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Abstract

Improving the generalization capabilities of current machine learning models and
improving interpretability are major goals of learning disentangled representa-
tions of time series. Notwithstanding this, methods for disentangling time series
have mainly focused on identifying independent factors of variation in the data.
This overlooks that the causal factors underlying real-world data are often not
statistically independent. In this paper, we investigate the problem of learning
disentangled representations for the electricity consumption of customers’ ap-
pliances in the context of Non-Intrusive Load Monitoring (NILM) (or energy
disaggregation), which allows users to understand and optimise their consumption
in order to reduce their carbon footprint. Our goal is to disentangle the role of
each attribute in total aggregated consumption. In contrast to existing methods
that assume attribute independence, we recognise correlations between attributes
in real-world time series. To meet this challenge, we use weakly supervised con-
trastive disentangling, facilitating the generalisation of the representation across
various correlated scenarios and new households. We show that Disentangling
the latent space using Contrastive On Variational inference (DISCOV) can enhance
the downstream task. Furthermore, we find that existing metrics to measure dis-
entanglement are inadequate for the specificity of time series data. To bridge
such a gap, an alignment time metric has been introduced to assess the quality of
disentanglement. We argue that ongoing efforts in the domain of NILM need to
rely on causal scenarios rather than solely on statistical independence. Code is
available at https://oublalkhalid.github.io/DISCOV/.

1 Introduction
Disentangled representation learning is crucial in various fields like computer vision, speech process-
ing, and natural language processing [6]. It aims to improve model performance by learning latent
disentangled representations and enhancing generalizability, robustness, and explainability. These
representations have latent units that respond to single attribute changes while remaining invariant to
others. Existing approaches assume independent attributes, but in real-world time series data, latent
attributes are often causally related. This necessitates a new framework for causal disentanglement.
For instance, the consumption profile of some appliances such as "Dishwasher" causes variations in
"Washing machine" showing the inadequacy of existing methods in capturing these non-independent
attributes [49, 47]. One of the most common frameworks for disentangled representation learning is
Variational Autoencoders (VAE) [18], a deep generative model trained to disentangle the underlying
explanatory attributes.

∗Correspondence to:khalid.oublal@polytechnique.edu. This work was honored with the Gatsby
Garant award, UniReps, NeurIPS 2023.
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Figure 1: Relaxing Independency via Contrastive. Latent attributes are causally correlated,
allows positive pairs (z := fϕ(x), z+ := fϕ(x

+)) to decrease their distance, while negative pairs
(z := fϕ(x), z− = fϕ(x

−)) increase it, and allows cases where unlikely combinations occur,
although forcing statically independence does not prohibit these cases.
Definition 1.1 (Disentangled Representation, [21, 30]). Disentangled representation should separate
the distinct, independent, and informative generative factors of variation in the data. Single latent
variables are sensitive to changes in single underlying generative factors while being relatively
invariant to changes in other factors.

Disentanglement via VAE can be achieved by a regularization term of the Kullback-Leibler divergence
between the posterior of the latent attributes and a standard Multivariate Gaussian prior [18], which
enforces the learned latent attribute to be as independent as possible. It is expected to recover the
latent variables if the observation in the real world is generated by countable independent attributes.
To further enhance the independence, various extensions of VAE consider minimizing the mutual
information among latent attributes [24]. [24] further encourage independence by reducing the total
correlation among attributes. Our focus in this work is a more general case, where the data does not
have specificities like domain frequency, or amplitude to analysis. Household energy consumption
disaggregation, also known as Non-Intrusive Load Monitoring (NILM), is a key application. Given
only the main consumption of a household, the energy disaggregation algorithm identifies which
appliances are operating. Such a capability is extremely vital given the growing interest in reducing
carbon footprints through user energy behavior, which poses a challenge to conventional algorithms.
Many households rely on past bills to adjust future energy use, underscoring the importance of
energy disaggregation algorithms. Further, the growing need for electricity flexibility originating
from the ever-increasing fraction of renewable energy in the electricity mix requires having a better
understanding of consumer uses. Recent work [9, 50, 39] hold promising results, yet persistent
challenges in generalisability and robustness stem from the correlations occurring within time series
a challenge that spans beyond the domain of time series in general. In this work, we tackle the energy
disaggregation problem from the perspective of disentanglement.

Our work is distinguished by instead of assuming independent factors we will only assume that
the support of the distribution factorizes. We explore how to design an efficient and disentangling
representation under correlated attributes using weak supervised contrastive learning. We perform
an ablation investigation to understand the impact of considering statistical independence versus
the case where we avoid it by giving the latent space a support factorization through weakly super-
vised contrastive learning. This addresses latent space misalignment between attributes, maintains
generalizability, and preserves disentanglement through the Pairwise similarity over z setting it
apart from methods relying on independence. More clearly, we break the concept of independence,
allowing any combination of individual attributes, to be possible, even if some combinations are
unlikely. Our experiments on three datasets of increasingly difficult correlation settings, show that
DISCOV improves robustness to attribute correlation and improves disentanglement (as measured by
SAP, DCI, RMIG,TDS) over state of the art (c.f. §4.3).

