, u(t) ∈ U ⊆ Rnu denotes the control input
at time step t, and h : X × U → X is the unknown dynamics. We assume the state space X to be
compact and h is Lipschitz continuous in both (x, u) with constant Lh > 0 following Berkenkamp
et al. (2017). Our objective is to find a control policy u(·) = π(x(·)), where π : X → U , such that
from initial states x(0) ∈ X0, under the policy π, the closed-loop system asymptotically stabilizes at
a goal xgoal ∈ X . In other words, ∀x(t) starting from x(0) ∈ X0 and satisfying Equation (1) with
u(t) = π(x(t)), we have lim

t→∞
∥x(t)− xgoal∥ = 0.

We assume that we are given a set of ND0 demonstration transitions D0 = {(xi(t), ui(t), xi(t+
1))}ND0

i=1 generated by a demonstrator policy πd starting from states xi(0) ∈ X0. In contrast to
the assumption of stabilizing demonstrators in classical IL works (Ho and Ermon, 2016), our
demonstrations may not be generated by a stabilizing controller.

Lyapunov theory is widely used to prove the stability of control systems, and CLFs offer further
guidance for controller synthesis by defining a set of stabilizing control inputs at a given point in the
state space. Following Grüne et al. (2017), we provide the definition of CLF for discrete system (1).

Definition 1 Consider the system (1) and a goal point xgoal, and let G ⊆ X be a subset of the state
space such that xgoal ∈ G. A function V : G → R is called a CLF on G if there exists functions
α, ᾱ ∈ K∞

2 and a constant λ ∈ (0, 1) such that the following hold:

α(∥x− xgoal∥) ≤ V (x) ≤ ᾱ(∥x− xgoal∥) (2a)

inf
u∈U

V (h(x, u)) ≤ λV (x) (2b)

The set of input K(x) = {u ∈ U | V (h(x, u)) ≤ λV (x)} is called stablizing control inputs. It
is a standard result that if G is forward invariant3 and the goal point xgoal ∈ G ⊆ X , then starting
from initial set X0 ⊆ G, any control input u ∈ K will make the closed-loop system asymptotically
stable at xgoal (Grüne et al., 2017). The details are provided at Appendix A.

4. LYGE Algorithm

Notation: Let τ be the current iteration step in our algorithm. A dataset Dτ is a set of NDτ

transitions collected by the current iteration step. Recall that D0 is the set of given demonstrations. Let
Dτ
x ⊂ X be the projection of Dτ on the first state component of Dτ defined as Dτ

x = {x | (x, ·, ·) ∈
Dτ}. A trusted tunnel Hτ is defined as the set of states at most γ > 0 distance away from the dataset
Dτ
x, i.e., Hτ = {x | ∃xi ∈ Dτ

x, ∥x− xi∥ ≤ γ}.
We first outline our algorithm LYapunov-Guided Exploration (LYGE), which learns to stabilize

high-dimensional unknown systems, then provide a step-by-step explanation (see Appendix B for
detailed theoretical analysis). Given a dataset of imperfect demonstrations D0 (which may not
contain xgoal), we firstly employ IL to learn an initial controller πinit (which may be an unstable
controller). Then, during each iteration τ , we learn a CLF V τ

θ and the corresponding controller πτϕ
using samples from Dτ

x, and use the learned controller πτϕ to generate closed-loop trajectories as
additional data added to Dτ to obtain Dτ+1. At each iteration, the learned CLF V τ

θ ensures that the

2. A function α : [0,+∞) → [0,+∞) is said to be class-K∞ if α is continuous, strictly increasing with α(0) = 0, and
lim

s→+∞
α(s) = +∞.

3. A set G is forward invariant if x(0) ∈ G =⇒ x(t) ∈ G for all t > 0.
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newly collected trajectories get closer to xgoal, as each V τ
θ is designed to reach the global minimum

