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Abstract
Recently, Kirkpatrick et al. [ALT 2019] and Fallat et al. [JMLR 2023] introduced non-clashing
teaching and showed it to be the most efficient machine teaching model satisfying the benchmark
for collusion-avoidance set by Goldman and Mathias. A teaching map T for a concept class C
assigns a (teaching) set T (C) of examples to each concept C ∈ C. A teaching map is non-clashing
if no pair of concepts are consistent with the union of their teaching sets. The size of a non-
clashing teaching map (NCTM) T is the maximum size of a teaching set T (C), C ∈ C. The non-
clashing teaching dimension NCTD(C) of C is the minimum size of an NCTM for C. NCTM+ and
NCTD+(C) are defined analogously, except the teacher may only use positive examples.

We study NCTMs and NCTM+s for the concept class B(G) consisting of all balls of a graph G.
We show that the associated decision problem B-NCTD+ for NCTD+ is NP-complete in split, co-
bipartite, and bipartite graphs. Surprisingly, we even prove that, unless the ETH fails, B-NCTD+

does not admit an algorithm running in time 22
o(vc) ·nO(1), nor a kernelization algorithm outputting

a kernel with 2o(vc) vertices, where vc is the vertex cover number of G. We complement these
lower bounds with matching upper bounds. These are extremely rare results: it is only the second
problem in NP to admit such a tight double-exponential lower bound parameterized by vc, and only
one of very few problems to admit such an ETH-based conditional lower bound on the number of
vertices in a kernel. For trees, interval graphs, cycles, and trees of cycles, we derive NCTM+s or
NCTMs for B(G) of size proportional to its VC-dimension. For Gromov-hyperbolic graphs, we
design an approximate NCTM+ for B(G) of size 2, in which only pairs of balls with Hausdorff
distance larger than some constant must satisfy the non-clashing condition.
Keywords: Non-clashing teaching, VC-dimension, balls in graphs, parameterized complexity, ver-
tex cover, kernelization, double-exponential lower bounds, ETH lower bounds, hyperbolic graphs

1. Introduction

Machine teaching is a core paradigm in computational learning theory that has attracted signifi-
cant attention due to its applications in diverse areas such as trustworthy AI Mei and Zhu (2015);
Zhang et al. (2018), inverse reinforcement learning Brown and Niekum (2019); Ho et al. (2016),
robotics Akgun et al. (2012); Thomaz and Cakmak (2009), and education Chen et al. (2018); Zhu
(2015) (see Zhu et al. (2018) for an overview). In machine teaching models, given a concept class
C, a teacher presents to a learner a carefully chosen set T (C) of correctly labeled examples from
a concept C ∈ C in such a way that the learner can reconstruct C from T (C). This defines the
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teaching map (TM) T and the teaching sets T (C), C ∈ C. The goal is to find a TM that minimizes
the size of a largest teaching set. The examples selected in T (C) by the teacher are the most useful
to the learner to reconstruct C, in contrast to models of learning (like the classical PAC-learning)
where the learner must reconstruct a concept of C from randomly chosen examples.

There are a multitude of formal models of machine teaching Balbach (2008); Gao et al. (2016,
2017); Goldman and Kearns (1995); Goldman and Mathias (1996); Mansouri et al. (2019); Shino-
hara and Miyano (1991); Zilles et al. (2011), which differ by the conditions imposed on the teacher
and learner. Several of these are batch teaching models, where the examples proposed by the teacher
to the learner are sets. This is in contrast to sequential teaching models, where the examples are not
presented all at once, but rather in an order chosen by the teacher. A key notion in formal models
of machine teaching is that the teacher and learner should not collude. The benchmark for prevent-
ing this is the Goldman-Mathias (GM) collusion-avoidance criterion Goldman and Mathias (1996),
which essentially demands a teaching map T to admit a learner that returns the concept C whenever
it is shown any set of labeled examples that include T (C) and are consistent with C. Recently, a
batch teaching model called non-clashing teaching (NC-teaching) was proposed Fallat et al. (2023);
Kirkpatrick et al. (2019). Given a concept class C, a TM T on C is non-clashing if, for any two dis-
tinct concepts C,C ′ ∈ C, either T (C) is not consistent with C ′ or T (C ′) is not consistent with
C, or both. They proved NC-teaching to be the most efficient model (in terms of the worst-case
number of examples required) satisfying the GM collusion-avoidance criterion. It is common to
restrict the teacher to only presenting positive examples (see Angluin (1980a,b) for early successes
of this approach). These models are vastly studied due to their pertinence in, e.g., grammatical in-
ference Denis (2001); Stolcke and Omohundro (1994), computational biology Wang et al. (2006);
Yousef et al. (2008), and recommendation systems Schwab et al. (2000). For these reasons, Fallat
et al. (2023); Kirkpatrick et al. (2019) also introduced and studied positive NC-teaching, in which
the teacher may only use positive examples.

As with PAC-learning, where the VC-dimension VCD(C) of C drives the number of randomly
chosen examples that are sufficient to learn the concepts of C, various models of machine teaching
lead to different notions of teaching dimension which bound the teaching set sizes. The definitive
teaching dimension (DTD) Goldman and Kearns (1995); Shinohara and Miyano (1991) is a proto-
typical one. A definitive teaching set (DTS) of a concept C ∈ C is a C-sample (a sample consistent
with a concept of C) for which C is the only consistent concept in C. DTD(C) is the maximum size
of a DTS over all C ∈ C. Note also the important recursive teaching dimension (RTD) Zilles et al.
(2008, 2011). NC-teaching and positive NC-teaching also have dimension parameters. The size of
a TM T on C is the maximum size of T (C) over all C ∈ C. The non-clashing teaching dimension
NCTD(C) (positive non-clashing teaching dimension NCTD+(C), resp.) is the minimum size of
a non-clashing TM (NCTM) for C (positive NCTM (NCTM+) for C, resp.) Fallat et al. (2023);
Kirkpatrick et al. (2019). An important research direction for various notions of teaching dimension
is their relationship with the VC-dimension. For NC-teaching, Fallat et al. (2023); Kirkpatrick et al.
(2019) say that “The most fundamental open question resulting from our paper is probably whether
NCTD is upper-bounded by VCD in general”, and Simon (2023) also mentions this open question.

NCTMs are signed versions of representation maps (RMs) for concept classes. Kuzmin and
Warmuth (2007) introduced RMs to design unlabeled sample compression schemes (SCSs) for max-
imum concept classes. They proved that the existence of RMs of size d = VCD(C) for a maximum
class C is equivalent to the existence of unlabeled SCSs of size d for C. Chalopin et al. (2022) gen-
eralized this equivalence to ample classes, and they also constructed RMs of size d for maximum
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classes. The main difference between NCTMs and RMs is that RMs assign to each concept C ∈ C
a set shattered by C. Littlestone and Warmuth (1986) introduced SCSs, which have been vastly
studied due to their importance in computational machine learning.

In this paper, we consider NCTMs and NCTM+s for the concept class B(G) consisting of all
balls of a graph G. For several graph classes, we derive NCTMs for B(G) of size proportional to
VCD(B(G)). Further, we study the computational complexity of the following decision problems:

NCTD FOR BALLS IN GRAPHS (B-NCTD)
Input: A graph G on n vertices and a positive integer k.

Question: Is NCTD(B(G)) ≤ k?

NCTD+ FOR BALLS IN GRAPHS (B-NCTD+)
Input: A graph G on n vertices and a positive integer k.

Question: Is NCTD+(B(G)) ≤ k?

Motivation for balls in graphs. The combinatorial and geometric aspects of balls in graphs mo-
tivate B-NCTD and B-NCTD+. The combinatorial one ensures that the study of balls in graphs
is as general as that of arbitrary concept classes. Notably, to any set-family C ⊆ 2V , one can
associate a set of balls of a graph G as follows. V (G) = V ∪ {xC : C ∈ C}, the vertices of
{xC : C ∈ C} form a clique, and xC and v ∈ V are adjacent if and only if v ∈ C. For any C ∈ C,
B1(xC) = C ∪ {xC′ : C ′ ∈ C}. On the other hand, one may hope that for graphs G with a rich
metric structure, the geometric structure of B(G) may allow to efficiently construct NCTMs, which
our results confirm. Further, in light of the open question of Fallat et al. (2023); Kirkpatrick et al.
(2019); Simon (2023), B(G) may provide graph classes where NCTD(B(G)) > VCD(B(G)), e.g.,
we prove that, for trees of cycles, NCTD(B(G)) ≤ 4, while VCD(B(G)) ≤ 3. Trees of cycles
are planar, and, for planar graphs, VCD(B(G)) ≤ 4 Bousquet and Thomassé (2015); Chepoi et al.
(2007), but it is unclear how to bound NCTD(B(G)) by a small constant (it is at most 615 as, for
any set-family C with VCD(C) = d, NCTD(C) ≤ RTD(C) ≤ 39.3752d2 − 3.633d Fallat et al.
(2023); Hu et al. (2017)). Lastly, SCSs for balls in graphs were studied in Chalopin et al. (2023).