[1] Furthermore, we introduce an in-depth variational-based self-attention for extracting high se-
mantic representations from time series. An ablation study shows that VAE learns complex
representations;

[2] added attention improves further (in-depth model with L layer L = {4, 8, 16, 32} c.f. §5). This
approach retains dimension reduction while avoiding temporal locality.
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[3] Additionally, our proposed Time Disentanglement Metric (TDS) aligns more effectively with
decoder output compared to existing metrics. These findings strongly recommend its application
for time series representation in diverse fields, including finance and medical data like ECG.

2 Problem Formulation and Preliminaries
We consider a c-variate time series observed at times t = 1, . . . , τ . We denote by x ∈ Rc×τ the c× τ
resulting matrix with rows denoted by x1, . . . , xc, where each row can be seen as a univariate time
series. In the electric load application, we have c = 3, and x1 is the sampled active power which is
the one billed to customers, x2 is the sampled reactive power, and x3 is the sampled apparent power.
The goal of non-intrusive load monitoring (NILM) is to use x to express x1 as

x1 =

M∑
m=1

ym + ξ , (1)

where, for each m = 1, . . . ,M , ym ∈ Rτ represents the contribution of the m-th electric device
among the M ones identified in the household, and ξ ∈ Rτ denotes a residual noise. We further
denote by y the M × τ matrix with row-wise stacked devices’ contributions.

The NILM mapping x 7→ {y1 . . .yM}, where x =
∑

i yi is generally learnt from a training data set
Z = {(xn,yn)}Nn=1. VAEs rely on two main ingredients: 1) a generative model (pθ) based on a
latent variable, and a decoder gθ; 2) a variational family (qϕ), which approximates the conditional
density of the latent variable given the observed variable based on an encoder fϕ.

In a VAE, both (unknown) parameters θ and ϕ are learnt from the training data set Z = {xn}Nn=1. A
key idea for defining the goodness of fit part of the learning criterion is to rely the Evidence Lower
Bound (ELBO), which provides a lower bound on (and a proxy of) the log-likelihood

log pθ(x) ≥ Eqϕ(z|x) [log pθ(x|z)]− KL(qϕ(z|x) ∥ p(z)) , (2)

where we denoted the latent variable by z, defined as a (M + K) × d matrix and p denotes its
distribution. The use of ELBO goes back to traditional variational Bayes inference. An additional
feature of VAE’s is to define qϕ and pθ through an encoder/decoder pair of neural networks (fϕ, gθ).
A standard choice in a VAE is to rely on Gaussian distributions and, for instance, to set qϕ(z|x) =
N (z;µ(x, ϕ), σ2(x, ϕ)), where µ(x, ϕ) and σ2(x, ϕ) are the outputs of the encoder fϕ.

As discussed in Section 1, various alternatives features such as β/TC/Factor/DIP-VAE [13] have
been proposed, where a specific distribution p(z) is learned. The objective is to increase the dis-
entanglement of the latent variable z and align it with the corresponding attribute. However, as
previously stated, they assume statistical independence among attributes, leading to the assumption:
p(z) = p(z1) . . . p(zM+K). As we explained in 1, appliances are not usually used independently. In
[42], correlated attributes have been taken into account by replacing the factorization constraint with
support factorization via Hausdorff Factorized Support (HDF). To meet this criterion, they penalize
the Hausdorff pairwise estimate beteween support and its Cartesian product, based solely on the
distance without any alignment on the input. In this paper, we are investigating an alternate way to
achieve both alignment and disentanglement leading to a generalizable representation. To that end,
we draw on support factorization, and we replace HDF with a Pairwise Similarity penalty. In the next
section, we develop our proposed method based on weakly contrastive learning to have factorized
support, and we highlight how it provides an advantage both in terms of computation and latent
representation.

3 Proposed Methods: Disentangled as Factorization of Supports
Our primary aim is to disentangle the latent space by relaxing the assumption of independence. To
achieve this, we introduce a concrete training criterion that promotes a factorized support structure. We
begin by considering deterministic representations obtained through the encoder, where z := fϕ(x).
The criterion we apply enforces the factorized support condition on the aggregate distribution, denoted
as q̄ϕ(z) = Ex[fϕ(x)]. It is worth noting that q̄ϕ(z) shares a conceptual similarity with the aggregate
posterior qϕ(z) used in methods like TCVAE, although we focus on points generated by fϕ. To
align with our factorized support assumption concerning the ground truth, our goal is to promote the
factorization of the support for q̄ϕ(z), ensuring that Z is equivalent to the Cartesian product of the
support in each dimension, denoted as Z×. In practical scenarios, we often work with a finite set of
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data, denoted as {xi}Ni=1, and can only estimate the support based on a finite set of representations,
{fϕ(xi)}Ni=1. To encourage such a pairwise factorized support, we can minimize sliced/pairwise
contrastive with the additional benefit of keeping computation tractable when the dimension of latent
space is large. Specifically, we approximate the support as Z ≈ Z and the Cartesian product of each
dimension’s support as Z× ≈ Z:,1 × Z:,2 × . . .× Z:,M+K .