at xgoal. In this way, the trusted tunnel Hτ grows and includes states closer and closer to xgoal with
more iterations. Upon convergence, LYGE returns a stabilizing controller π∗ that can be trusted
within the converged trusted tunnel H∗, where H∗ contains all trajectories starting from X0.
Learning from Demonstrations: At iteration 0, our approach starts with learning an initial policy
from imperfect and potentially unstable demonstrations D0. We use existing IL methods (e.g.,
BC (Bain and Sammut, 1995)) to learn the initial policy πinit(·). Since the IL algorithms directly
recover the behavior of the demonstrations, the initial policy could lead to unstable behaviors.
Learning Local Dynamics: At iteration τ , we learn a discrete NN approximation of the dynamics
ĥτψ(x, u) : X ×U → X parameterized by ψ using the transition dataset Dτ . We train ĥτψ by minimiz-
ing the mean square error loss from transitions sampled from the dataset Dτ using Adam (Kingma
and Ba, 2014). Let ω > 0 be the maximum error of the learned dynamics on the training data:
∥ĥτψ(xi(t), ui(t))− xi(t+ 1)∥ ≤ ω for all (xi(t), ui(t), xi(t+ 1)) ∈ Dτ .
Learning CLF and Controller: After learning the local dynamics, we jointly learn the CLF and
the control policy. Let the learned CLF in τ -th iteration be V τ

θ (x) = x⊤S⊤Sx+ pNN(x)
⊤pNN(x),

where S ∈ Rnx×nx is a matrix of parameters, pNN : Rnx → Rnx denotes an NN, and θ encompasses
all parameters including S and the ones in pNN. Clearly, V τ

θ (x) is positive by construction. The first
term in V τ

θ models a quadratic function, which is commonly used to construct Lyapunov functions
for linear systems. Here we use it to introduce a quadratic prior to the learned CLF. The second
term models the CLF’s non-quadratic residue. We also parameterize the controller with an NN, i.e.,
πτϕ : X → U with parameters ϕ. The learned controller aims to direct system trajectories toward the
goal, guided by the learned CLF. Additionally, since the learned dynamics ĥτψ may be invalid outside
the trusted tunnel Hτ , πτϕ should not drive the system too far from Hτ within the simulation horizon.
This can be achieved by penalizing the distance of the control inputs in consecutive iterations. Overall,
V τ
θ and πτϕ can be synthesized by solving the following optimization problem:

min
ϕ

Ex∈Hτ ∥πτϕ(x)− πτ−1
ϕ (x)∥ (3a)

s.t. V τ
θ (xgoal) = 0, V τ

θ (x) > 0, ∀x ∈ X \ xgoal (3b)

V τ
θ

(
ĥτψ(x, π

τ
ϕ(x))

)
≤ λV τ

θ (x), ∀x ∈ Hτ (3c)

where λ ∈ (0, 1). We approximate the solution of problem (3) by self-supervised learning with loss
Lτ = LτCLF + ηctrlLτctrl, where LτCLF and Lτctrl correspond to the constraints and the objective of
Problem (3), respectively, ηctrl > 0 is a hyper-parameter that balances the weights of two losses, and

LτCLF =V τθ (xgoal)
2 +

1

N

∑
x∈X\xgoal

[ν − V τθ (x)]
+
+
ηpos
N

∑
x∈Dτ

x

[
ϵ+ V τθ

(
ĥτψ(x, π

τ
ϕ(x))

)
− λV τθ (x)

]+
(4)

Lτctrl =
1

N

∑
x∈Dτ

x

∥πτϕ(x)− πτ−1
ϕ (x)∥2, (5)

where [·]+ = max(·, 0), ηpos > 0 is a hyper-parameter that balances each term in the loss, and ϵ > 0
is a hyper-parameter that ensures that the learned CLF V τ

θ satisfies condition (2b) even if the learned
dynamics ĥτψ has errors (Studied in Section 5.4). In practice, it is hard to enforce V τ

θ (xgoal) to be
exactly 0 using gradient-based methods. Therefore, in loss (4) and (5), we instead train the NNs to
make V τ

θ (xgoal) < ν, and V τ
θ (x) ≥ ν, for all x ∈ X \ xgoal, where ν is a small positive number.
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(a) Iteration 0 (b) Iteration 2 (c) Iteration 6 (d) Iteration 12

Figure 1: Trajectories generated by LYGE in different iterations in inverted pendulum environment.
The counters show the learned CLF. The orange trajectories are generated by the learned
controller in the current iteration. The light orange dots are the demonstrations generated
in previous iterations, which also indicate the trusted tunnel H. The black dot is the goal.

Exploration: After learning ĥτψ, V τ
θ , and πτϕ in the τ -th iteration, we use the current controller πτϕ

starting from x0 ∈ Hτ to collectND more transitions ∆Dτ = {(xi(t), πτϕ(xi(t)), xi(t+1))}ND
i=1 and

augment the dataset Dτ+1 = Dτ ∪∆Dτ . During the exploration, the controller drives the system to
states with lower CLF values. Consequently, by collecting more trajectories with the learned policy
πτϕ, we expand the trusted tunnel Hτ to states with lower CLF values. As the global minimum of the
CLF is at xgoal, the system trajectories used to construct the trusted tunnel keep getting closer to the
goal in each iteration. The detailed algorithm and the convergence result are provided in Appendix B.