Our Results. Our focus is twofold: we show that 1) B-NCTD+ is computationally hard and
exhibits rare properties from parameterized complexity, and 2) for several graph classes, we derive
NCTMs of size proportional to VCD(B(G)). We begin with the first direction, proving that:

1. B-NCTD+ is NP-complete in split and co-bipartite graphs with a universal vertex, and bipartite
graphs of diameter 3.

Note that Kirkpatrick et al. (2019) proved that it is NP-hard to decide, for a concept class C,
whether NCTD(C) = k or NCTD+(C) = k, even if k = 1, but their results do not apply to B(G)
as they rely on the fact that deciding whether NCTD+(C) = 1 is NP-hard.1

B-NCTD+ being NP-hard in these graph classes motivates studying its parameterized complex-
ity, as was done for other problems in learning theory Brand et al. (2023); Downey et al. (1993); Ga-
nian and Korchemna (2021); Li and Liang (2018). This leads to our first main result, which exhibits
the extreme computational complexity of the problem. Recently, Foucaud et al. (2024a) developed

1. NCTD+(B(G)) = 1 if and only if G is edgeless. Let uv ∈ E(G). T (B1(v)) must contain a vertex in N(v) as
T (B0(v)) ⊆ {v}, say u ∈ T (B1(v)). Then, T (B1(v)) must contain another vertex in N [v] as T (B0(u)) ⊆ {u}.
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a technique to prove double-exponential dependence on the treewidth (tw) and/or the vertex cover
number (vc) of the graph in the running time of FPT algorithms for problems in NP. For these clas-
sic structural parameters, they proved that, unless the ETH fails,2 even on bounded-diameter graphs
METRIC DIMENSION and GEODETIC SET do not admit 22

o(tw) · nO(1)-time algorithms, STRONG

METRIC DIMENSION does not admit a 22
o(vc) · nO(1)-time algorithm, and these bounds are tight.

Notably, these were the only problems in NP known to admit such tight double-exponential lower
bounds, until now.3 Applying this technique, we obtain our first main result:

2. Unless the ETH fails, B-NCTD+ does not admit a 22
o(vc) · nO(1)-time algorithm, even in

diameter-3 graphs.

Our lower bound is robust as all the traditional structural parameters like treewidth, pathwidth,
and treedepth are at most vc + 2. Further, B-NCTD+ is only the second problem in NP to admit
a double-exponential dependence in vc. Thus, B-NCTD+ is also incredibly interesting from a
purely theoretical perspective, and it is strongly linked with other metric graph problems. The same
reduction yields two more results, the first of which is also extremely rare:

3. Unless the ETH fails, B-NCTD+ does not admit a kernelization algorithm outputting a kernel
with 2o(vc) vertices, even in diameter-3 graphs.

4. Unless the ETH fails, B-NCTD+ does not admit a 2o(n)-time algorithm, even in diameter-3
graphs.

Indeed, such ETH-based conditional lower bounds on the number of vertices in a kernel are very
rare as they are only known for a few other problems Chandran et al. (2016); Cygan et al. (2016);
Chakraborty et al. (2024); Foucaud et al. (2024a,b); Tale (2024). We show that our lower bounds
concerning vc are tight by giving matching upper bounds:

5. B-NCTD+ admits a 22
O(vc) · nO(1)-time algorithm.

6. B-NCTD+ admits a kernelization algorithm outputting a kernel with 2O(vc) vertices.

For B-NCTD+, we also give a 2O(n2·diam)-time algorithm, yielding a 2O(n2)-time algorithm in
bounded-diameter graphs. We then focus on our second goal: designing NCTMs for B(G) that are
linear in VCD(B(G)), when G is restricted to certain graph classes. Proving that any ball in a tree
or interval graph can be distinctly represented by two of its “farthest apart” vertices, we show that:

7. If G is a tree or an interval graph, then NCTD(B(G)) ≤ NCTD+(B(G)) = VCD(B(G)) ≤ 2.

In contrast to trees and interval graphs, we prove that:

8. Cycles do not admit NCTM+s of fixed size for B(G), but do admit NCTMs of size 2.

With this in mind, we search for NCTMs for B(G) for richer graph classes. This already proves
difficult in trees of cycles, for which, by a technical proof, we get the following:

9. If G is a tree of cycles, then NCTD(B(G)) ≤ 4, while VCD(B(G)) ≤ 3.

In analogy to PAC-learning, in approximate NCTM+s, only pairs of balls with Hausdorff dis-
tance larger than some constant must satisfy the non-clashing condition. Akin to our method in
trees, we show that:

10. If G is a δ-hyperbolic graph, then B(G) admits a 2δ-approximate NCTM+ of size 2.

2. Roughly, the Exponential Time Hypothesis (ETH) states that n-variable 3-SAT cannot be solved in time 2o(n).
3. After a preprint of this paper appeared on arXiv, tight double-exponential dependence on the treewidth was also

shown for the NP-complete problems TEST COVER and LOCATING-DOMINATING SET Chakraborty et al. (2024).
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2. Preliminaries

This section consists of definitions and notation. For the ball Br(x), T (x, r) denotes T (Br(x)).
Omitted proofs of theorems and sketches of proofs (marked by ⋆) are in the appendix.

Concept classes and samples. In machine learning, a concept class on a set V is any collection C
of subsets of V . The VC-dimension VCD(C) of C is the size of a largest set S ⊆ V shattered by C,
that is, such that {C ∩ S : C ∈ C} = 2S . A sample is a set X = {(x1, y1), . . . , (xm, ym)}, where
xi ∈ V and yi ∈ {−1,+1}. A sample X is realizable by a concept C ∈ C if yi = +1 when xi ∈ C,
and yi = −1 when xi /∈ C. A sample X is a C-sample if X is realizable by some concept C in C.
To encode concepts of a concept class C on V and C-samples, we use the language of sign vectors
from oriented matroids theory Björner et al. (1993). Let L be a non-empty set of sign vectors, i.e.,
maps from V to {±1, 0} := {−1, 0,+1}. For X ∈ L, let X+ := {v ∈ V : Xv = +1} and
X− := {v ∈ V : Xv = −1}. The set X := X+ ∪X− is called the support of X . We denote by ⪯
the product ordering on {±1, 0}V relative to the ordering of signs with 0 ⪯ −1 and 0 ⪯ +1. Any
C ⊆ 2V can be viewed as a set of sign vectors of {±1}V : each concept C ∈ C is encoded by the
sign vector X(C), where Xv(C) = +1 if v ∈ C and Xv(C) = −1 if v /∈ C. In what follows, we
consider C simultaneously as a collection of sets and as a set of {±1}-vectors. From the definition
of a sample X , it follows that X is just a sign vector and that the samples realizable by a concept
C ∈ C are all X ∈ {±1, 0}V such that X ⪯ C.

NCTMs and NCTD. For a concept class C on V , a TM T associates, to each C ∈ C, a realizable
sample T (C) for C (the teaching set of C), i.e., T (C) ∈ {±1, 0}V and T (C) ⪯ C. Rephrasing
the original definitions of NCTMs and RMs, a TM T : C → {±1, 0}V is non-clashing if whenever
T (C ′) ⪯ C and T (C) ⪯ C ′ for C,C ′ ∈ C, then C = C ′. Equivalently, T is non-clashing if, for any
two distinct concepts C,C ′ of C, the non-clashing condition holds: for all C,C ′ ∈ C with C ̸= C ′,
C|(T (C)∪T (C′)) ̸= C ′|(T (C)∪T (C′)). If T also satisfies the inclusion condition: T (C) = T+(C) ⊆
C+ for any C ∈ C, then T is an NCTM+. The size of a TM T for C is max{|T (C)| : C ∈ C}.
NCTD(C) (NCTD+(C), resp.) is the minimum size of an NCTM for C (NCTM+ for C, resp.).

Graphs. In this paper, graphs are simple, connected, and undirected, and logarithms are to the
base 2. For a positive integer k, [k] := {1, . . . , k}. Given a graph G, its vertex set is V (G) and
its edge set is E(G). The distance dG(u, v) between two vertices u, v ∈ V (G) is the length of
a shortest (u, v)-path in G. For any r ∈ N and u ∈ V (G), the ball of radius r centered at u is
Br(u) := {v : dG(u, v) ≤ r}. For any u ∈ V (G), B1(u) = NG[u] and NG(u) := NG[u] \ {u}.
Two balls are distinct if they are distinct as sets. B(G) is the set of all distinct balls of G. For
S ⊆ V (G), the diameter of S is diam(S) := maxu,v∈S dG(u, v), and a diametral pair of S is a
pair u, v ∈ S such that dG(u, v) = diam(S). The diameter of G is diam(G) := diam(V (G)). For
any u, v ∈ V (G), the interval IG(u, v) between u and v in G is the set of vertices on a shortest path
between u and v in G. The vertex cover number vc(G) of G is the minimum number of vertices that
are incident to all edges of G. When the context is clear, G is omitted from some of these notations.