3.1 Support factorization via Weakly supervised Constrastive
Let us first formalize the contrastive learning setup. Each training triplet comprises a reference sample
x along with a positive (similar) sample x+ and negative (dissimilar) samples x−

1 , . . . ,x
−
N against

which it is to be contrasted. As introduced in the previous section, we assume that these samples
generate corresponding latent: z, z+, z−1 , . . . , z

−
N . The positive sample, denoted as z+, is generated

from a closely related dataset in which appliance m is activated. In contrast, the negative samples,
z−1 , . . . , z

−
N , are drawn from a dataset where appliance m remains inactive. This formalization of

contrastive learning ensures that positive samples are semantically similar and negatives are dissimilar.
Self-supervised contrastive learning is widely used in vision [22], where the loss is defined as:

Lself-contrastive = −
∑
i∈I

log
e(zi·zj(i)/τ)∑

a∈A(i) e
(zi·za/τ)

. (3)

where, zi ∈ Z , the · symbol denotes the inner (dot) product, τ ∈ R+ is a scalar temperature parameter,
and A(i) ≡ I \ {i}. The index i is called the anchor zi, index j(i) is refer to the positive z+i , and
the other 2(N − 1) indices ({k ∈ A(i) \ {j(i)}}) are called the negatives z−k ̸=i. We note that for
each anchor i, there is 1 positive pair and 2N − 2 negative pairs. The denominator has a total of
2N − 1 terms (the positives and negatives). In a multi-class scenario, disentangling and aligning data
encounters challenges when several samples belong to the same class, as we aim to match certain
pairs of data points (e.g., zi,j to z+i,j) and drive others away (i.e. zi,j from zk ̸=i,j or z+k ̸=i,j). Using
contrastive objective, we link the learned latent representation to ground-truth attributes using a
limited number of pair labels. This connection is facilitated by employing positive and negative
samples, as demonstrated in [53].

We adopt this by following these two rules: firstly, the loss should not rely on statically independent
attributes, mirroring realistic data scenarios; secondly, it should prioritize attribute alignment to
maintain sufficient information [55]. Under our relaxed hypothesis on statistical independence, [42]
introduces a concrete training criterion to promote factorized support. Specifically, they focus on
deterministic representations generated by the encoder, denoted as z = fϕ(x). They apply the
factorial support criterion to the combined distribution q̄ϕ(z) = Ex∼X[fϕ(x)]. This distribution
conceptually resembles the aggregate posterior qϕ(z) in models like TCVAE, but we generate points
through a deterministic mapping, rather than a stochastic one. To align with our factorized support
assumption regarding the ground truth, we aim to encourage the support of q̄ϕ(z) to factorize. In other
words, we want the support of q̄ϕ(z) and the Cartesian product of the support of each dimension,
Z(q̄ϕ(z1))× · · · × Z(q̄ϕ(zM+K)), to be identical. For simplicity, we use the notations Z and Z×

to represent Z(q̄ϕ(z)) and Z×(q̄ϕ(z)) respectively. To guide the learning process, it requires a
divergence or metric to measure the dissimilarity between Z and Z×. Since supports are sets, it
is natural to employ a set distance measure, such as the Hausdorff distance. In practical scenarios,
we work with a finite latent space {fϕ(x(i))}Ni=1 and aim to encourage pairwise factorized support,
with access to a batch of b inputs sequence denotes X yielding b× (M +K)d-dimensional latent
representations Z = fϕ(X), we estimate Hausdorff distances using sample-based approximations
to the support Z ≈ Z and the Cartesian product of each dimension support as, Z× ≈ Z:,1 × . . .×
Z:,M+K . They propose to ensure this constraint by penalizing the pairwise Hausdorff estimate
d̂H(Z).

d̂H(Z) =

M+K∑
i=1

M+K∑
j=i+1

max
z∈Z:,i×Z:,j

[
min

z′∈Z:,(i,j)

∥z− z′∥2
]

. (4)