We illustrate the LYGE process in an inverted pendulum environment in Figure 1. In Figure 1(a),
since the demonstrations are imperfect, our initial controller πinit cannot reach the goal. Figure 1(b)
and Figure 1(c) demonstrate that after several iterations, the trusted tunnel Hτ (the region around
the light orange dots Dτ

x) is expanded towards the goal, and the closed-loop system progressively
approaches the goal. Upon convergence (Figure 1(d)), our controller stabilizes the system at the goal.

5. Experiments

We conduct experiments in six environments including Inverted Pendulum, Cart Pole, Cart II Pole,
Neural Lander (Shi et al., 2019), and the F-16 jet (Heidlauf et al., 2018) with two tasks: ground
collision avoidance (GCA) and tracking. To simulate the imperfect demonstrations, We collect
imperfect and potentially unstable demonstrations for each environment using nominal controllers
such as LQR (Kwakernaak and Sivan, 1969) for Inverted Pendulum, PID (Bennett, 1996) for Neural
Lander and the F-16, and RL controllers for Cart Pole and Cart II Pole. In the first four environments,
we collect 20 trajectories as demonstrations, and in the two F-16 environments, we collect 40
trajectories. We aim to answer the following questions in the experiments: 1) How does LYGE
compare with other algorithms for the case of stabilizing the system at goal? 2) What is the sampling
efficiency of LYGE as compared to other baseline methods? 3) Can LYGE be used for systems with
high dimensions? We provide additional implementation details and more results in Appendix C.

5.1. Baselines

We compare LYGE with the most relevant works in our problem setting including RL algorithm
PPO (Schulman et al., 2017), standard IL algorithm AIRL (Fu et al., 2018), and algorithms of IL from
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suboptimal demonstrations D-REX (Brown et al., 2020) and SSRR (Chen et al., 2021). For PPO, we
hand-craft reward functions following standard practices in reward function design (Brockman et al.,
2016) for stabilization problems. For AIRL, D-REX, and SSRR, we let them learn directly from the
demonstrations. For a fair comparison, we initialize all the algorithms with the BC policy. Compared
with these baselines, our algorithm has one additional assumption that we know the desired goal
point. However, we believe that the comparison is still fair because we do not need the reward
function or optimal demonstrations. While LYGE needs more information than D-REX and SSRR,
the performance increment from LYGE is large enough that it is worth the additional information.

We also design two other baselines, namely, CLF-sparse and CLF-dense, to show the efficacy of
the Lyapunov-guided exploration compared with learning the dynamics model from random samples
(Dai et al., 2021; Zhou et al., 2022). These methods require the stronger assumption of being able to
sample from arbitrary states in the state space, which is unrealistic when performing experiments
outside of simulations. For both algorithms, we follow the same training process as LYGE, but
instead of collecting samples of transitions by applying Lyapunov-guided exploration, we directly
sample states and actions from the entire state-action space to obtain the training set of the dynamics.
We note that CLF-sparse uses the same number of samples as LYGE, while CLF-dense uses the same
number of samples as the RL and IL algorithms, which is much more than LYGE (see Table 1).

5.2. Environments

Inverted Pendulum: Inverted Pendulum (Inv Pendulum) is a standard benchmark for testing control
algorithms. To simulate imperfect demonstrations, the demonstration data is collected by an LQR
controller with noise that leads to oscillation of the pendulum around a point away from the goal.
Cart Pole and Cart II Pole: Both environments are standard RL benchmarks introduced in Open
AI Gym (Brockman et al., 2016)4. We collect demonstrations using an RL policy that has not fully
converged, which makes the cart pole oscillate at a location away from the goal.
Neural Lander: Neural lander (Shi et al., 2019) is a widely used benchmark for systems with
unknown disturbances. The state space has 6 dimensions including the 3-dimensional position and
the 3-dimensional velocity, with 3-dimensional linear acceleration as the control input. The goal is to
stabilize the neural lander at a user-defined point near the ground. The dynamics are modeled by a
neural network trained to approximate the aerodynamics ground effect, which is highly nonlinear
and unknown. We use a PID controller to collect demonstrations, which makes the neural lander
oscillate and cannot reach the goal point because of the strong ground effect.
F-16: The F-16 model (Heidlauf et al., 2018; Djeumou et al., 2021) is a high-fidelity fixed-wing
fighter model, with 16D state space and 4D control inputs. The dynamics are complex and cannot be
described as ODEs. Instead, the authors of the F-16 model provide many lookup tables to describe
the dynamics. We solve the two tasks discussed in the original papers: ground collision avoidance
(GCA) and waypoint tracking. In GCA, the F-16 starts at an initial condition with the head pointing
at the ground. The goal is to pull up the aircraft as soon as possible, avoid colliding with the ground,
and fly at a height between 800 ft and 1200 ft. In the tracking task, the goal of the aircraft is to reach
a user-defined waypoint. The original model provides PID controllers. However, the original PID
controller cannot pull up the aircraft early enough or cannot track the waypoint precisely.

