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Abstract
This paper studies the multi-agent coverage control (MAC) problem where agents must dynamically learn
an unknown density function while performing coverage tasks. Unlike many current theoretical frameworks
that concentrate solely on the regret occurring at specific targeted sensory locations, our approach additionally
considers the regret caused by transient behavior – the path from one location and another. We propose the
multi-agent coverage control with the doubling trick (MAC-DT) algorithm and demonstrate that it achieves
(approximated) regret of Õ(

√
T ) even when accounting for the transient behavior. Our result is also supported

by numerical experiments, showcasing that the proposed algorithm manages to match or even outperform the
baseline algorithms in simulation environments. We also show how our algorithm can be modified to handle
safety constraints and further implement the algorithm on a real-robotic testbed.
Keywords: Multi-agent coverage control, Gaussian Processes, Bayesian optimization, no-regret learning

1. Introduction

In multi-agent coverage control (MAC) problems, there is a group of agents collectively tasked with efficiently
exploring and covering an environment typically characterized by certain density functions. MAC problems
find a lot of applications such as sensor networks (Krause et al., 2006), search and rescue (Wasim et al., 2020),
underwater exploration (Karapetyan et al., 2018) and habitat monitoring (Mainwaring et al., 2002) etc. In the
extensive studies of the MAC problem, classical approaches to coverage control (Cortes et al., 2004; Cortés
and Bullo, 2005; Cortes et al., 2005; Lekien and Leonard, 2009; Hussein and Stipanovic, 2007; Bullo et al.,
2012; Durham et al., 2011) generally assume a priori knowledge of the density function and employ Lloyd’s
algorithm (Lloyd, 1982) to guarantee the convergence of agents to a local minimum of the coverage cost.

Recent investigations have expanded this paradigm to accommodate scenarios where the density function
is unknown. In such cases, agents must simultaneously conduct coverage tasks and learn the density function
dynamically. A prevalent approach involves modeling the density function as a Gaussian process (GP) and em-
ploying non-parametric learning through sensor measurements. In order to achieve good performance, agents
need to balance exploration and exploitation, collecting informative samples to learn the density function (ex-
ploration) while concurrently converging to optimal coverage locations (exploitation). In particular, a specific
subset of existing research focuses on the development of practical, adaptive, and distributed algorithms for
coverage control utilizing the GP model (Luo and Sycara, 2018; Luo et al., 2019; Choi et al., 2008; Kemna
et al., 2017; Nakamura et al., 2022). Despite their practical relevance, these endeavors lack a rigorous theo-
retical analysis for performance guarantees. An alternative strand of research, represented by (Carron et al.,
2015; Todescato et al., 2017), offers asymptotic guarantees of convergence to near-local optimal solutions, yet
the convergence rate is not studied. Recent contributions (Prajapat et al., 2022; Benevento et al., 2020; Santos
et al., 2021) have sought to address this void by proposing algorithms with convergence rate guarantees, partic-
ularly in the context of regret. It is noteworthy, however, that most papers only consider regret accumulated at
the targeted sensory locations that agents travel between while neglecting regrets along the path where agents
travel from one location to the next location. For applications that involve a physical moving sensor that can
not move to a new point instantaneously or quickly, regret along the paths may be substantial. This observa-
tion motivates us to design an algorithm for the MAC problem with rigorous regret guarantees that explicitly
account for the transient behavior.

* The first two authors contributed equally to this work.
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Our contribution: In this paper, we study the MAC problem under an unknown density function. We present
a novel algorithm, multi-agent coverage control with doubling trick (MAC-DT), demonstrating an Õ(

√
T ) re-

gret, even when accounting for transient behavior. The algorithm leverages the Upper Confidence Bound (UCB)
technique, wherein, during each episode, it computes the UCB of the reward map and assigns a specific sensory
location to each agent. Subsequently, each agent plans its path toward the designated location. The termination
condition for each episode is determined by the ‘doubling trick’ (detailed explanation in Algorithm 1). Our
research is closely aligned with the works of (Prajapat et al., 2022) and (Wei et al., 2021). Our proposed algo-
rithm bears resemblance to the MACOPT algorithm introduced by (Prajapat et al., 2022), employing the UCB
of the Gaussian Process to navigate the trade-off between exploration and exploitation. However, Prajapat et al.
(2022) do not consider transient behavior, while our algorithm incorporates this aspect by carefully designing
episodes using the doubling trick. Though Wei et al. (2021) addresses regret in the presence of transient behav-
ior, due to differences in problem settings and algorithmic design, they achieve a slightly inferior regret rate of
Õ(T 2/3). Further, the regret defined in (Wei et al., 2021) is with respect to a local-optimal solution, where our
(approximated-) regret is defined by the global-optimal solution. Our results are also supported by numerical
studies, suggesting that the MAC-DT algorithm can match or even outperform the aforementioned baseline
algorithms. Further, our algorithm can naturally be combined with safety considerations and operate in settings
with obstacles or safety constraints. Lastly, we also validate the algorithm on a physical robotic testbed with
three quadrotors covering an area.

Due to space limit, we defer some of the auxiliary proofs and numerical details into the online version of
the paper (Zhang et al., 2024).