Rather than optimizing d̂H(Z) through computationally inefficient min and max operations, and
given the sensitivity to outliers when matching Z and Z× using distance, this serves as the driving
force for our research. Our approach focuses on capturing pairwise similarity via contrastive learning
and gives the opportunity to prioritize attribute alignment to maintain sufficient information [55].
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This alternative approach aims to design a disentangled and generalizable representation through
augmentation (multi-views of a sequence). First, as the supervised contrastive loss we consider the
pair dimension (i, j), z from the cartesian product of each dimension support Z:,i × Z:,j as an anchor,
and z+ from the support Z:,(i,j) as positive augmentation T this means for mini-batch we have an
augmentation of appliance encoded in dimension i. For T , we use channel dropout and Gaussian
noise to create positive pairs, for channel dropout, we randomly mask out a subset of variables while
keeping the full-time series intact. The negative will be an element of Z other than the (i, j) columns
i.e z− ∈ Z:,̸=(i,j), also we considering case where x− available the (i, j) of z−, i.e z− = fϕ(x

−).
Eq 5 is similar to the InfoNCE objective [40], as it reinforces the pre-existing similarity between
Z:,(i,j) and Z:,i × Z:,j (i.e between Z and Z×), and repel Z:,̸=(i,j) and Z:,i × Z:,j , this allowing the
support Z ≈ Z to have a flexible factorization support.

L(1)

DIS(Z) =

M+K∑
i=1

M+K∑
j=i+1

∑
z∈Z:,i×Z:,j

∑
z+∈Z:,(i,j)

exp (z · z+)
exp (z · z+) +

∑
z−∈Z:, ̸=(i,j)

exp (z · z−)
(5)

Our results show that this could be more adapted for weak supervised contrastive learning [53], i.e. we
need only a positive augmentation in minibatch. The proposed weakly supervised contrastive learning
loss combines two terms. The first term enforces axis alignment based on the correlation between Z:,i

and Z+
:,i (positive augmentation of Z:,i from Z). This ensures that only one latent variable learns this

alignment for fixed attributes (invariant) which forces the approximate posterior of the shared latent
Z to be similar to Z× and its augmentation. The second term minimizes information redundancy
by measuring the correlation between Z:,i and Z+

:,j ̸=i or Z:,j ̸=i, which are nearly equivalent in the
contrastive sense.

L(2)
DIS(Z) =

M+K∑
i=1

M+K∑
j=i+1

(
1− d(Z:,i × Z:,j ,Z

+
:,i)

)2
+

M+K∑
i=1

M+K∑
j=i+1

d(Z:,i × Z:,j ,Z
+
:,j)

2, (6)

where d(Z:,i,Z
+
:,i) (resp. d(Z:,i,Z

+
:,i)) is the cosine similarity between Z:,i and Z+

:,i (resp. Z:,i and
Z+

:,i) in a mini-batch. During training, for mini-bach augmentation Z+ affects only one appliance,
with others remaining fixed. We assume sufficient augmentation for each factor across the batch.

L(D, ϕ, θ) = E
X

b∼D

[
γLDIS(fϕ(X)) +

1

b

∑
x∈X

(Lrec(x;ϕ, θ) + β1LKL(x;ϕ, θ) + β2L∆
KL(x;ϕ, θ))

]
. (7)

3.2 Attention Variational Auto-encoders
To avoid time locality during dimension reduction, and keep long-range capability we refer to an
in-depth Temporal Attention with l-Variational layers. NVAE [43] proposed an in-depth autoencoder
for which the latent space z is level-structured and attended locally [41, 4], this shows an effective
results for image reconstruction. In this work, we enable the model to establish strong couplings, as
depicted. Our core idea aims to address construct Time context T̂ l that effectively captures the most
informative features from a given sequence T<l = {T i}li=1 across bottom-up and top-down, where
T<l is the output of the residual network. Both T̂ l and T l are features with the same dimensionality:
T̂ l ∈ RT×C and T i ∈ RT×C . In our model, we employ Temporal Self-attention [45] to construct
either the prior or posterior beliefs of variational layers, which enables us to handle long context
sequences with large dimensions τ effectively. The construction of T̂ l relies on a query feature
Ql ∈ RT×Q of dimensionality Q with Q≪ C, and the corresponding context T l is represented by
a key feature Kl ∈ RT×Q. Importantly, T̂ l(t) of time step i in sequence τ depends solely on the
time instances in T<l. For more consistency, using Multihead-attention [45] allows the model to
focus on different aspects of the input sequence simultaneously, which can be useful for capturing
various relationships and patterns. which allows the model to jointly attend to information from
different representation subspaces at different scales. Instead of computing a single attention function,
this method first projects Ql, K<l), T<l) into h different vectors, respectively. Attention is applied
individually to these h projections. The output is a linear transformation of the concatenation of all
attention outputs. For the remainder of this paper, we presume that DISCOV employs self-attention.
Prior works [43] have sought to mitigate against exploding Kullback-Leibler divergence (KL) in Eq 2
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by using parametric coordination between the prior and posterior distributions. Motivated by this
insight, we seek to establish further communication between them. We accomplish this by allowing
the generative model to choose the most explanatory features in h≥l by generating the query feature
Ql

q . Finally, the holistic conditioning factor for the posterior is:

T̂ l
q ← Self-Attention(h≥l,Ql

q,K
≥l
q ) for l = L,L− 1, ..., 1. (8)

We adopt the Gaussian residual parametrization between the prior and the posterior. The prior
is given by p(zl|z<l) = N (µ(T l

p, θ), σ(T
l
p, θ). The posterior is then given by q(zl|x, z<l) =

N (µ(T l
p, θ) +∆µ(T̂ l

q, ϕ), σ(T
l
p, θ) ·∆σ(T̂ l

q, ϕ)) where the sum (+) and product (·) are pointwise,
and T l

q is defined in Eq 8. µ(·), σ(·), ∆µ(·), and ∆σ(·) are transformations implemented as temporal
convolutions layers.

3.3 Evaluating Disentanglement in Time Series
Evaluating disentanglement in series representation is more challenging than established computer
vision metrics. Existing time series methods rely on qualitative observations and predictive perfor-
mance, while metrics like Mutual Information Gap (MIG) [32] have limitations with continuous
labels. To address this, we adapted RMIG [10] for continuous labels and used DCI metrics from [15].
Additionally, we employed SAP [27] to measure prediction error differences in the most infor-
mative latent dimensions for ground truth attributes. Our evaluation, including β-VAE/+HDF and
FactorVAE scores, . These metrics face challenges with sequential data and do not provide mea-
sures of attribute alignment. To overcome this limitation, we introduce the Time Disentanglement
Score (TDS) from an information-gain perspective. TDS assesses how well the latent representation
z := fϕ(x) maintains the invariance of an attribute m in x when this attribute changes. TDS relies on
the correlation matrix between z and z+, where z := fϕ(x) and z+ := fϕ(T (x)), with T denoting
an augmentation function. This correlation matrix quantifies the consistency of attribute components.
Additionally, TDS evaluates how well z contributes to the reconstruction of y and how z+ contributes
to the reconstruction of T (y). Specifically, it assesses whether each zm (or z+m) can effectively
reconstruct the corresponding ym (or y+m). Time series data often exhibit variations that may not
always align with conventional metrics, especially when considering the presence or absence of
underlying attributes. To address this challenge, we introduce the Time Disentanglement Score (TDS),
a metric designed to assess the disentanglement of attributes in time series data. The foundation
of TDS lies in an Information Gain perspective, which measures the reduction in entropy when an
attribute is present compared to when it’s not.

TDS =
1

dim(z)

∑
n ̸=m

∑
k

||zm − z+n,k||2

Var[zm]
, (9)

In the context of TDS, we augment factor m in a time series window x with a specific objective:
to maintain stable entropy when the factor is present and reduce entropy when it’s absent. This
augmentation aims to capture the essence of attribute-related information within the data. We note
that high TDS informativeness signifies strong disentanglement, while a significant distance implies
reduced disentanglement and higher attribute correlation, aligning with [16].

4 Experiments
4.1 Experimental Design
Datasets. We conducted experiments on two publicly available datasets, namely UK-DALE [20]
and REDD [26]. The dataset UK-DALE [20] consists of 5 dwellings with a varying number of
sub-metered devices and includes aggregate and individual aggregate and individual equipment-level
power measurements, sampled equipment, sampled at 1/6 Hz.

Evaluation Metrics. To assess the accuracy of all the methods compared, we rely on RMSE as a metric
for the reconstruction of downstream tasks, in turn for the reconstruction of the load consumption of
each individual appliance. Our investigation encompasses both quantitative and qualitative scaling,
with a focus on disentangling performance assessed with metrics such as DCI/RMIG/TDS. This aims
to measure its effectiveness, notably in scenarios with correlated consumption signatures, which we
consider to be out-of-distribution (ODD).
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Baseline. We contrast DISCOV against downstream task models in the energy domain, namely
Bert4NILM [52] and S2P [48], as well as S2P [11], maintaining the original implementation configu-
rations for these models. Additionally, we present a variety of β-TC/Factor/RNN/-VAE implementa-
tions tailored for time series analysis.

Experimental Platform. We conduct 5 rounds of experiments, reporting the averaged results and
standard deviation. The experiments are performed on 8× NVIDIA A100 GPUs and 40 Intel(R) 281
Xeon(R) Silver 4210 CPU @ 2.20GHz. The models are implemented in PyTorch.

4.2 Architecture Settings

Our model uses a bi-directional encoder, which processes the input data in a hierarchical manner
to produce a low-resolution latent code that is refined latent code that is refined by a series of
oversampling layers. This code is then refined by a series of oversampling layers in Residual
Decoders blocks, which progressively increases the resolution.

Figure 2: Residual Cell for Encodeur (In-
frence Model qϕ)

Figure 3: Residual Cell for DISCOV De-
codeur (Generative Model pθ).