Parameterized complexity. An instance of a parameterized problem π consists of an input I of
the non-parameterized problem and a parameter k ∈ N. A kernelization algorithm for π transforms,
in polynomial time, an instance (I, k) of π into an equivalent instance (I ′, k′) of π with |I ′|, k′ ≤
f(k), for a computable function f . A reduction rule is safe if the input instance is a YES-instance
if and only if the output instance is a YES-instance. See Cygan et al. (2015) for a book on the topic.

5



CHALOPIN CHEPOI MC INERNEY RATEL

Examples. To illustrate the notion, we present NCTMs for some concept classes in graphs.

Example 1 Let G be any graph of diameter 2 such that, for each edge xy ∈ E(G), B1(x) ∪
B1(y) = V (G). Examples are the complete bipartite graph Kn,m and the n-octahedron, which is
the complete graph K2n on 2n vertices minus a perfect matching. We define an NCTM T for B(G)
of size 2 as follows:

• for all x ∈ V (G), set T+(x, 0) := {x} and T−(x, 0) := {y} for some neighbor y of x;

• for all x ∈ V (G) such that V (G) \ B1(x) ̸= ∅, set T+(x, 1) := {x} and T−(x, 1) := {z}
for some vertex z at distance 2 from x. Also set T+(V (G)) := ∅ and T−(V (G)) := ∅.

We show that T is non-clashing. For any x ∈ V (G) and r ∈ {0, 1}, if Br(x) ̸= V (G), then
T−(x, r) ̸= ∅, and thus, T is non-clashing for Br(x) and V (G). Consider a ball B0(x) and
let T (x, 0) = {x, y}. For any ball B′ ̸= B0(x) such that x ∈ B′ and y /∈ B′, we have that
B′ = B1(y

′) for some neighbor y′ of x distinct from y. Since y′ ∈ T+(y′, 1) \ B0(x), T is
non-clashing for B0(x) and any other ball. Consider now two balls B1(x) and B1(y) such that
B1(x) ̸= V (G) and B1(y) ̸= V (G). If d(x, y) = 2, then x ∈ T+(x, 1) \ B1(y) and T is non-
clashing for B1(x) and B1(y). Suppose now that x and y are adjacent and let T (x, 1) = {x, z}.
Then, z is adjacent to y, and thus, T is non-clashing for B1(x) and B1(y).

There is no NCTM+ of constant size for the example above, even for the n-dimensional octahe-
dron G. Indeed, for any x ∈ V (G), there is a unique x̄ ∈ V (G)\B1(x). Thus, in order to distinguish
B1(x) = V (G) \ {x̄} and V (G), we must have x̄ ∈ T+(V (G)), and thus, |T+(V (G))| = |V (G)|.

Our second example is the concept class C5 that does not come from the family of balls of a
graph. It was given in Pálvölgyi and Tardos (2020) as an example of a concept class with VC-
dimension 2 that does not admit an unlabeled sample compression scheme of size 2.

Example 2 The ground set of C5 is the vertex set of the 5-cycle C5 (which we will suppose to be
oriented counterclockwise). The concepts of C5 are of two types: the sets {u, v} of size 2 such
that u and v are not adjacent in C5, and the sets {x, y, z} defining a path of length 2 in C5. If
C = {x, y, z} is a path of length 2 in C5 ordered counterclockwise, we call y the middle vertex
of C, and xy the first edge of C. Consider the following NCTM+ T of size 2: for any concept
C = {u, v} of size 2, set T (C) := C = {u, v}; for any concept C = {x, y, z} of size 3, set
T (C) := {x, y}.

We show that T is non-clashing. Any two concepts C,C ′ of size 2 are clearly distinguished
by their traces on T (C) ∪ T (C ′). Analogously, any two concepts C,C ′ of size 3 have different
first edges, and thus, are distinguished by their traces on T (C) ∪ T (C ′). Finally, any concepts
C = {u, v} of size 2 and C ′ = {x, y, z} of size 3 are distinguished by their traces on T (C)∪T (C ′)
since T (C) = C = {u, v} ≠ {x, y} = T (C ′) as u and v are not adjacent in C5, while x and y are.

3. B-NCTD+ is NP-complete

In this section, we prove that B-NCTD+ is NP-complete for split, co-bipartite, and bipartite graphs.
We reduce from the well-known NP-hard SET COVER problem defined as follows: given a set of
elements X = {1, . . . , n}, a family S = {S1, . . . , Sm} of subsets of X that covers X (i.e., whose
union is X), and a positive integer k, does there exist S ′ ⊂ S such that S ′ covers X and |S ′| ≤ k?
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Theorem 1 B-NCTD+ is NP-complete in split and co-bipartite graphs with a universal vertex,
and bipartite graphs of diameter 3.

Proof (⋆) The problem is in NP as any NCTM+ for B(G) has a set of at most n2 distinct balls as a
domain. We sketch the proof for split graphs. The proof for co-bipartite graphs is similar, while the
one for bipartite graphs is more involved.

Let ϕ be an instance of SET COVER in which each element of X is in at most m − 2 sets of
S. From ϕ, we construct the graph G as follows. Add the sets of vertices V = {v1, . . . , vn},
S = {s1, . . . , sm}, U = {u1, . . . , um+1}, and W = {w1, . . . , wm}. For all i ∈ [n] and j ∈ [m], if
i /∈ Sj in ϕ, then add the edge visj . For all j, ℓ ∈ [m] with j ̸= ℓ, add the edges ujwℓ and um+1wℓ.
Make each vertex in U adjacent to each vertex in S. Make each vertex in V adjacent to each vertex
in W . Lastly, make the vertices in U ∪ V form a clique. We prove that ϕ admits a set cover of size
at most t if and only if there is an NCTM+ of size at most k = m+ t for B(G).

Suppose that ϕ admits a set cover S ′ ⊂ S of size at most t. Let S′ ⊂ S be such that, for all
j ∈ [m], sj ∈ S′ if and only if Sj ∈ S ′ in ϕ. We define an NCTM+ T of size at most k for
B(G). Note that we only need to define T for balls of G of radius 0 or 1 as, for all x ∈ V (G),
B2(x) = B1(um+1) = V (G). For all x ∈ V (G), set T (x, 0) := {x}. For all x ∈ V , set
T (x, 1) := B1(x) ∩ S. For all x ∈ W ∪ S, set T (x, 1) := {x, um+1}. For all x ∈ U , set
T (x, 1) := S′ ∪ (B1(x) ∩W ). Clearly, T has size at most k and satisfies the inclusion condition.
One can also check that T is non-clashing. Thus, T is an NCTM+ of size at most k for B(G).

Now, suppose that ϕ does not admit a set cover of size at most t. For all i ∈ [n] and j ∈ [m],
B1(um+1) = B1(uj) ∪ {wj}, B1(vi) ⊂ B1(um+1), and (B1(um+1) \ B1(vi)) ⊂ S. Hence,
for any NCTM+ T for B(G), W ⊆ T (um+1, 1) and T (um+1, 1) ∩ S corresponds to a set cover.
Consequently, |T (um+1, 1) ∩ S| > t, and thus, |T (um+1, 1)| > k for any NCTM+ T for B(G).

4. Tight bounds for parameterizations by the vertex cover number

In this section, we consider B-NCTD+ parameterized by the vertex cover number vc of G. For any
x ∈ V (G) and r ∈ N, there are at most 2n possibilities for T (x, r), and there are at most n · diam
unique balls in G (as it is connected). Thus, we get the following algorithm that will be needed later.

Proposition 2 B-NCTD+ and B-NCTD admit algorithms running in time 2O(n2·diam(G)).

We use a recently introduced technique from Foucaud et al. (2024a) to prove the following:

Theorem 3 Unless the ETH fails, even in graphs of diameter 3, B-NCTD+ does not admit

• an algorithm running in time 22
o(vc) · nO(1), nor

• a kernelization algorithm outputting a kernel with 2o(vc) vertices, nor

• an algorithm running in time 2o(n).

Using this technique, we prove Theorem 3 via a reduction from 3-PARTITIONED-3-SAT, in-
troduced in Lampis et al. (2023) and defined as follows. Given a 3-CNF formula ϕ and a partition
of its variables into three disjoint sets Xα, Xβ , Xγ such that |Xα| = |Xβ| = |Xγ | = N and no

7
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clause contains more than one variable from any of Xα, Xβ , and Xγ , is ϕ satisfiable? The crux of
the technique is to replace edges between clause and variable vertices by a “small” separator, called
a set representation gadget, that encodes these relationships. The proof of (Lampis et al., 2023,
Theorem 3) along with the Sparsification Lemma Impagliazzo et al. (2001) implies the following:

Proposition 4 Unless the ETH fails, 3-PARTITIONED-3-SAT does not admit an algorithm run-
ning in time 2o(M), where M is the number of clauses.