Other related works In the setting where the density function is known, beyond Lloyd’s algorithm-based
approaches, there are alternative methods leveraging submodularity (Krause and Guestrin, 2011; Nemhauser
et al., 1978; Feige, 1998) to address the MAC problem (Ramaswamy and Marden, 2016; Sun et al., 2017).
In scenarios where the density function is unknown, various papers (Schwager et al., 2009, 2015) explore
parametric estimation as an alternative to GP modeling. These algorithms model the function as a linear
combination of basis functions, aiming to learn the weights associated with each basis function. Further-
more, alternative strategies (Davison et al., 2014; Choi and Horowitz, 2010) take a distinctive route by not
involving the identification of the unknown probability density function. Instead, they solely rely on ran-
dom samples from the environment to determine the agents’ coverage locations. Apart from traditional al-
gorithmic approaches to coverage control, recent studies have also delved into the application of reinforce-
ment learning techniques (Faryadi and Mohammadpour Velni, 2021; Din et al., 2022; Battocletti et al., 2021),

Figure 1: Multi-agent Coverage Control.

which incorporates the power of learning and adaptation into the field.

2. Problem Setup and Preliminaries
2.1. Multi-agent Coverage Control
Consider the MAC problem on a connected directed graph G = {V,E},
where V are the vertices of the graph and E are the edges. The density
function/reward map is given by w : V → R+, where each vertex v ∈ V
is associated with a reward w(v) ≥ 0. For notational simplicity we also use
w(S) to denote the entrywise function evaluation on the grid subset S ⊆ V .
We use the notation E(v) ⊆ E to denote the set of edges whose source ver-
tex is v. It is also assumed that the graph is connected and with diameter D.
There are N agents/robots located on the vertices of the graph and at each
time step t agent i chooses an action ai,t from the edge set E(vi,t), where vi,t is agent i’s location at time t,
and then transit to the end vertex of ai,t. We assume that when located at vertex v, agent i can cover a certain
surrounding area of its current location, which is denoted as si(v) ⊆ V . For example, si(v) can be just the
vertex v that agent i is at, or a κ-hop neighborhood area of v. Also note that agents may have different cover-
ing ability, that is, two different agent i, j may have different si(v) and sj(v) even at the same location. For
simplicity, we denote si,t := si(vi,t). We also use st := ∪N

i=1si,t to denote the total area covered by all agents.
It is assumed that at every location v each agent’s covering area is smaller than size K, i.e. |si(v)| ≤ K for

2
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all v ∈ V . At each time step, each agent could select one vertex veval
i,t ∈ si,t and observe a noisy reward value

which is a random variable Y (veval
i,t ) := w(veval

i,t ) + ϵ, where ϵ ∼ N (0, σ2) is some Gaussian noise. We also
denote seval

t := ∪N
i=1v

eval
i,t . For vertex v, nv(t) denotes the number of times that vertex v has been sampled (i.e.

chosen as the evaluation point) until time t, i.e. nv(t) =
∑t

τ=1 1{v ∈ seval
τ }.

At time t, the total covered reward is given by ∥w(st)∥1 :=
∑

v∈st w(v), and the objective is to cover as
much reward as possible. The optimal coverage value is denoted as s⋆:= argmaxs=∪N

i=1si(vi),vi∈V
∥w(s)∥1. For

an algorithm Alg that plans the path vi,t(Alg) of the agents, we define the regret of the algorithm as

R(Alg, T, w) := T∥w(s⋆)∥1 −
∑T

t=1 ∥w(st(Alg))∥1. (1)

We also define the α-approximated regret as

Rα(Alg, T, w) := αT∥w(s⋆)∥1 −
∑T

t=1 ∥w(st(Alg))∥1. (2)

Compared with the regret definition in (Prajapat et al., 2022) which considers regret accumulated only at the tar-
geted sensory locations, we account for the regret associated with the path from one target location to the next.
In many energy-constrained exploration tasks, the regret during the transient phase is important and should not
be neglected. For instance, Mars exploration rovers aim to maximize coverage within a limited life-cycle trav-
eling distance; agricultural spray drones must optimize coverage in unsprayed areas within constrained flight
time. In both cases, regret during the transient phase demands careful consideration in the algorithmic design.

2.2. Gaussian Processes
Some assumptions on the reward map w are required to guarantee no-regret. Here we assume that the reward
distribution w is sampled from a Gaussian Process (GP) GP(µ, κ),1 which is specified by a mean function
µ : V → R and a covariance function κ : V × V → R. It represents a collection of dependent random
variables, one for each v ∈ V , every finite subset s ⊆ V of which is multivariate Gaussian distribution with
mean µ(s) and variance κ(s, s). Here for subsets s, s′ ⊆ V , the term κ(s, s′) represents a matrix of size |s|×|s′|,
where the ij-th entry [κ(s, s′)]i,j = κ(si, s

′
j) (si is the i-th entry of s). For noisy samples Y (s) = w(s) + ϵ at

vertices s = {v1, v2, . . . , vk} with i.i.d. Gaussian noice ϵ ∼ N (0, σ2I) (without causing notational confusion
we also represent Y (s) as a |s| dimensional vector where [Y (s)]i = Y (si)), the posterior distribution over the
reward map w is a GP again, i.e. w| {s, Y (s)} ∼ GP(µ′, κ′), with mean µ′ and covariance κ′ given by:

µ′(v) = µ(v) + κ(v, s)(κ(s, s) + σ2I)−1Y (s), κ′(u, v) = κ(u, v)− κ(u, s)(κ(s, s) + σ2I)−1κ(s, v) (3)

A more comprehensive discussion of topics related to GP can be found in (Williams and Rasmussen, 2006).