Residual Blocs. Activation functions are pivotal for enabling models to learn nonlinear represen-
tations, but vanishing and exploding gradients can hinder learning. The Temporal Convolutional
Network (TCN) [31] tackles these issues using Rectified Linear Unit (ReLU), weight normalization,
and dropout layers. In our Residual model, we simplify the residual block by replacing these compo-
nents with the Sigmoid Linear Units, which offers advantages and immunity to gradient problems.
It reduces training time, efficiently learns robust features, and outperforms weight normalization.
SiLU [17] is defined as SiLU(x) = x× σ(x) where σ(x) is the logistic sigmoid.

Squeeze-and-Excitation on Spatial and Temporal. SE block enhances our neural networks
by selectively emphasizing important features and suppressing less relevant ones. It does this
through global information gathering (squeezing) and feature recalibration (excitation). We find that
extending SE for time series data improves the capture of significant temporal patterns in sequence.
Our Residual encoders (Inference Model qϕ) in Fig 2 and Decodeur (Generative Model pθ) in Fig 3.

4.3 Performance and Informativity of Contrastive

Finding: DISCOV retains its robustness in correlated scenarios and achieves comparable performance
to baseline models.

In evaluating the robustness of DISCOV regarding correlations in appliance signatures or consumption,
we consider several pairs of appliances. Firstly, there’s the No.Corr scenario, where we examine
the correlation between the refrigerator’s signature and the dishwasher’s signature. These appliances
are typically active at different times, resulting in less correlated signatures. Moving on to specific
pairs, Washing Machine/dryer involves analyzing the correlation between the washing machine’s
signature and the dryer’s signature. Given that these appliances are often used sequentially, their
signatures might exhibit some level of correlation. In Microwave/Oven, the focus is on evaluating
the correlation between the microwave’s signature and the oven’s signature. These appliances have
distinct power profiles and usage patterns, potentially leading to lower correlation. Since these
appliances are often used independently, their signatures may exhibit a lower level of correlation.
Lastly, the Random Device approach involves selecting two random appliances from a dataset.

7



Sc. Methods No.Corrσ =∞ Washing Machine/dryer σ = 0.3 Microwave/Oven σ = 0.4 Random Device σ = 0.8

Metrics –> DCI↓ TDS↓ RMSE ↓ DCI↓ TDS↓ RMSE ↓ DCI↓ TDS↓ RMSE ↓ DCI↓ TDS↓ RMSE ↓

R
E

D
D

[2
6]

Bert4NILM - - 56.4 ±2.58 - - 70.2±1.45 - - 72.08±0.96 - - 70.92±1.15
S2S - - 54.3 ±3.12 - - 69.5±3.56 - - 72.31±2.45 - - 69.95±3.26
β-VAE 72.4±3.10 0.96±.15 48.6 ±2.32 72.4±3.10 0.96±.15 52.6 ±2.31 72.4±3.10 0.96±.15 54.73±1.54 74.29±2.04 1.08±.09 52.99±1.91
β-TCVAE 78.0±1.09 0.94±.13 43.2 ±2.23 78.0±1.09 0.94±.13 49.2 ±1.13 77.23±0.76 0.94±.13 50.87±1.17 79.74±0.84 1.07±.11 49.65±1.43
FactorVAE 68.4±2.41 0.97±.03 47.7 ±1.35 68.4±2.41 0.97±.03 53.2 ±1.02 69.78±1.43 0.97±.03 54.32±0.64 69.95±1.63 1.00±.02 53.45±0.82
HDF 79.8 ± .10 0.64 ± .05 57.2 ± 2.15 79.8 ± .10 0.64 ± .05 61.3 ± 1.82 79.56±0.28 0.64±.05 62.33±1.23 80.37±.05 0.72±.03 61.64±1.52
β-VAE + HDF 73.1±1.01 0.69±.02 34.4±1.89 73.1±1.01 0.69±.02 38.1±1.34 73.59±0.86 0.69±.04 39.65±0.87 74.25±0.59 0.73±.05 38.48±1.04
β-TCVAE + HDF 67.2±2.01 0.52±.02 24.3 ±1.81 67.2±2.01 0.52±.02 27.4 ±1.13 67.51±1.84 0.52±.07 28.94±0.66 68.79±1.27 0.58±.04 27.77±0.83
DISCOV 63.5±1.35 0.49±.02 19.6±1.95 69.3±1.2 0.4±.02 22.3±1.79 70.3±0.82 0.49±.02 23.97±1.19 67.12±0.91 0.51±.01 22.63±1.49

U
K

-D
A

L
E

[2
0]