Set representation gadget. Let p be the smallest integer such that 3M ≤
(
2p
p

)
, and observe that

p = O(logM). Let Fp be the collection of subsets of [2p] that contain exactly p integers. Define
set-rep : [3M ] → [Fp] as a one-to-one function by arbitrarily assigning a set in Fp to each integer
in [3M ]. Consider the variables from Xα in ϕ. For each variable xαi (i ∈ [N ]) in Xα in ϕ, there are
two vertices tα2i and fα

2i−1 corresponding to the positive and negative literals of xαi , respectively. For
each clause Cj (j ∈ [M ]) in ϕ, there is a clause vertex cj . Add a set of vertices V α = {vα1 , . . . , vα2p}.
For each i ∈ [N ], add the edge tα2iv

α
p′ for each p′ ∈ set-rep(2i). Similarly, for each i ∈ [N ], add

the edge fα
2i−1v

α
p′ for each p′ ∈ set-rep(2i − 1). Now, for all i ∈ [N ] and j ∈ [M ], if the variable

xαi appears as a positive (negative, resp.) literal in the clause Cj in ϕ, then add the edge cjv
α
p′ for

each p′ ∈ [2p] \ set-rep(2i) (p′ ∈ [2p] \ set-rep(2i − 1), resp.). For all j ∈ [M ], if no variable
from Xα appears in Cj in ϕ, then make cj adjacent to all the vertices in V α. See Fig. 1 (right). As a
clause contains at most one variable from Xα in ϕ, tα2i (fα

2i−1, resp.) and cj do not share a common
neighbor in V α if and only if the clause Cj contains xαi as a positive (negative, resp.) literal in ϕ.
We exploit this for the reduction, and since p = O(logM), this ensures that vc(G) = O(logM).

Reduction. Let ϕ be an instance of 3-PARTITIONED-3-SAT on 3N variables and M = O(N)
clauses such that M > N . For all δ ∈ {α, β, γ}, let the variables in Xδ be xδ1, . . . , x

δ
N . From ϕ, we

construct the graph G as follows. Add the vertex sets C = {c1, . . . , cM}, W = {w1, . . . , w3M}, and
U = {u1, . . . , u3M}, and the vertices u3M+1, u′3M+1, and z. For all δ ∈ {α, β, γ} and i ∈ [N ], add
the vertices tδ2i and f δ

2i−1, and let Aδ = {tδ2i | i ∈ [N ]} ∪ {f δ
2i−1 | i ∈ [N ]}. For all δ ∈ {α, β, γ},

add two independent sets of 2p vertices V δ = {vδ1, . . . , vδ2p} and V δ,∗ = {vδ,∗1 , . . . , vδ,∗2p }, and make
all of them adjacent to each vertex in U . Also, add a clique of 2p vertices V W = {vW1 , . . . , vW2p}.
For all i ∈ [N ] and δ ∈ {α, β, γ}, add the edge tδ2iv

δ
p′ (f δ

2i−1v
δ
p′ , resp.) for all p′ ∈ set-rep(2i)

(p′ ∈ set-rep(2i − 1), resp.). For all i ∈ [N ], j ∈ [M ], and δ ∈ {α, β, γ}, if the variable xδi
appears as a positive (negative, resp.) literal in the clause Cj in ϕ, then add the edge cjv

δ
p′ for all

p′ ∈ [2p] \ set-rep(2i) (p′ ∈ [2p] \ set-rep(2i− 1), resp.). For all j ∈ [M ] and δ ∈ {α, β, γ}, if no
variable from Xδ appears in Cj in ϕ, then make cj adjacent to each vertex in V δ. For all ℓ ∈ [3M ],
add the edge wℓv

W
p′ (uℓvWp′ , resp.) for all p′ ∈ set-rep(ℓ) (p′ ∈ [2p] \ set-rep(ℓ), resp.).

Now, to ensure that, for all i ∈ [N ] and δ ∈ {α, β, γ}, exactly one of tδ2i and f δ
2i−1 is in T (V (G))

(each variable is assigned exactly one truth value), do the following: (i) Add a clause vertex cδi , and
let Cδ = {cδi | i ∈ [N ]}. (ii) Add the edges tδ2iv

δ,∗
p′ and f δ

2i−1v
δ,∗
p′ for all p′ ∈ set-rep(2i). Then, tδ2i

and f δ
2i−1 have the same neighbors in V δ,∗. (iii) Add the edge cδi v

δ,∗
p′ for all p′ ∈ [2p] \ set-rep(2i).

Note that cδi and tδ2i (f δ
2i−1, resp.) have no common neighbors in V δ,∗. One can think of cδi as a

clause (xδi ∨xδi ). (iv) Make cδi adjacent to each vertex in V δ′,∗ for all δ′ ∈ {α, β, γ} such that δ′ ̸= δ.
Lastly, make z adjacent to each vertex in U∪Aα∪Aβ∪Aγ∪{u3M+1, u

′
3M+1}, u3M+1 adjacent

to each vertex in V (G) \ (U ∪ Aα ∪ Aβ ∪ Aγ), and u′3M+1 adjacent to each neighbor of u3M+1.
See Fig. 1 (left). The reduction returns (G, k) as an instance of B-NCTD+ where k = 3N + 3M .
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tα2fα
1 fα

3 tα4

c1 c2

vα1 vα2 vα3 vα4

Aα

C

V α

WV WU

CCα Cβ

V α,∗ V α V β V β,∗

Aα Aβ
z

u3M+1

Figure 1: Graph G in the proof of Thm. 3 (left) and its sets Aα, V α, C (right). For clarity, we omit
Cγ , V γ , V γ,∗, Aγ , u′3M+1. In ϕ, xα1 appears as a positive literal in C1, and xα2 as a nega-
tive literal in C2. Red and blue edges are according to set-rep (in a complementary way).

Lemma 5 If ϕ is satisfiable, then G admits an NCTM+ for B(G) of size k.

Proof (⋆) Let π : Xα ∪Xβ ∪Xγ → {True,False} be a satisfying assignment for ϕ. We define the
set π′ ⊂ Aα ∪ Aβ ∪ Aγ corresponding to π. For all δ ∈ {α, β, γ} and xδi in ϕ, if π(xδi ) = True,
then tδ2i ∈ π′, and otherwise, f δ

2i−1 ∈ π′. So, |π′| = 3N . We define an NCTM+ T of size k for
B(G) as follows. We need not define T for B2(z), B2(u

′
3M+1), and balls of radius at least 3 as, for

all x ∈ V (G), B3(x) = B2(z) = B2(u
′
3M+1) = B2(u3M+1) = V (G).

For all x ∈ V (G), set T (x, 0) := {x}. For all δ ∈ {α, β, γ} and x ∈ Aδ, set T (x, 1) := B1(x)
and T (x, 2) := {u1, tδ

′
2 , t

δ′′
2 } ∪ B1(x), where {δ, δ′, δ′′} = {α, β, γ}. For all δ ∈ {α, β, γ} and

x ∈ V δ ∪ V δ,∗, set T (x, 1) := B1(x) \ U and T (x, 2) := {w1, z} ∪ (B1(x) \ U). For all x ∈ V W ,
set T (x, 1) := {u3M+1, u

′
3M+1}∪V W∪(B1(x)∩U) and T (x, 2) := {u3M+1, u

′
3M+1, z}∪V W∪U .

For all δ ∈ {α, β, γ} and x ∈ C ∪ Cδ, set T (x, 1) := B1(x) and T (x, 2) := {x,w1} ∪ (B2(x) ∩
(Aα ∪ Aβ ∪ Aγ)). For all x ∈ U ∪ {u3M+1, u

′
3M+1}, set T (x, 1) := B1(x) \ (C ∪ Cα ∪ Cβ ∪

Cγ) and T (x, 2) := (B2(x) ∩ W ) ∪ π′. For all x ∈ W , set T (x, 1) := B1(x) and T (x, 2) :=
{x, z, u3M+1, u

′
3M+1} ∪ (B2(x) ∩ U). Set T (z, 1) := {z, u1}. One can verify that T has size at

most k and satisfies the inclusion condition for each ball in B(G) and the non-clashing condition
for all pairs of balls in B(G). Hence, T is an NCTM+ of size at most k for B(G).

Lemma 6 If G admits an NCTM+ for B(G) of size k, then ϕ is satisfiable.