3. Algorithm Design

We present a detailed description of the multi-agent coverage control with the doubling trick (MAC-DT, Algo-
rithm 1), which can be decomposed into the following steps:

Upper Confidence Bound Construction. Similar to the standard UCB algorithm for Bayesian optimization
with GP (c.f. (Srinivas et al., 2009)), we keep track of a posterior estimate of the GP and use it to construct a
UCB for the reward map w at each episode. At the start of each episode e, the mean function µ(e−1) and the
covariance κ(e−1) is updated based on the posterior estimation, and the UCB for the reward map is calculated by
w

(e)
UCB := µ(e−1)+β(e)σ(e−1), where σ(e−1) is the standard deviation function, i.e. σ(e−1)(v) :=

√
κ(e−1)(v, v)

and β(e) is some pre-specified constant.

1. Our assumption w ≥ 0 does not conflict with the Gaussian Process (GP) assumption. This is because we have the flexibility to
shift the function sampled from the GP, ensuring non-negativity while preserving the same regret.
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Destination Selection with Oracle In each episode e, given the UCB reward map w
(e)
UCB, the algorithm

computes the destination of each agent using an oracle algorithm Oracle which takes a given reward map as
its input and outputs the destination of each agent {v1,dest, v2,dest, . . . , vN,dest} = Oracle(w

(e)
UCB). The most

ideal Oracle would solve the optimal max-coverage problem of the given reward map w, i.e. Oracle(w) =
argmaxs=∪N

i=1si(vi),vi∈V
∥w(s)∥1. However, the maximum coverage problem can be NP-hard (Feige, 1998).

Consequently, practical solutions frequently resort to approximation algorithms, such as greedy algorithms, to
provide an approximate solution. For this consideration, we introduce the α-approximated oracle:

Definition 1 (α-approximated oracle) An oracle algorithm Oracle is called an α-approximated oracle if
for every reward map w, the output of the oracle {v1,dest, v2,dest, . . . , vN,dest} = Oracle(w) satisfies:

∥w(sdest)∥1 ≥ α∥w(s⋆)∥1, where sdest = ∪N
i=1si(vi,dest), s⋆ = argmaxs=∪N

i=1si(vi),vi∈V
∥w(s)∥1

Example 1 (The greedy oracle) It can be shown that the greedy algorithm oracle is a (1− 1
e )-approximated

oracle (Nemhauser et al., 1978; Krause and Golovin, 2014; Prajapat et al., 2022). The Oracle is defined as
v1,dest = argmaxv w(s1(v)), vi,dest = argmaxv w(si(v)\ ∪i−1

j=1 sj(vj,dest)), i ≥ 2,

where A\B denotes the relative complement of B in A.

Path Planning and Sample Selection Given the destination output by the Oracle, each agent plans its path
on the graph to reach its destination. Along the path, at each time step t agents selects its evaluation point veval

i,t

such that it is the most uncertain point within its covering region si,t, i.e. veval
i,t = argmaxv∈si,t σ

(e−1)(v).

The Doubling Trick As stated in Line 6 of the algorithm, the termination condition is given by the ‘doubling
trick’, i.e., at least one of the vertex’s samples doubles. If an agent reaches its destination before the episode
terminates, it stays at the destination and keeps collecting samples until the end of the episode. If the termination
condition is triggered before the agent reaches its target, it promptly terminates its current path and transitions
to the next episode.It is worth noting that the doubling trick serves as a major difference between our algorithm
and MACOPT in (Prajapat et al., 2022), which plays an important role in proving sublinear regret considering
transient behavior. Similar techniques have also been used for regret analysis in different settings (Zhang et al.,
2023; Auer et al., 2008). Numerical simulations also suggest that the doubling trick can improve and stabilize
the coverage performance, especially in the case where the observation is noisy and high reward locations are
relatively scattered.

Remark 1 It’s essential to note that MAC-DT maintains a partial decentralization approach. Specifically, it
requires a centralized coordinator responsible for storing and broadcasting critical global information, such
as the UCB of the reward map w

(e)
UCB and nv(t)’s, to each individual agent.