Bert4NILM - - 57.85 ±1.88 - - 68.8±1.12 - - 73.41±1.35 - - 72.78±0.88
S2S - - 56.38 ±2.22 - - 67.8±2.76 - - 73.95±1.91 - - 70.92±2.25
β-VAE 73.78±2.68 1.08±.09 50.14 ±1.87 75.47±1.98 0.82±.10 51.7±1.79 70.8±2.62 0.85±.11 55.98±1.27 76.18±1.54 1.16±.08 54.83±1.58
β-TCVAE 79.57±0.84 1.07±.11 45.72 ±1.68 80.23±0.54 0.81±.09 48.3±0.94 76.2±0.54 0.83±.10 51.74±0.94 80.88±0.53 1.15±.10 51.15±1.10
FactorVAE 70.14±1.89 1.00±.02 49.02 ±1.05 71.89±1.24 0.94±.02 52.4±0.85 68.7±1.13 0.92±.02 55.24±0.42 71.57±1.27 1.06±.01 54.68±0.64
HDF 80.12±.05 0.72±.03 58.49 ±1.45 80.26±.03 0.56±.03 6.0±1.42 78.8±0.15 0.58±.03 63.79±0.97 80.61±.02 0.80±.02 63.22±1.17
β-VAE + HDF 74.47±0.61 0.73±.05 36.09±1.25 75.12±0.41 0.67±.02 37.4±1.04 72.8±0.52 0.64±.03 40.92±0.66 75.07±0.43 0.75±.03 39.68±0.80
β-TCVAE + HDF 68.54±1.36 0.58±.04 25.88 ±1.20 69.28±1.01 0.46±.01 26.7±0.88 66.7±1.51 0.45±.02 29.82±0.51 7.04±0.93 0.72±.02 40.49±0.64
DISCOV 64.42±0.96 0.51±.01 21.35 ±1.80 65.11±0.66 0.39±.01 21.5±1.44 69.5±0.43 0.48±.01 24.94±0.87 65.05±0.71 0.55±.01 24.05±1.30

Table 1: Average scores DCI, TDS, and RMSE vary from No Correlation (left) to every appliance correlated with
one confounder (right) on uncorrelated test data. Red to blue, with bold indicating the best performance per
correlation. (↓ lower is better, ↑ higher is better [Top-1,Top-2]).
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Figure 4: Prediction Clothes dryer under in correlated case (left) and uncorrelated case (right) over a time
window of 256min. Moving from left to right, the graph illustrates the aggregated power (P,Q,S) alongside the
ground-truth (Green) to be identified under correlation with Oven (Magenta).

5 Ablation Studies
In this section, we conduct ablation experiments to assess DISCOV effectiveness and robustness in
comparison to traditional variant VAEs. Our experiments utilize the Uk-Dale, REDD, and REFIT
datasets with a fixed random seed.

1 A Self-Attention Variational Autoencoder Learn an Effective Representation.

Finding: DISCOV with increasing depth, the representation becomes over 20% more separable (40%
in terms of TDS), downtasking improves performance by 50%, and attention mechanisms contribute
to a 10% enhancement in results.

Table 2, we observe notable differences in performance as the depth (L) of the model architecture
varies including Root Mean Square Error (RMSE), Relative Mutual Information Gain (RMIG), and
Task Discriminative Score (TDS) for various methods, with a particular emphasis on DISCOV variants
with and without attention as the depth (L) increases. Regarding RMSE, which measures the
accuracy of the models, we find that the baseline methods VAE, β-TCVAE, and DIP-VAE exhibit
consistently higher RMSE values compared to the DISCOV variants. Furthermore, introducing the
DISCOV significantly improves RMSE values across all methods, indicating the effectiveness of the
DISCOV loss in enhancing model performance. Additionally, as depth (L) increases from 4 to 16, we
observe that the DisCoV variants consistently outperform the baseline methods in terms of RMSE.

Method Depth (L) NRMSE ↓ RMIG ↓ TDS ↓
VAE (baseline) - 0.928 0.921 0.935
VAE (baseline)+DISCOV - 0.929 0.924 0.931
β-TCVAE - 0.931 0.918 0.937
β-TCVAE+DISCOV - 0.930 0.922 0.933
DIP-VAE - 0.932 0.915 0.939
DIP-VAE+DISCOV - 0.928 0.926 0.930
DISCOV 8 0.50 0.73 0.71
DISCOVw/o Attention 8 0.54 0.71 0.72
DISCOV 16 0.49 0.74 0.70
DISCOVw/o Attention 16 0.52 0.72 0.73
DISCOV 32 0.48 0.75 0.69

Table 2: Average Normalized RMSE, RMIG, and
TDSScores for Variants DISCOVw/,w/o Attention,
as L Increases. (↓ lower values are better [Top-
1,Top-2], the Red row the worst on average, and
the Blue the best).