Proof (⋆) Let T be an NCTM+ for B(G) of size k. For all i ∈ [N ], ℓ ∈ [3M ], and δ ∈ {α, β, γ},
as B2(u3M+1) = V (G), B2(uℓ) = V (G) \ {wℓ}, and B2(c

δ
i ) = V (G) \ {tδ2i, f δ

2i−1}, we have
|T (u3M+1, 2) ∩W | = 3M and |T (u3M+1, 2) ∩ {tδ2i, f δ

2i−1}| ≥ 1. Since k = 3N + 3M , the latter
inequality is an equality. From T (u3M+1, 2), we extract an assignment π : Xα ∪ Xβ ∪ Xγ →
{True,False} for ϕ. For all i ∈ [N ] and δ ∈ {α, β, γ}, if T (u3M+1, 2) ∩ {tδ2i, f δ

2i−1} = {tδ2i}, then
set π(xδi ) = True, and otherwise, set π(xδi ) = False. Thus, π assigns each variable in ϕ exactly one
truth value. It is not hard to see that π is a satisfying assignment for ϕ.
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Proof of Theorem 3 By Lemmas 5 and 6, there is a reduction that takes an instance of 3-
PARTITIONED-3-SAT and returns an equivalent instance (G, k) of B-NCTD+ with diam(G) = 3.
As |V (G)| = O(M), unless the ETH fails, B-NCTD+ does not admit a 2o(n)-time algorithm by
Prop. 4. S = {u3M+1, u

′
3M+1, z}∪V W ∪V α∪V β∪V γ∪V α,∗∪V β,∗∪V γ,∗ is a vertex cover of G

of size O(logM). Hence, a 22
o(vc) ·nO(1)-time algorithm for B-NCTD+ would imply a 2o(M)-time

algorithm for 3-PARTITIONED-3-SAT, contradicting the ETH by Prop. 4. Toward a contradiction,
suppose that B-NCTD+ admits a kernelization algorithm outputting a kernel with 2o(vc) vertices.
Consider the following algorithm for B-NCTD+. Given an instance of 3-PARTITIONED-3-SAT
with M clauses, it applies the reduction to obtain an equivalent instance (G, k) of B-NCTD+ with
vc(G) = O(logM). Then, it applies the assumed kernelization algorithm on (G, k), outputting a
kernel with 2o(vc) vertices. Finally, it applies the algorithm from Prop. 2 on the kernel, which takes
2O((2o(vc))2·diam) = 2o(M) time, contradicting the ETH by Prop. 4.

We now show that our vc lower bounds are tight:

Theorem 7 B-NCTD+ admits

• an algorithm running in time 22
O(vc) · nO(1), and

• a kernelization algorithm outputting a kernel with 2O(vc) vertices.

Given a graph G, two vertices u, v ∈ V (G) are false twins if N(u) = N(v). The following
reduction rule is used to design the kernelization algorithm in Theorem 7.

Reduction Rule 1 (RR1) Given a graph G and a set X ⊆ V (G) such that I := V (G) \X is an
independent set (i.e., X is a vertex cover of G), if there exist 2|X| +2 vertices in I that are pairwise
false twins, then delete one of them.

The idea for proving the forward direction of the next lemma is that, by the pigeonhole principle,
for any set S ⊆ I of 2|X| + 2 false twins, there exist x, y ∈ S such that x ∈ T (x, 1), y ∈ T (y, 1),
and T (x, 1) \ {x} = T (y, 1) \ {y}. Then, for any teaching set containing y, we can replace y by x
or another vertex of S if x is already in the teaching set.

Lemma 8 Reduction Rule 1 is safe for B-NCTD+.

Theorem 7 follows from exhaustively applying RR1 for the kernelization algorithm, and using
the algorithm from Prop. 2 on the resulting kernel for the other algorithm.

5. NCTMs for classes of graphs

In this section, we construct NCTMs for balls of several simple classes of graphs: trees, interval
graphs, cycles, and trees of cycles. We also design approximate NCTMs for balls in δ-hyperbolic
graphs. In each of our NCTMs T , for any ball Br(x), T+(x, r) consists of two vertices of Br(x)
that are “farthest apart”. In each case except for (trees of) cycles, we set T (x, r) = T+(x, r).
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5.1. Trees

For any ball Br(x) of a tree T, define T (x, r) as any diametral pair {u, v} of Br(x).

Proposition 9 For a tree T, T is an NCTM+ for B(T), i.e., NCTD+(B(T)) = VCD(B(T)) ≤ 2.

Proof For any ball Br(x), T (x, r) ⊆ Br(x). So, as |T (x, r)| = 2 for any ball Br(x) with r ≥ 1, T
is non-clashing for any pair of balls that includes a ball of radius 0. Now, suppose Br1(x) ̸= Br2(y)
and assume that there exists z ∈ Br2(y)\Br1(x). Let T (y, r2) = {u, v}. Then, d(x, z)+d(u, v) ≤
max{d(x, u) + d(v, z), d(x, v) + d(u, z)}, say d(x, z) + d(u, v) ≤ d(x, v) + d(u, z). Since u, z ∈
Br2(y), d(u, z) ≤ d(u, v). Thus, v /∈ Br1(x) as d(x, v) ≥ d(x, z) > r1. So, T is non-clashing.

5.2. Interval graphs

We consider a representation of an interval graph I by a set of segments Jv, v ∈ V (I), of R with
pairwise distinct ends. For any u ∈ V (I), its segment is denoted by Ju = [su, eu], where su is the
start of Ju, and eu is the end of Ju, i.e., su ≤ eu. We use the following property:

Lemma 10 (Lemma 24, Chalopin et al. (2023)) If u, v ∈ Br(x), su, sz < sv, and eu < ev, ez , then
z ∈ Br(x).

For a subgraph I′ of I, {u, v} is a farthest pair of I′ if u is the vertex in I′ whose segment Ju
ends farthest to the left, and v is the vertex in I′ whose segment Jv begins farthest to the right, i.e.,
for any w ∈ V (I′) \ {u, v}, we have eu < ew and sw < sv. Define the map T on B(I): for any ball
Br(x) of I, set T (x, r) to be the farthest pair {u, v} of Br(x) if r ≥ 1, and set T (x, 0) := {x}.

Proposition 11 For an interval graph I, T is an NCTM+ for B(I), i.e., NCTD+(B(I)) =
VCD(B(I)) ≤ 2.

Proof For any ball Br(x), T (x, r) ⊆ Br(x). So, as |T (x, r)| = 2 for any ball Br(x) with r ≥ 1, T
is non-clashing for any pair of balls that includes a ball of radius 0. Now, consider two balls Br1(x)
and Br2(y) such that T (x, r1) = {u, v} ⊆ Br2(y). For any z ∈ Br1(x), we have ez > eu and
sz < sv, and thus, z ∈ Br2(y) by Lemma 10, establishing that Br1(x) ⊆ Br2(y). Consequently, T
sastisfies the non-clashing condition. Finally, VCD(B(I)) ≤ 2 Ducoffe et al. (2020).

5.3. Cycles

In contrast with trees and interval graphs, we prove that:

Proposition 12 In cycles, the family of balls do not admit NCTM+s of constant size.

Proof Consider the cycle Cn with n = 2k + 2 ≥ 4 and suppose that Cn admits an NCTM+ T of
size at most k. Each ball Bk(x) contains all the vertices of Cn except the vertex x opposite to x in
Cn. Hence, T (x, k) ⊂ Cn \{x} = Bk(x). Since |T (x, k)| ≤ k, x ∈ T (z, k) for at least n − k − 1
vertices z ̸= x. Thus,

∑
x∈Cn

|T (x, k)| ≥ n(n − k − 1). But, since |T (x, k)| ≤ k, this sum is at
most nk. Therefore, nk ≥ n(n− k − 1), and thus, n ≤ 2k + 1, a contradiction.

11
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However, any cycle C = Cn with n ≥ 6 admits an NTCM of size 2 < VCD(B(C)) = 3.
Suppose that C is oriented counterclockwise. Each ball Br(x) of C either coincides with C or is
an arc of C. When Br(x) is an arc, we can speak about the first and last vertices of Br(x) in the
counterclockwise order, and about the first vertex outside of Br(x) (this vertex is adjacent to the last
vertex of Br(x)). The NCTM T for B(C) is as follows. If a ball Br(x) covers C, then T (x, r) = ∅.
Otherwise, T+(x, r) is the first vertex of Br(x) and T−(x, r) is the first vertex outside of Br(x).

Proposition 13 For a cycle C = Cn, T is an NCTM for B(C), and if n ≥ 6, then NCTD(B(C)) =
2 < VCD(B(C)) = 3.

Proof First, we prove that T is an NCTM for B(C). Let B = Br(x) and B′ = Br′(y) be two
different balls of C. The non-clashing condition is immediate if one of the balls coincides with C.
Therefore, suppose that both balls are arcs. Let T (x, r) = {u,w}, where u is the first vertex of
Br(x) and w is the first vertex outside of Br(x). Analogously, T (y, r′) = {u′, w′}, where u′ is the
first vertex of Br′(y) and w′ is the first vertex outside of Br′(y). Also, let v and v′ be the last vertices
of Br(x) and Br′(y), respectively. Since Br(x) and Br′(y) are arcs of C, they are either (1) disjoint,
or (2) one is a proper subset of another, or (3) they overlap on a proper arc, or (4) they overlap on
two arcs and together cover C. If Br(x) and Br′(y) are disjoint, then u ∈ T+(x, r) \ Br′(y). If
Br′(y) ⊆ Br(x), then Br(x) and Br′(y) differ with respect to at least at one of the vertices u or v. If
u ̸= u′, then u ∈ T+(x, r) \Br′(y). If u = u′ and v′ ̸= v, then w′ ∈ Br(x), while w′ ∈ T−(y, r′).
Now, suppose that Br(x) and Br′(y) overlap on a proper arc of each of Br(x) and Br′(y). With
respect to the counterclockwise order, this can be either the arc between u′ and v or the arc between
u and v′, say the first (the other case is symmetric). In this case, u ∈ T+(x, r) \ Br′(y). Finally,
suppose that Br(x) and Br′(y) overlap on two arcs and cover C. These two arcs are defined by u
and v′ and by u′ and v (in the counterclockwise order). Then, w ∈ Br′(y), while w ∈ T−(x, r).
Thus, in all cases, T satisfies the non-clashing condition. Hence, T is an NCTM for B(C) of size 2.