4. Main Result

We first define the following variable which takes the same definition as in (Srinivas et al., 2009):
γN := maxs⊆V,|s|=N I(Y (s);w), (4)

where I(X;Y ) denotes the mutual information (c.f. (MacKay, 2003)) between random variables X and Y .
This quantity is a frequently employed term in the context of proving regret bounds for Bayesian type algo-
rithms based on GPs (e.g. (Srinivas et al., 2009; Prajapat et al., 2022)). Now we state the main theorem:

Theorem 1 For Algorithm 1 with Oracle as an α-approximated oracle, by setting β(e)=
√

2 log(|V |π2e2/6δ),
with probability at least 1− δ, the α-approximated regret of Algorithm 1 can be bounded by

Rα(Alg, T, w) ≤ 8σ
√
γ2NTK|V |T log (2|V |π2T 2/3δ)︸ ︷︷ ︸

Part I

+nDK|V |maxv(µ(v) + β(1)
√
κ(v, v))(log T + 2) + 2|V |

√
2NK log (2|V |π2T 2/3δ)maxv κ(v, v)︸ ︷︷ ︸

Part II

where the term γ2NT is defined as in (4).
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Algorithm 1 Multi-agent Coverage Control with the Doubling Trick (MAC-DT)

Require: An Oracle algorithm Oracle that calculates agents’ destination given a reward map. We also denote
µ(0) = µ, κ(0) = κ, σ(0)(v) =

√
κ(v, v). We use te to represent the total timestep when episode e starts.

1: for episode e = 1, 2, ... do
2: Calculate the upper confidence bound w

(e)
UCB = µ(e−1) + β(e)σ(e−1)

3: Set the destination using the oracle {v1,dest, v2,dest, . . . , vN,dest} = Oracle(w
(e)
UCB).

4: Path Planning: Compute the shortest path on the graph G from current location vi,te to vi,dest.
5: Collect samples: Agents follow their planned paths and at time step t, each agent i sets the evalua-

tion point as veval
i,t = argmaxv∈si,t σ

(e−1)(v), and collect sample Y (veval
i,t ). When an agent reaches its

destination, it stays at the destination and keeps collecting samples until the episode terminates.
6: Episode termination criteria-the doubling trick: episode terminates at a minimum t such that there exists

v ∈ V , such that nv(t) ≥ max{2nv(te − 1), 1}, i.e. when at least one of the vertex’s samples doubles.
7: Update the mean value µ(e) and κ(e) covariance of GP according to (3) such that w

∣∣D ∼ GP(µ(e), κ(e)),

where D = {seval
te , Y (seval

te ), seval
te−1, Y (seval

te−1), . . . , s
eval
1 , Y (seval

1 )}. Set σ(e)(v) =
√

κ(e)(v, v)
8: end for

Remark 2 The regret consists of a term (Part II) that scales with O(log(T )) and a term that scales with
Õ(γ2NTK|V |T ) (Part I). We mainly focus our discussion on Part I. Note that the term γ2NT captures the
largest possible mutual information between the samples with size 2NT and the true reward map. This quantity
generally grows sublinearly with T for commonly used kernels (Srinivas et al., 2009), e.g. for the squared-
exponential kernel in the 2-dimension case, γ2NT ∼ O((log(2NT ))3), which leads to a final regret of order
Õ(

√
T ). We would also like to compare our result with the regret bound in (Prajapat et al., 2022), where they

bound the regret without accounting for the transition behavior as Õ(γNTNK|V |T ). Note that our Part I
managed to remove the dependency on

√
N . This major difference arises from a more careful analysis on the

bound of the maximum eigenvalue of the covariance matrix (see Remark 3 in the Appendix). It is worth noting
that the application of our derived bound to the analysis in (Prajapat et al., 2022) has the potential to enhance
their regret bound by eliminating the dependency on

√
N as well.

4.1. Proof Sketches

This section provides a brief proof sketch for Theorem 1, which can be decomposed into three major steps. The
first step, regret decomposition, breaks down the regret into two terms, namely the ‘destination switch’ and the
‘price of optimism’. Then the second and third steps bound these two terms respectively.

Regret Decomposition We define the clean event to be µ(e−1)−β(e)σ(e−1) ≤ w ≤= µ(e−1)+β(e)σ(e−1) =

w
(e)
UCB (for all v ∈ V ), i.e., the true reward map lies within the confidence bound created by µ(e−1)±β(e)σ(e−1).

By carefully selecting the parameters β(e), it can be demonstrated that the algorithm will consistently fall within
the clean event with a high probability. Thus, for the proof sketch, we will focus solely on the clean event. For
simplicity, we also first consider T where T is the last time step of episode E, i.e., T = tE+1 − 1.

Rα(Alg, T, w) = αT∥w(s⋆)∥1 − E
∑T

t=1 ∥w(st))∥1 = E
∑E

e=1

∑t=te+1−1
t=te [α∥w(s⋆)∥1 − ∥w(st))∥1]

= E
∑E

e=1

∑t=te+1−1
t=te [α∥w(s⋆)∥1 − ∥w(e)

UCB(st)∥1] + E
∑E

e=1

∑t=te+1−1
t=te [∥w(e)

UCB(st)∥1 − ∥w(st)∥1]
≤E

∑E
e=1

∑t=te+1−1
t=te [α∥w(s⋆)∥1−∥w(e)

UCB(st)∥1]+E
∑E

e=1

∑t=te+1−1
t=te [∥w(e)

UCB(st)∥1−∥[µ(e−1)−β(e)σ(e−1)](st)∥1]
= E

∑E
e=1

∑t=te+1−1
t=te [α∥w(s⋆)∥1 − ∥w(e)

UCB(st)∥1]︸ ︷︷ ︸
Destination Switch

+E
∑E

e=1 2β
(e)

∑t=te+1−1
t=te ∥σ(e−1)(st)∥1︸ ︷︷ ︸

Price of Optimism

. (5)

Here the term ‘destination switch’ measures the regret from visiting sub-optimal nodes during transit to the
destination in each episode. The term ‘price of optimism’ captures the regret from using the UCB as a surrogate
for the actual rewards. We now bound each term separately.
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Bound the destination switch The bound for the destination switch is relatively easy and straight forward:

Lemma 2 E
∑E

e=1

∑t=te+1−1
t=te [α∥w(s⋆)∥1−∥w(e)

UCB(st)∥1]︸ ︷︷ ︸
Destination Switch

≤αnDK|V |maxv(µ(v)+β
(1)
√

κ(v, v))(log(tE+1−1)+1).