4. Original names are InvertedPendulum and InvertedDoublePendulum in Mujoco environments
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Figure 2: The distance to the goal w.r.t. time step of LYGE and the baselines: (a) Inv Pendulum; (b)
Cart Pole; (c) Cart II Pole; (d) Neural Lander; (e) F-16 GCA; (f) F-16 Tracking. The solid
lines show the mean distance while the shaded regions show the standard deviation. Note
that the curve corresponding to CLF-sparse almost overlaps with the curve corresponding
to CLF-dense and so, the curve for CLF-sparse might not be visible in some of the plots.

5.3. Results and Discussions

We train each algorithm in each environment 5 times with different random seeds and test the
converged controllers 20 times each. In Figure 2 we show the distance to the goal w.r.t. the
simulation time steps. Note that we consider the goal height in the F-16 GCA environment and the
goal position in the F-16 Tracking environment. We can observe that LYGE achieves comparable or
better results in terms of stabilizing the systems in all environments, especially in high-dimensional
complex systems like Neural Lander and F-16. In Neural Lander, none of the baselines can reach
the goal as they prioritize flying at a higher altitude to avoid collisions. In F-16 environments, the
baselines either pull up the aircraft too late or have large tracking errors. LYGE however, can finish
these tasks perfectly.

Specifically, compared with PPO, LYGE achieves comparable results in simpler environments
like Cart Pole and Cart II Pole, and behaves much better in complex environments like Neural Lander
and F-16. This is due to the fact that PPO is a policy gradient method that approximates the solution
of the Bellman equation, but getting an accurate approximation is hard for high-dimensional systems.
In PPO the reward function can only describe “where the goal is”, but our learned CLF can explicitly
tell the system “how to reach the goal”. Compared with AIRL, which learns the same policy as the
demonstrations and cannot make improvements, LYGE learns a policy that is much better than the
demonstrations. Compared with ranking-guided algorithms D-REX and SSRR, LYGE behaves better
because ranking guidances provide less information than our CLF guidance, and are not designed to
explicitly encode the objective of reaching the goal. Compared with CLF-sparse and CLF-dense,
LYGE outperforms them because Lyapunov-guided exploration provides a more effective way to
sample in the state space to learn the dynamics rather than random sampling. Although CLF-dense
uses many more samples than CLF-sparse and LYGE its performance does not significantly improve.
This shows that naı̈vely increasing the number of samples without guidance does little to improve the
accuracy of the learned dynamics in high-dimensional spaces.

In Table 1, we show the number of samples used in the training. It is shown that LYGE needs 68%
to 95% fewer samples than other algorithms. This indicates that our Lyapunov-guided exploration
explores only the necessary regions in the state space and thus improving the sample efficiency.
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Table 1: Number of samples (k) used for training in different environments.
Algorithm Inv Pendulum Cart Pole Cart II Pole Neural Lander F-16 GCA F-16 Tracking

LYGE 160 160 480 240 480 560
Baselines 2000 500 5000 5000 2000 10000
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Figure 3: Ablation studies. (a) The converged reward w.r.t. demonstration rewards. (b) The number
of samples used before LYGE converges w.r.t. demonstration rewards. (c) The converged
reward w.r.t. ϵ. (d) The converged reward w.r.t. λ. (e) The converged reward w.r.t. ηctrl.