To prove the lower bound, let k = ⌊n/2⌋ (i.e., n ∈ {2k, 2k + 1}) and assume that C admits an
NCTM T of size 1. There are kn+ 1 distinct balls in C (kn proper balls and Bk(x) = C). Since at
most one ball can have an empty teaching set, there are kn balls that have teaching sets of size 1. As
there are 2n possible teaching sets of size 1 (each vertex has sign ±1), by the pigeonhole principle, if
kn > 2n, then there exist two different balls B,B′ with T+(B) = T+(B′) and T−(B) = T−(B′).
But then T does not satisfy the non-clashing condition for B and B′, contrary to the assumption
that T is an NCTM. Thus, for any n ≥ 6, there is no NCTM of size 1 for B(C).

5.4. Trees of cycles (cacti)

A tree of cycles (or cactus) is a graph K in which each 2-connected component is a cycle or an edge.
For a vertex v of K that is not a cut vertex, let C(v) be the unique cycle containing v. If v is a cut
vertex, then C(v) = {v}. For any vertices u, v of K, let C(u, v) be the union of all cycles and/or
edges on the unique path of B(K) between C(u) and C(v). Note that C(u, v) is a path of cycles.
A set S ⊆ V (G) is gated if, for any u ∈ V (G), there exists u′ ∈ S (the gate of u, with u′ = u if
u ∈ S) such that u′ ∈ I(u, v) for any v ∈ S. Given a triplet x, u, v of vertices of G, a vertex y is an
apex of x with respect to u and v if y ∈ I(x, u)∩ I(x, v) and I(x, y) is maximal with respect to the
inclusion. One can easily show that for any triplet x, u, v of a tree of cycles K, there exists a unique
apex of x with respect to u and v and that any cycle and any path of cycles of K are gated. Let K be
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I(x, u′) ∪ I(x, v′)

u vu′ v′

x

C(u) C(v)

Z(x, u, v)

Zu(x, u, v) Zv(x, u, v)
s t

Figure 2: Z(x, u, v), Zu(x, u, v), Zv(x, u, v), s, and t.

a tree of cycles and B its set of balls. For B ∈ B, let [B] = {Br(x) : Br(x) = B}. We call a ball
Br(x) in [B] minimal if it has a minimal radius among all balls in [B].

Lemma 14 If {u, v} is a diametral pair of Br(x), x′ is the apex of x with respect to u, v and
r′ = r−d(x, x′), then Br′(x

′) = Br(x). In particular, if Br(x) is a minimal ball, then x ∈ C(u, v).

The NCTM. We define a map T for B as follows. Let B ∈ B and u, v be a diametral pair of B.
We set T+(B) := {u, v} (T+(B) := B if |B| = 1). To define T−(B), let Br(x) be a minimal
ball from [B]. By Lemma 14, x belongs to C(u, v). If x is a cut vertex of C(u, v), then we set
T−(B) := ∅. Otherwise, let C be the unique cycle of C(u, v) containing x, and let u′ and v′ be
the respective gates of u and v in C. For any vertex z of K, we denote by z′ its gate in C. Consider
the set Z(x, u, v) = {z ∈ V (K) : z′ /∈ I(x, u′) ∪I(x, v′) and d(x, z) = r + 1}. If Z(x, u, v) = ∅,
then we set T−(B) = ∅. If Z(x, u, v) ̸= ∅, let Zu(x, u, v) = {s ∈ Z(x, u, v) : u′ ∈ I(x, s)}
and Zv(x, u, v) = {t ∈ Z(x, u, v) : v′ ∈ I(x, t)}. If Zu(x, u, v) (Zv(x, u, v), resp.) is not empty,
pick s ∈ Zu(x, u, v) (t ∈ Zv(x, u, v), resp.) such that the distance d(u′, s′) (d(v′, t′), resp.) is
maximized. We set T−(B) := {s, t} if s and t exist, and T−(B) := {s} or T−(B) := {t} if only
one of s and t exists (see Fig. 2). Observe that if the cycle C is not completely included in Br(x),
then s and t exist, they belong to C (possibly s = t), s = s′, t = t′, and d(x, s) = d(x, t) = r+ 1.

Theorem 15 Let B1, B2 ∈ B be two balls of the same diameter in a tree of cycles K such that, for
all q ∈ T (B1) ∪ T (B2), q ∈ B1 if and only if q ∈ B2. Then, B2 = B1. Consequently, T is an
NCTM of size 4 for B(K), and thus, NCTD(B(K)) ≤ 4, while VCD(B(K)) ≤ 3.

Proof (⋆) First, analogous to the case of trees, T is non-clashing for any pair of balls including a ball
of radius 0. Let Br1(x) ∈ [B1] be a minimal ball for B1 and u, v be the diametral pair of B1 defining
T+(B1). Analogously, let Br2(y) ∈ [B2] be a minimal ball for B2. By contradiction, assume that
B1 ̸= B2 and that T does not satisfy the non-clashing condition for B1 and B2. Without loss of
generality, suppose that there exists a vertex z ∈ B2 \ B1. One can show that x cannot disconnect
z and u (or v). So, x is not a cut vertex of C(u, v). Hence, x belongs to a unique (gated) cycle C of
C(u, v). Since diam(B1) = diam(B2) and T+(B1) ⊂ B2, u, v is also a diametral pair of B2.

If z′ ∈ I(x, u′), one can show that diam(B2) ≥ d(v, z) > d(v, u) = diam(B1), a contradic-
tion. Thus, z′ /∈ I(x, u′) and, similarly, z′ /∈ I(x, v′). Since x belongs to C, I(x, u′) and I(x, v′)
intersect only in x, and their union is the (u′, v′)-path passing via x. By the previous assertion, z′

belongs to the complementary (u′, v′)-path P of C and I(x, z′) ∩ {u′, v′} ̸= ∅. Hence, Z(x, u, v)
is non-empty. Indeed, let w be a vertex of I(x, z) at distance r1 + 1 from x. Then, either z′ is the
gate of w in C or w is a vertex of the path P , and so, w ∈ Z(x, u, v). Hence, Z(x, u, v) ̸= ∅, and
thus, one of the vertices s, t exists. If s (t, resp.) exists, then its gate s′ (t′, resp.) in C belongs to P .

13



CHALOPIN CHEPOI MC INERNEY RATEL

If C ⊈ B1, then s = s′ and t = t′ disconnect x and any vertex of P . Since x, z′ ∈ B2 and
s, t /∈ B2, necessarily z′ ∈ I(u′, s′)∪ I(v′, t′). If C ⊆ B1, then by the definition of s and t, we also
have z′ ∈ I(u′, s′)∪I(v′, t′). Assume, w.l.o.g., that z′ ∈ I(u′, s′) and recall that z′ ̸= u′. Since u′ ∈
I(z′, x) ⊆ I(s′, x), z′ ∈ I(x, z), and s′ ∈ I(x, s), we get d(x, z) = d(x, u′) + d(u′, z′) + d(z′, z)
and d(x, s) = d(x, u′) + d(u′, z′) + d(z′, s′) + d(s′, s). Since d(x, z) ≥ r1 + 1 = d(x, s), we
conclude that d(z′, z) ≥ d(z′, s′) + d(s′, s).

By Lemma 14 applied to B2 = Br2(y), we have y ∈ C(u, v). Thus, y = y′ ∈ C or y′ ∈
{u′, v′}. So, d(y, z) = d(y, y′)+d(y′, z′)+d(z′, z). As s /∈ B2, r2 < d(y, s) = d(y, y′)+d(y′, s′)+
d(s′, s) ≤ d(y, y′)+ d(y′, z′)+ d(z′, s′)+ d(s′, s) ≤ d(y, y′)+ d(y′, z′)+ d(z′, z) = d(y, z) ≤ r2,
a contradiction. This gives B1 = B2. The second assertion follows from the first one since two
balls with distinct diameters are distinguished by diametral pairs. Finally, VCD(B(K)) ≤ 3 since
trees of cycles K cannot be contracted to K4, and if a graph G does not contain Kd+1 as a minor,
then VCD(B(G)) ≤ d Bousquet and Thomassé (2015); Chepoi et al. (2007).