Proof When agents haven’t reached the destinations, α∥w(s⋆)∥1−∥w(e)
UCB(st)∥1 ≤ α∥w(s⋆)∥1 ≤ NKmaxv w(v).

Since w(v)≤µ(0)(v)+β(1)σ(0)(v)≤maxv(µ(v)+β
(1)

√
κ(v, v)) ⇒ α∥w(s⋆)∥1−∥w(e)

UCB(st)∥1≤NKmaxv(µ(v)+

β(1)
√
κ(v, v)). When the agents have reached the destination, we have that st = sdest = Oracle(w

(e)
UCB),

and thus ∥w(e)
UCB(st)∥1 ≥ αmaxs ∥w(e)

UCB(s)∥1 ≥ α∥w(s⋆)∥1. Since the diameter of graph G is D, it takes the
agents at least D steps to reach the destination, thus for each episode, we have that

∑t=te+1−1
t=te [α∥w(s⋆)∥1 −

∥w(e)
UCB(st)∥1] ≤ nDKmaxv(µ(v) + β(1)

√
κ(v, v)). Then from Lemma 12 in Appendix D in (Zhang et al.,

2024), the number of episode E can be bounded by E ≤ |V | log(tE+1−1)+1, the destination switch can then
be bounded by EαnDKE ≤ αnDK|V |maxv(µ(v) + β(1)

√
κ(v, v))(log(tE+1 − 1) + 1).

Bound the price of optimism The bound for price of optimism is technically more involved, thus we defer
the full proof to Appendix A. The key step is to bound ∥σ(e−1)(seval

t )∥22 using the mutual information of the
function evaluations and the true reward map, i.e., I(Y (seval

1:tE+1−1);w) as stated in the following lemma.

Lemma 3 (Informal, formal statement see Lemma 8)
∑E

e=1

∑te+1−1
t=te ∥σ(e−1)(seval

t )∥22≤ 2σ2

log 2I(Y (seval
1:tE+1−1);w).

Then using Cauchy schwartz inequality we can get the bound:

Lemma 4 E
∑E

e=12β
(e)

∑t=te+1−1
t=te ∥σ(e−1)(st)∥1︸ ︷︷ ︸

Price of Optimism

≤4σβ(E)
√
K|V |(tE+1−1)γN(tE+1−1)+2β

(E)|V |
√

NKmaxvκ(v,v).

5. Experimental Results

This section evaluates our algorithm on multiple numerical simulation tasks and a physical multi-robot coverage
task. We also present a variant of Algorithm 1 for the multi-agent coverage with safety considerations.

5.1. Numerical Simulations

Figure 2: Grids environment setup.

Environment setup. We discretize the environments into grids where each
agent can cover its 1-hop neighborhood as shown in Figure 2. We evaluate
our algorithm, MAC-DT, with different reward maps, kernel hyperparame-
ters, and observation noises at different scales. Figure 3 shows the results
with noise variance 0.1, the first three figures show results with three agents
in 8×8 grids with different reward maps, and the last two show 6 and 10
agents in 10×10 grids. The reward maps (listed in titles in Figure 3) are
denoted as wNormal, wUniform, and wSparse. The first two mean rewards are
sampled from Gaussian or uniform distributions, and the last one means only a small number of grids have
reward 1 and others all have reward 0. We use Gaussian kernels for the GPs. The complete results with 6 and
10 agents, more noise levels, and different kernel hyperparameters can be found in E.2 in Zhang et al. (2024).

We compare our algorithm with two baselines. (i) Shortest path planning with MacOpt (Prajapat et al.,
2022) named as MacOpt-SP. The only difference between MacOpt-SP and proposed algorithm is the
episode termination criteria in line 6 in Algorithm 1. Instead of the doubling trick, MacOpt-SP terminates
episodes when all the agents reach their destinations. (ii) A modification of Voronoi partition coverage control
from Wei et al. (2021) named Voronoi. Modifications can be found in Appendix E.2 in (Zhang et al., 2024).
Results in Figure 3 show that the regret curves of the MAC-DT stay level after a few iterations under all re-
wards and kernel settings, which means the proposed algorithm quickly finds the no-regret maximal coverage.
MacOpt-SP is not efficient since its regret increases faster than MAC-DT, which shows the doubling trick
greatly improves the performance. The regret of the Voronoi partition quickly increases in the initial stages
since it has an initial sampling stage to reduce the uncertainty globally, which is inefficient when considering
the transient behaviors.
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Figure 3: Regret R(Alg, T, w) with respect to T with different algorithm Alg rewards w. Lines and shaded regions are mean and confidential intervals
over 10 randomly generated reward maps.