Notably, when L reaches 16, both DISCOV and
DISCOV attention achieve the lowest RMSE value
of 0.48, showcasing the superior performance of
DISCOV based models with higher depth. It is also
worth mentioning that RMIG and TDS metrics follow
a similar trend, with DISCOV variants demonstrating
superior performance, especially as L increases. These
findings suggest that increasing the depth of the model
architecture and incorporating DISCOV loss play piv-
otal roles in improving model accuracy and task dis-
criminative capabilities, highlighting the significance
of attention mechanisms in enhancing performance.
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2 Robustness, Disentanglement, and Strong Generalization

Finding: DISCOV demonstrates robust disentanglement performance across varying M .
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Figure 5: The resilience of various
disentanglement metrics, as dimen-
sion M varies.

We report the disentanglement performance of DISCOV and
FactorVAE on the Uk-dale dataset as we change
λ and β. FactorVAE [18] is the closest TC-based
method: it uses a single monolithic discriminator
and the density-ratio trick to explicitly approximate
TC(z). Computing TC(z) is challenging to com-
pute as M increases. The average disentanglement
scores for DISCOV λ = 0.5 and λ = 0.6 are very
close, indicating that its performance is robust in dis-
entangling. This is not the case for FactorVAE it
performs worse on all metrics when m increases. Inter-
estingly, FactorVAE seems to recover its performance
on most metrics with higher β than is beneficial for
FactorVAE.

Figure 6: PCA visualization on the latent variable of DISCOV. A distinct separation between samples
corresponds to the activation and inactivation of an appliance. The latent space exhibits clear
distinguishability between instances of activation and non-activation of each appliance from the
lefet to right: Washing Machine, Oven, Dishwasher, Cloth Dryer, and Fridge. (cyan represents
non-activated samples, while blue-purple indicates the activation of appliances in those samples).

6 Related Work
Disentanglement Representation. Since the work of [5], many methods have been proposed
to learn disentangled representations based on various heuristics [19, 12, 23, 28, 7]. Following
the work of [36], which highlighted the lack of identifiability in modern deep generative models,
many works have proposed more or less weak forms of supervision motivated by identifiability
analyses [37, 25, 46, 1, 3, 54]. A similar line of work have adopted the causal representation
learning perspective [30, 29, 34, 33, 2, 51, 8]. Recent work [9, 39] has produced promising results.
However, they are confronted with problems of interpretability, generalization, and robustness.
Various approaches have been proposed to solve these problems. For instance, [9] introduced
Convolutional Neural Networks (CNNs) for feature extraction from power consumption data, showing
promise on the UK-DALE dataset [20]. Generalization concerns persist despite leveraging Gated
Recurrent Units (GRUs) and attention mechanisms. Other works attempt meaningful representation
of time series, but disentangling remains challenging [47, 44, 38]. Recurrent VAE (RVAE) [14] for
sequential data, D3VAE [32] improves prediction using a diffusion model after decoding the latent
space. In representation learning, [53] employs contrastive learning, but in correlated data scenarios
it is not explored. [35] based on specific propriety of time series like frequency and amplitude to
disentangling Time series, but disentangling the latent space through data-driven methods poses a
challenge. Nevertheless, recent approaches like Support Factorization as described in the works of
[55, 42] show promise in addressing this challenge and have yielded encouraging results.

On The Non-Intrusive Load Monitoring and Representation Learning. Recent work [9, 39] has
produced promising results for separation source power. Nevertheless, they encounter challenges
related to generalization and robustness when confronted with out-of-distribution scenarios. Several
approaches have been suggested to address these challenges. Some methods tackle them through
either transfer learning or by enhancing the learned representations for each individual appliance.
Exploring ways to enhance representation learning in this field has been the focus of recent studies
[47, 44, 38]. However, achieving an informative and disentangled representation remains an open and
challenging question. Existing models, like RNN-VAE [14] for sequential data and D3VAE [32], assume
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statistically independent attributes. This assumption hampers their performance on real-world data
and makes them less applicable to out-of-distribution scenarios. Developing models that effectively
capture informative and disentangled representations in a realistic and versatile manner continues to
be a significant challenge.

7 Conclusion
Enhancing the generalization capabilities and interpretability of current machine learning models
are primary objectives when learning disentangled representations of time series data. However,
existing methods for disentangling time series have primarily focused on identifying independent
factors of variation, disregarding the fact that the causal factors underlying real-world data often
exhibit correlations. To address this limitation and capture the correlated nature of real-world data, we
propose an approach that enables the model to encode a diverse range of generative attributes in the
latent space, thereby facilitating disentanglement. Our method, DisCo, demonstrates that promoting
pairwise factorized support is adequate for traditional disentanglement techniques. Moreover, our
results suggest that DISCOV competes effectively in downstream tasks, such as NILM methods, and
achieves significant relative improvements of over +55% on standard benchmarks across datasets
with varying correlation shifts.

8 Reproducibility Statement
We have made diligent efforts to ensure the reproducibility of our work. In the main paper, we
describe every aspect of our learning objective and all the assumptions made. Concerning our
experiments, all training details and dataset information are made available as open source at
https://oublalkhalid.github.io/DISCOV/.
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