5.5. Hyperbolic graphs

Gromov’s δ-hyperbolicity is important in metric geometry and geometric group theory, with appli-
cations in analyzing real networks. It stipulates how close, locally, the graph (or metric space) is to
a tree metric. For δ ≥ 0, a metric space (X, d) is δ-hyperbolic Gromov (1987) if, for any four points
u, v, x, y of X , d(u, v)+d(x, y) ≤ max{d(u, x)+d(v, y), d(u, y)+d(v, x)}+2δ. Two sets A and
B of a metric space (X, d) are ρ-identical if the Hausdorff distance dH(A,B) between A and B is
at most ρ. Otherwise, they are ρ-distinct. For balls, Br1(x) and Br2(y) are ρ-identical if and only if
Br1(x) ⊆ Br2+ρ(y) and Br2(y) ⊆ Br1+ρ(x). A ρ-approximate NCTM+ (NCTM+

ρ ) T associates,
to each ball Br(x) ∈ B(G), a set T (x, r) ⊆ Br(x) such that the non-clashing condition holds for
each pair of ρ-distinct balls. For a δ-hyperbolic graph H and any ball Br(x) of H, let T (x, r) be any
diametral pair of Br(x) if r ≥ 1, and set T (x, 0) := {x}. Akin to our method in trees, we get that:

Theorem 16 For a δ-hyperbolic graph H, T is an NCTM+
2δ of size 2 for B(H).

6. Further work

As is the case for general set-families, it would be interesting to know whether B-NCTD+ and
B-NCTD are also para-NP-hard parameterized by k. Further, it would be intriguing to know for
which (other) structural parameterizations (e.g., treewidth, feedback vertex number, feedback edge
number, and treedepth) they are tractable, and whether NCTD(B(G)) > VCD(B(G)) for pla-
nar graphs. Lastly, as our NCTMs are simpler than the SCSs in Chalopin et al. (2023), it seems
reasonable to study them for notable and rich metric graph classes like median and Helly graphs.
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Appendix A. Full proofs of omitted or sketched proofs

Theorem 1 B-NCTD+ is NP-complete in split and co-bipartite graphs with a universal vertex,
and bipartite graphs of diameter 3.

Proof The problem is in NP since any NCTM+ T for B(G) has a set of at most n2 distinct balls as
a domain, and thus, it can be verified in polynomial time whether T satisfies both the non-clashing
condition for all pairs of balls in B(G), and the inclusion condition for each ball in B(G). In all
three cases, to prove that it is NP-hard, we give a reduction from SET COVER.

We begin with the case of split graphs. Let ϕ be an instance of SET COVER with X = {1, . . . , n}
and S = {S1, . . . , Sm}. We may also assume that ϕ is an instance in which each element of X is
contained in at most m − 2 sets of S. Indeed, any element contained in all of the sets of S will
be covered by any choice of the sets of S, and so, could simply be removed from the instance. In
the resulting instance, for each of the elements contained in exactly m − 1 sets of S, it suffices to
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duplicate the set not containing that element to obtain the property that any element is contained in
at most m− 2 sets of S. From this instance ϕ, we construct the graph G as follows. For all i ∈ [n]
and j ∈ [m], add a vertex vi and a vertex sj , and if i /∈ Sj in ϕ, then add the edge visj . Add the sets
of vertices U = {u1, . . . , um+1} and W = {w1, . . . , wm}, and, for all j, ℓ ∈ [m] such that j ̸= ℓ,
add the edge ujwℓ. For all j ∈ [m], add the edge um+1wj . Add edges so that every vertex in U is
adjacent to every vertex in S = {s1, . . . , sm}. Add edges so that every vertex in V = {v1, . . . , vn}
is adjacent to every vertex in W . Lastly, add edges so that the vertices in U ∪ V form a clique. This
completes the construction of G, which is clearly achieved in polynomial time. See Figure 3 for
an illustration of G. Note that um+1 is a universal vertex, and that the vertices in W ∪ S form an
independent set, and thus, G is a split graph containing a universal vertex. We prove that ϕ admits
a set cover of size at most t if and only if there is an NCTM+ of size at most k = m+ t for B(G).

w1

. . .

. . .

. . .

. . .w2 wms1 sm

u1 u2 um um+1v1 v2 v3 vn

S W

V U

Figure 3: The split graph G constructed in the proof of Theorem 1. Vertices contained in a rectangle
form a clique. An edge between two ellipses indicates that each vertex in one ellipse is
adjacent to each vertex in the other. Dashed lines highlight some non-existing edges. In
this example, 2, 3 ∈ S1 (but 1, n /∈ S1) and 1, 3 ∈ Sm (but 2, n /∈ Sm) in ϕ.

First, suppose that ϕ admits a set cover of size at most t, and let S ′ ⊂ S be such a set cover. Let
S′ ⊂ S be such that, for all j ∈ [m], Sj ∈ S ′ in ϕ if and only if sj ∈ S′. We define an NCTM+

T of size at most k for B(G) as follows. Also, note that we only need to define T for balls of G of
radius at most 1 since, for all x ∈ V (G), B2(x) = B1(um+1) = V (G).

• For all x ∈ V (G), set T (x, 0) := {x}.

• For all x ∈ V , set T (x, 1) := B1(x) ∩ S and note that |T (x, 1)| ≥ 2 since every element of
X is contained in at most m− 2 sets of S.

• For all x ∈ W ∪ S, set T (x, 1) := {x, um+1}.

• Finally, for all x ∈ U , set T (x, 1) := S′ ∪ (B1(x) ∩W ).

It is easy to verify that the map T has size at most k and satisfies the inclusion condition for
each ball in B(G). We now show that T satisfies the non-clashing condition for all pairs of balls
in B(G). For all x ∈ V (G), |B0(x)| = |T (x, 0)| = 1 and |T (x, 1)| ≥ 2, and thus, T satisfies the
non-clashing condition for all pairs of balls in B(G) where at least one of the balls has radius 0. For
all x ∈ W ∪ S, we have that x ∈ T (x, 1), and W ∪ S is an independent set. Hence, T satisfies the
non-clashing condition for all pairs of balls of radius 1 in B(G) centered at vertices in W ∪S. For all
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x, y ∈ V , B1(x)\S = B1(y)\S, T (x, 1)∩S = B1(x)∩S, and T (y, 1)∩S = B1(y)∩S. Hence,
T satisfies the non-clashing condition for all pairs of balls of radius 1 in B(G) centered at vertices
in V. For all x ∈ W ∪ S and y ∈ V , |B1(x) ∩ S| ≤ 1 and |T (y, 1) ∩ S| ≥ 2. Hence, T satisfies the
non-clashing condition for all pairs of balls of radius 1 in B(G) centered at vertices in W ∪ S ∪ V.
For all x, y ∈ U , B1(x)\W = B1(y)\W , T (x, 1)∩W = B1(x)∩W , T (y, 1)∩W = B1(y)∩W .
Hence, T satisfies the non-clashing condition for all pairs of balls of radius 1 in B(G) centered at
vertices in U. For all x ∈ U and y ∈ W ∪S, |T (x, 1)∩W | ≥ m−1 and B1(y)∩W ≤ 1. Hence, T
satisfies the non-clashing condition for all pairs of balls of radius 1 in B(G) centered at vertices in
W ∪S ∪U. For all x ∈ V , by the construction, we have that B1(x)∩S′ ̸= S′ since S′ corresponds
to the set cover S ′, and, for all y ∈ U , S′ ⊂ T (y, 1). Hence, T satisfies the non-clashing condition
for all pairs of balls of radius 1 in B(G) centered at vertices in V ∪ U. Combining all this, we get
that T is an NCTM+ of size at most k for B(G).

Now, suppose that ϕ does not admit a set cover of size at most t. In this case, we prove that there
is no NCTM+ of size at most k for B(G). We first prove that W ⊆ T (um+1, 1) for any NCTM+

T for B(G). Indeed, for all j ∈ [m], B1(um+1) = B1(uj)∪ {wj}, and so, to ensure that T satisfies
the non-clashing condition for the pair B1(um+1) and B1(uj), we must have that wj ∈ T (um+1, 1).
Now, we prove that |T (um+1, 1)∩S| > t for any NCTM+ T for B(G) in this case, which completes
the proof. Observe that, for all i ∈ [n], B1(vi) ⊂ B1(um+1) and (B1(um+1)\B1(vi)) ⊂ S. Hence,
for each i ∈ [n], to ensure that T satisfies the non-clashing condition for the pair B1(um+1) and
B1(vi), it is necessary that sj ∈ T (um+1, 1) for some j ∈ [m] such that sj /∈ B1(vi). However,
sj /∈ B1(vi) if and only if i ∈ Sj in ϕ. In other words, T (um+1, 1) ∩ S must correspond to a set
cover in ϕ, and thus, |T (um+1, 1)| > k. This concludes the proof for split graphs.

We now proceed with the proof for co-bipartite graphs. Let ϕ be an instance of SET COVER

with X = {1, . . . , n} and S = {S1, . . . , Sm}. As in the proof for split graphs, we may assume that
each element of X is contained in at most m− 2 sets of S. We may also assume that m > n since
we can simply duplicate sets in S to ensure this. From ϕ, we construct the graph G as in the proof
for split graphs, except that we add the necessary edges so that the vertices in W ∪ S form a clique,
and we add a vertex v∗ and make it adjacent to each vertex in V ∪W ∪U . The graph G is clearly a
co-bipartite graph with a universal vertex, that is constructed in polynomial time. See Figure 4 for
an illustration of G. We prove that ϕ admits a set cover of size at most t if and only if there is an
NCTM+ of size at most k = 2m+ t+ 1 for B(G).

w1

. . .