5.2. Safety Considerations
Example Safe Env

Obstacles
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Figure 4: Example safe exploration environment.

Safety considerations are common in real-world multi-robot coverage
tasks. For example, there are usually obstacles in the environment (like
grids painted red in Figure 4) that agents should avoid. We show that
our methods could be combined with safety considerations in this sec-
tion. We define the set of safe nodes VSafe = {v ∈ V |g(s) ≥ 0} by a
safety function g :V →R. The agents should travel within the subgraph
containing only nodes in VSafe. We assume there is also uncertainty in
the safety function g and agents need to learn from the noisy samples.
Similar to the rewards w(·), we maintain a GP for safety function g whose posterior mean and variance at
episode e are denoted as µ(e)

g (·) and σ
(e)
g (·).

0 50 100 150 200
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R
eg

re
t

(×
10

3
)

Algorithm

SafeOpt-SP

SafeMac-SP

Mac-DT-Safe

MAC-DT-SafelyExplore

Figure 5: Regret of safe planning algorithm.

We made two modifications to Algorithm 1 to consider safety. (i)
Changing the oracle and path planning to ensure safety. We use a safe
oracle to set the destinations in Line 3 following the SafeMac algorithm
in Prajapat et al. (2022) that ensures the destinations are safe. The oracle
also maintains an estimation of the safe set at episode e denoted by V̂

(e)
Safe

and learns to gradually expand it. Then in Line 4, the shortest path
planning is restricted within the estimated safe set V̂ (e)

Safe. (ii) Assigning
edge weights during shortest path planning in Line 4 to encourage safe
set expansion. The edges are weighted by the mean value of posterior
safety value µ(e)

g (·). In this way, the agents are prone to travel and collect
samples on less safe nodes. These less safe nodes usually lie on the
boundaries of the estimated safe set so the agents have more useful samples to expand the safe sets. We name
the safety algorithm as MAC-DT-SafelyExplore. The algorithm block and details about the safe oracle
can be found in Appendix E.3.1 in Zhang et al. (2024).

We compare the MAC-DT-SafelyExplore with three baselines: (a) the ablation study of weighted
shortest path planning, which means only adding the safe oracle and restricted path planning to Algorithm
1. The algorithm is named as Mac-DT-Safe; (b) Adding shortest path planning for transient behavior con-
siderations to SafeOpt in Sui et al. (2015) and SafeMaC in Prajapat et al. (2022), named SafeOpt-SP and
SafeMac-SP. Both two algorithms did not consider transient behaviors originally.

The regret is shown in Figure 5. Results show that MAC-DT-SafelyExplore outperforms all baselines
and achieves no-regret coverage quickly after about 50 samples. All the baselines cannot achieve no-regret
coverage within 200 samples. The comparison with Mac-DT-Safe shows that the proposed weighted path
planning is effective in encouraging safe set expansion. The results also suggest that it is important to consider
the transient phase if the problem has safety considerations.

5.3. Real World Experiments

7
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Figure 6: Real-world experiment setup. The pro-
jected contour plot indicates the node rewards, and
the sensory range and sensory points.

We set up a physical multi-drone coverage testbed as shown in Fig-
ure 6. We fetched the real-time rain data from the OpenWeatherMap
and used drones to cover the area with the heaviest rains. We dis-
cretize the region into a 13×10 grid. Then we project the real-world
weather data on the ground in our lab, where each 17cm square grid
represents 1 km2 in the real world. We use three Crazyflie 2.1 and
each can cover the 1-hop neighborhood in the grids. The planning
(including collision avoidance) and control are computed onboard the
Crazyflie while receiving virtual source signals. The terminal condi-
tion is achieving optimal coverage. The experiment video is shown in
https://youtu.be/ImgSS5QyhT0. The three drones find the optimal coverage with only 19 steps and
57 environment samples in total.

6. Conclusion and Future Works
In this paper, we propose the MAC-DT algorithm to solve the MAC problem, which achieves (approximated)
regret of Õ(

√
T ) even when accounting for the transient behavior. Our results are also supported by numerical

studies in multiple settings, showcasing the algorithm’s effectiveness and its adeptness in accommodating safety
constraints. Our result admittedly has its limitations. First of all, MAC-DT is not fully decentralized. Secondly,
although the simulation results demonstrate that our methods could naturally be combined with safety con-
siderations, our current theoretical analysis doesn’t consider safety issues. To address these shortcomings, we
envision our future work focusing on the design of decentralized algorithms that not only maintain efficiency
but also incorporate robust safety guarantees.

Appendix
Notations: We first define some notations that will be useful for the proof. Recall the definition of nv(t) which
denotes the number of times that vertex v has been sampled until time t. We define n

(e)
v := nv(te+1 − 1), i.e.,

n
(e)
v is the number of times that grid u is being sampled/covered from t = 1 to the end of episode e. Further,

we denote c
(e)
v := n

(e)
v − n

(e−1)
v as the number of times that grid v is being sampled/covered within episode e.

We define the following matrix K
(e)
s := κ(e)(s, s), where s ⊆ V is a subset of V . Note that for s we allow

repetition, i.e. v ∈ V can appear multiple times in s. Additionally, we use st:τ ⊆ V to denote the covering
profile from time t to τ (allows repetition).