5.4. Ablation Studies

We first show the influence of the optimality of the demonstrations. We use the Inverted Pendulum
environment and collect demonstrations with different levels of optimality by varying the distance
between the actual goal state and the target state of the demonstrator controller. For each optimality
level, we train each algorithm 3 times with different random seeds and test each converged controller
20 times. We omit the experiments on CLF-sparse and CLF-dense since their performances are
not related to the demonstrations. The results are shown in Figure 3(a). We observe that LYGE
outperforms other algorithms with demonstrations at different levels of optimality. In addition, we
do not observe a significant performance drop of LYGE as the demonstrations become worse. This is
because the quality of the demonstrations only influences the convergence speed of LYGE, instead of
the controller. PPO’s behavior is also consistent since the reward function remains unchanged, but it
consistently performs worse than LYGE. IL algorithms, however, have a significant performance
drop as the demonstrations get worse because they all depend on the quality of the demonstrations.

The quality of the demonstrations can also influence the convergence speed of LYGE. In the Inv
Pendulum environment, we define the algorithm converges when the reward is larger than 1980. We
plot the number of samples used for convergence w.r.t. the reward of demonstrations in Figure 3(b).
It is shown that the better the given demonstrations, the fewer samples LYGE needs for convergence.

We also do ablations to investigate the influence of the hyperparameter ϵ. We test LYGE in the
Cart Pole environment and change ϵ from 0.01 to 100. The results are shown in Figure 3(c), which
demonstrates that LYGE works well when ϵ is large enough to satisfy the condition introduced in
Theorem 7 in Appendix B, and small enough that it does not make the training very hard.

The λ in Equation (4) is another hyperparameter that controls the convergence rate of the learned
policy. We test LYGE in the Cart Pole environment and change λ from 0.01 to 100. The results are
shown in Figure 3(d), demonstrating that LYGE works well with λ in some range. If λ is too small,
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the convergence rate is too small and the system cannot be stabilized within the simulation time steps.
If λ is too large, loss (4) becomes too hard to converge, so the controller cannot stabilize the system.

During training, ηctrl controls the expansion of the trusted tunnel. We do ablations for ηctrl in the
Cart Pole environment and change ηctrl from 10 to 105. The results are shown in Figure 3(e), which
suggests that LYGE can work well when the value of ηctrl is within a certain range. If ηctrl is too
small, the system leaves the trusted tunnel too early instead of smoothly expanding the trusted tunnel.
If ηctrl is too large, exploration is strongly discouraged and the trusted tunnel expands too slowly.

6. Extensions
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Figure 4: The tracking error w.r.t. time step in
Dubins car path tracking environment.

Our framework is general since it can be directly
applied to learn controllers guided by other cer-
tificates in environments with unknown dynam-
ics. For example, Control Contraction Metrics
(CCMs) are differential analogs of Lyapunov
functions (proving stability in the tangent state
space). A metric is called CCM if it satisfies a list
of conditions, and a valid CCM can guarantee the
convergence of tracking controllers. The similar-
ity between CCM and CLF suggests that track-
ing controllers can also be learned with a similar
framework. We change the learning CLF part
to learning CCM algorithms (Sun et al., 2021;
Chou et al., 2021), and use the same framework
to learn the local dynamics, a tracking controller, and a CCM to guide the exploration of the tracking
controller. We test this modification in a Dubins car path tracking environment. As shown in Figure 4,
our algorithm outperforms the baselines. We explain the details in Appendix E.

7. Conclusion

We propose a general learning framework, LYGE, for learning stabilizing controllers in high-
dimensional environments with unknown dynamics. LYGE iteratively fits the local dynamics to form
a trusted tunnel, and learns a control policy with a CLF to guide the exploration and expand the
trusted tunnel toward the goal. Upon convergence, the controller stabilizes the closed-loop system at
the goal point. We provide experimental results to demonstrate that LYGE performs comparably or
better than the baseline RL, IL, and neural certificate methods. We also demonstrate that the same
framework can be applied to learn other certificates in environments with unknown dynamics.

Our framework has a few limitations: we require a set of demonstrations for initialization in
high-dimensional systems, although they can be potentially imperfect. Without them, LYGE may
take a long time to expand the trusted tunnel to the goal. In addition, we need Lipschitz assumptions
for the dynamics to derive the theoretical results. If the dynamics do not satisfy the Lipschitz
assumptions, the learned CLF might be invalid even inside the trusted tunnel. Moreover, although we
observe the convergence of the loss terms in training on all our case studies, it is hard to guarantee that
the loss always converges on any system. Finally, if we desire a fully validated Lyapunov function,
we need to employ formal verification tools, and we provide a detailed discussion in Appendix D.
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