Appendix A. Proof of Lemma 3 and Lemma 4

We first state some important lemmas that will be used in the proofs.

Lemma 5 (Quantify the information gain) I(Y (seval
1:te+1−1);w) =

∑e
e′=1

1
2 log

(
det

(
I + σ−2K

(e′−1)

seval
te′ :te′+1−1

))
Proof We use H(X) to denote the entropy of a random variable X . From the definition of mutual information
and properties of entropy function (c.f. (MacKay, 2003)), we have

I(Y (seval
1:te+1−1);w) = H(Y (seval

1:te+1−1))−H(Y (seval
1:te+1−1)|w)

= H(Y (seval
1:te−1)) +H(Y (seval

te:te+1−1)|Y (seval
1:te−1))−

(
H(Y (seval

1:te−1)|w) +H(Y (seval
te:te+1−1)|w)

)
= I(Y (seval

1:te−1)|w) +H(Y (seval
te:te+1−1)|Y (seval

1:te−1))−H(Y (seval
te:te+1−1)|w)

Further, H(Y (seval
te:te+1−1)|Y (seval

1:te−1)) =
1
2 log

(
det

(
2πe

(
σ2I +K

(e−1)

seval
te:te+1−1

)))
= 1

2 log

(
2πe(σ)2

∑te+1−1

t=te
|seval

t |
)
+ 1

2 log

(
det

(
I + σ−2K

(e−1)

seval
te:te+1−1

))
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Additionally, given that H(Y (seval
te:te+1−1)|w) = 1

2 log

(
2πe(σ)2

∑te+1−1

t=te
|seval

t |
)

, we have

I(Y (seval
1:te+1−1);w) = I(Y (seval

1:te−1)|w) + 1
2 log

(
det

(
I + σ−2K

(e−1)

seval
te:te+1−1

))
.

Applying this equality iteratively completes the proof.

Lemma 6 If for all v ∈ ste+1−1, n(e−1)
v ≥ 1, then λmax

(
K

(e−1)
ste:te+1−1

)
≤ σ2.

otherwise, there exists at least one v ∈ ste+1−1, such that n(e−1)
v = 0, then λmax

(
K

(e−1)
ste:te+1−2

)
≤ σ2

Remark 3 Lemma 6 serves as one of the technical novelty of our work. Notably, compared with (Prajapat
et al., 2022) where they directly bound the maximum value of the covariance matrix by the trace of the matrix,
i.e., λmax

(
K

(e−1)
ste:te+1−1

)
≤ trace

(
K

(e−1)
ste:te+1−1

)
∼ O(N), we bound the maximum eigenvalue in a more careful

manner and thus eliminates the dependency on the number of agent N , thereby removing the
√
N dependency

in our regret bound. The proof is technically involved and is deferred to Appendix C in (Zhang et al., 2024).

Lemma 7 If ∀v∈ste+1−1, n(e−1)
v ≥1, then σ2

log 2 log

(
det

(
I+σ−2K

(e−1)

seval
te:te+1−1

))
≥ ∑te+1−1

t=te ∥σ(e−1)(seval
t )∥22,

otherwise, σ2

log 2 log

(
det

(
I + σ−2K

(e−1)

seval
te:te+1−1

))
≥ ∑te+1−2

t=te ∥σ(e−1)(seval
t )∥22.

Proof For the first case, from Lemma 6 we have that λ ≤ σ2 for all λ ∈ λ

(
K

(e−1)

seval
te:te+1−1

)
, then

log

(
det

(
I + σ−2K

(e−1)

seval
te:te+1−1

))
=

∑
λ∈λ

(
K

(e−1)

seval
te:te+1−1

) log
(
det

(
I + σ−2λ

))
≥ σ−2 log 2

∑E
e=1

∑
λ∈λ

(
K

(e−1)

seval
te:te+1−1

) λ (λ ≤ σ2 by Lemma 6 and that log(1 + x) ≥ (log 2)x, 0 ≤ x ≤ 1)

= σ−2 log 2
∑E

e=1 trace
(
K

(e−1)

seval
te:te+1−1

)
= σ−2 log 2

∑E
e=1

∑te+1−1
t=te ∥σ(e−1)(seval

t )∥22.

For the second case, i.e., there exists at least one v ∈ ste+1−1, such that n(e−1)
v = 0, we first argue that

for all v ∈ ste:te+1−2, n(e−1)
v ≥ 1. This can be easily verified by contradiction. If there exists at least one

v ∈ ste:te+1−2 such that nv = 0, then given the doubling trick in the algorithm, the episode should terminate
at the time step when v is sampled, which contradicts the fact that it terminates at te+1 − 1. Then from Lemma

6 we have that λ ≤ σ2 for all λ ∈ λ

(
K

(e−1)

seval
te:te+1−2

)
, and similarly, log

(
det

(
I + σ−2K

(e−1)

seval
te:te+1−2

))
≥

σ−2 log 2
∑E

e=1

∑te+1−2
t=te ∥σ(e−1)(seval

t )∥22.
Since K

(e−1)

seval
te:te+1−2

is a principal submatrix of K(e−1)

seval
te:te+1−1

, from Lemma 14 in (Zhang et al., 2024), we have that

log

(
det

(
I+σ−2K

(e−1)

seval
te:te+1−1

))
≥ log

(
det

(
I+σ−2K

(e−1)

seval
te:te+1−2

))
≥σ−2log 2

∑te+1−2
t=te ∥σ(e−1)(seval

t )∥22.

We are now ready to state and prove the formal version of Lemma 3.

Lemma 8 (Formal version of Lemma 3)∑E
e=1

(∑t=te+1−2
t=te ∥σ(e−1)(seval

t )∥22 + 1{∀v∈ste+1−1, n
(e−1)
v ≥1}∥σ(e−1)(seval

t )∥22
)
≤ 2σ2

log 2I(Y (seval
1:tE+1−1);w)
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Proof [Proof of Lemma 8] From Lemma 5 and 7 we have

I(Y (seval
1:tE+1−1);w) =

∑E
e=1

1
2 log

(
det

(
I + σ−2K

(e−1)

seval
te:te+1−1

))
≥ σ−2 log 2

2

∑E
e=1

(∑t=te+1−2
t=te ∥σ(e−1)(seval

t )∥22 + 1{∀v ∈ ste+1−1, n
(e−1)
v ≥ 1}∥σ(e−1)(seval

t )∥22
)
.

Proof [Proof of Lemma 4] From Cauchy Schwarz inequality and that β(e+1) ≥ β(e),(
E
∑E

e=1 2β
(e)

∑t=te+1−1
t=te ∥σ(e−1)(st)∥1

)2
≤E4(β(E))2

(∑E
e=1

∑t=te+1−1
t=te |st|

)(∑E
e=1

∑t=te+1−1
t=te ∥σ(e−1)(st)∥22

)
≤ E4(β(E))2|V |(tE+1 − 1)

K
∑E

e=1

∑t=te+1−1
t=te ∥σ(e−1)(seval

t )∥22︸ ︷︷ ︸
Part A


Since

Part A=
∑E

e=1

(∑t=te+1−2
t=te ∥σ(e−1)(seval

t )∥22+1{∀v∈ste+1−1, n
(e−1)
v ≥1}∥σ(e−1)(seval

t )∥22
)

+
∑E

e=1

(
1{∃v ∈ seval

te+1−1, n
(e−1)
v = 0}∥σ(e−1)(seval

t )∥22
)
≤ 2σ2

log 2I(Y (seval
1:tE+1−1);w) +N |V |maxv∈V κ(v, v)

where the last inequality comes from Lemma 8 and the fact that σ(0)(v) = maxv∈V
√

κ(v, v). Thus

E
∑E

e=12β
(e)

∑t=te+1−1
t=te ∥σ(e−1)(st)∥1≤2β(E)

√
K|V |(tE+1−1)

√
2σ2

log 2I(Y (seval
1:tE+1−1);w) +N |V |maxvκ(v, v)

≤4σβ(E)
√

K|V |(tE+1−1)γN(tE+1−1) + 2β(E)|V |
√
nKmaxvκ(v, v)

Appendix B. Proof of Theorem 1

Before proving the theorem, we first state the following lemma that suggests that with probability at least 1−δ,
the algorithm will operate on the ‘clean events’:

Lemma 9 (Lemma 5.1 in (Srinivas et al., 2009)) By setting β(e) =
√
2 log (|V |π2e2/6δ), then∣∣w(v)− µ(e−1)(v)

∣∣ ≤ β(e)σ(e−1)(v), ∀v ∈ V,∀e = 1, 2, . . . , holds with probability at least 1− δ.

Proof [Proof of Theorem 1] We set E to be such that tE < T ≤ tE+1 − 1. From Lemma 9 and (5), we have
that by setting β(e) =

√
2 log (|V |π2e2/6δ), then with probability 1− δ

Rα(Alg, T, w) ≤ EtE<T≤tE+1−1R
α(Alg, tE+1 − 1, w)

≤ E
∑E

e=1

∑t=te+1−1
t=te [α∥w(s⋆)∥1 − ∥w(e)

UCB(st)∥1]︸ ︷︷ ︸
Destination Switch

+E
∑E

e=1

∑t=te+1−1
t=te 2β(e)∥σ(e−1)(st)∥1]︸ ︷︷ ︸

Price of Optimism

(Lemma 2 and 4)
≤ EnDK|V |maxv(µ(v) + β(1)

√
κ(v, v))(log(tE+1−1)+1)

+ 4σβ(E)
√
K|V |(tE+1−1)γN(tE+1−1) + 2β(E)|V |

√
nKmaxv κ(v, v)

From the doubling trick, we know that tE+1 − 1 ≤ 2T . Thus

Rα(Alg, T, w) ≤ EnDK|V ||maxv(µ(v) + β(1)
√
κ(v, v))(log(2T ) + 1)

+ 4σβ(E)
√

2K|V |Tγ2nT + 2β(E)|V |
√
nKmaxv κ(v, v)

=8σ
√
γ2nTK|V |T log (2|V |π2T 2/3δ)

+nDK|V |maxv(µ(v) + β(1)
√

κ(v, v))(log T+2)+2|V |
√

2nK log (2|V |π2T 2/3δ)maxv κ(v,v),

which completes the proof.
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