. . .

. . .

. . .w2 wms1 sm

u1 u2 um um+1v1 v2 v3 vn v∗

S W

UV

Figure 4: The co-bipartite graph G constructed in the proof of Theorem 1. An edge between a
vertex and an ellipse indicates that vertex is adjacent to each vertex in the ellipse.
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First, suppose that ϕ admits a set cover of size at most t, and let S ′ ⊂ S be such a set cover. Let
S′ ⊂ S be such that, for all j ∈ [m], Sj ∈ S ′ in ϕ if and only if sj ∈ S′. We define an NCTM+ T
of size at most k for B(G) as follows. As in the proof for split graphs, we only need to define T for
balls of G of radius at most 1 since, for all x ∈ V (G), B2(x) = B1(um+1) = V (G).

• For all x ∈ V (G), set T (x, 0) := {x}.

• Set T (v∗, 1) := {v∗, um+1}.

• For all x ∈ V , set T (x, 1) := {v∗} ∪ U ∪ (B1(x) ∩ S).

• For all x ∈ S, set T (x, 1) := {x, um+1} ∪ (B1(x) ∩ V ).

• For all x ∈ W , set T (x, 1) := {v∗} ∪ S ∪ (B1(x) ∩ U).

• Finally, for all x ∈ U , set T (x, 1) := {v∗} ∪ S′ ∪ {u1, . . . , um} ∪ (B1(x) ∩W ).

It is easy to verify that T satisfies the inclusion condition for each ball in B(G), and that T has
size at most k since m > n. We now show that T satisfies the non-clashing condition for all pairs of
balls in B(G). For all x ∈ V (G), |B0(x)| = |T (x, 0)| = 1 and |T (x, 1)| ≥ 2, and thus, T satisfies
the non-clashing condition for all pairs of balls in B(G) where at least one of the balls has radius 0.
For all x, y ∈ V , B1(x) \S = B1(y) \S, T (x, 1)∩S = B1(x)∩S, and T (y, 1)∩S = B1(y)∩S.
Hence, T satisfies the non-clashing condition for all pairs of balls of radius 1 in B(G) centered
at vertices in V. For all x, y ∈ U , B1(x) \ W = B1(y) \ W , T (x, 1) ∩ W = B1(x) ∩ W , and
T (y, 1) ∩ W = B1(y) ∩ W . Hence, T satisfies the non-clashing condition for all pairs of balls
of radius 1 in B(G) centered at vertices in U. For all x ∈ V , by the construction, we have that
B1(x) ∩ S′ ̸= S′ since S′ corresponds to the set cover S ′, and, for all y ∈ U , S′ ⊂ T (y, 1).
Hence, T satisfies the non-clashing condition for all pairs of balls of radius 1 in B(G) centered at
vertices in V ∪ U. For all x, y ∈ W , B1(x) \ U = B1(y) \ U , T (x, 1) ∩ U = B1(x) ∩ U , and
T (y, 1) ∩ U = B1(y) ∩ U . Hence, T satisfies the non-clashing condition for all pairs of balls
of radius 1 in B(G) centered at vertices in W. For all x ∈ V ∪ U and y ∈ W , we have that
{u1, . . . , um} ⊂ T (x, 1) and B1(y) ∩ {u1, . . . , um} ̸= {u1, . . . , um}. Hence, T satisfies the non-
clashing condition for all pairs of balls of radius 1 in B(G) centered at vertices in V ∪ U ∪W. For
all x ∈ V ∪ U ∪ W , |T (x, 1) ∩ S| ≥ 1 (recall that each element of X is contained in at most
m − 2 sets of S), and |B1(v

∗) ∩ S| = 0. Hence, T satisfies the non-clashing condition for all
pairs of balls of radius 1 in B(G) centered at vertices in V ∪ U ∪ W ∪ {v∗}. For all x, y ∈ S,
B1(x) \ V = B1(y) \ V , T (x, 1) ∩ V = B1(x) ∩ V , and T (y, 1) ∩ V = B1(y) ∩ V . Hence, T
satisfies the non-clashing condition for all pairs of balls of radius 1 in B(G) centered at vertices in
S. For all x ∈ V ∪U ∪W ∪{v∗} and y ∈ S, we have that v∗ ∈ T (x, 1) and v∗ /∈ B1(y). Hence, T
satisfies the non-clashing condition for all pairs of balls of radius 1 in B(G) centered at vertices in
V (G). Thus, T is an NCTM+ of size ≤ k for B(G).

Now, suppose that ϕ does not admit a set cover of size at most t. In this case, we prove that
there is no NCTM+ of size at most k for B(G). For all x ∈ V ∪ U , it holds that B1(x) \ {v∗} is
the same as in the graph G constructed in the proof for split graphs. Thus, since, for all x ∈ V ∪U ,
it holds that v∗ ∈ B1(x), we get that |T (um+1, 1) ∩ (W ∪ S)| > m + t for any NCTM+ T for
B(G) in this case. Now, we prove that |T (um+1, 1) ∩ {u1, . . . , um}| = m for any NCTM+ T for
B(G). Indeed, for all j ∈ [m], B1(um+1) = B1(wj) ∪ {uj}, and so, to ensure that T satisfies the
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non-clashing condition for the pair B1(um+1) and B1(wj), we must have that uj ∈ T (um+1, 1).
Lastly, we prove that |T (um+1, 1) ∩ (V ∪ {v∗})| ≥ 1 for any NCTM+ T for B(G). Indeed,
B1(um+1) = V (G) and, for all x ∈ S, B1(um+1) \ (V ∪ {v∗}) = B1(x) \ (V ∪ {v∗}), and so,
to ensure that T satisfies the non-clashing condition for the pair B1(um+1) and B1(x), we must
have that |T (um+1, 1) ∩ (V ∪ {v∗})| ≥ 1. Thus, |T (um+1, 1)| > k. This concludes the proof for
co-bipartite graphs.

We now proceed with the proof for bipartite graphs. Let ϕ be an instance of SET COVER with
X = {1, . . . , n} and S = {S1, . . . , Sm}. As in the proof for co-bipartite graphs, we may assume
that m > n, and that ϕ is an instance in which each element of X is contained in at most m − 2
sets of S . From this instance ϕ, we construct the graph G as follows. For all i ∈ [n] and j ∈ [m],
add a vertex vi and a vertex sj , and if i /∈ Sj in ϕ, then add the edge visj . Add the sets of vertices
U = {u1, . . . , um+1} and W = {w1, . . . , wm}, and, for all j, ℓ ∈ [m] such that j ̸= ℓ, add the edge
ujwℓ. For all j ∈ [m], add the edge um+1wj . Add edges so that every vertex in U is adjacent to
every vertex in V = {v1, . . . , vn}. Lastly, add a vertex z, and add edges so that z is adjacent to every
vertex in U ∪ S, where S = {s1, . . . , sm}. This completes the construction of G, which is clearly
achieved in polynomial time. See Figure 5 for an illustration of G. Note that G has diameter 3 and
is bipartite, as witnessed by the bipartition (W ∪ V ∪ {z}) ∪ (U ∪ S) of its vertices. We prove that
ϕ admits a set cover of size at most t if and only if there is an NCTM+ of size at most k = m + t
for B(G).

w1

. . .

. . .

. . .

. . .w2 wm

s1 sm

u1 u2 um um+1

v1 v2 v3 vn z

W

U

V ∪ {z}

S

Figure 5: The bipartite graph G constructed in the proof of Theorem 1. An edge between a vertex
and an ellipse indicates that vertex is adjacent to each vertex in the ellipse. See the caption
of Figure 3 for more details.

First, suppose that ϕ admits a set cover of size at most t, and let S ′ ⊂ S be such a set cover. Let
S′ ⊂ S be such that, for all j ∈ [m], Sj ∈ S ′ in ϕ if and only if sj ∈ S′. We define an NCTM+

T of size at most k for B(G) as follows. Also, note that we only need to define T for balls of G of
radius at most 2 since, for all x ∈ V (G), B3(x) = B2(um+1) = V (G). Furthermore, we only need
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to define T for balls of radius at most 1 centered at z since B2(z) = B2(um+1) and we will define
T for B2(um+1).

• For all x ∈ V (G), set T (x, 0) := {x}.

• For all x ∈ V , set T (x, 1) := {x} ∪ (B1(x) ∩ S) and T (x, 2) := {w1} ∪ (B1(x) ∩ S), and
note that |T (x, 2)| = |T (x, 1)| ≥ 3 since, in ϕ, every element of X is contained in at most
m− 2 sets of S.

• Similarly, set T (z, 1) := {z} ∪ S.

• For all x ∈ S, set T (x, 1) := {x, z} ∪ (B1(x) ∩ V ), T (x, 2) := {um+1, z} ∪ (B1(x) ∩ V ).

• For all x ∈ W , set T (x, 1) := {x} ∪ (B1(x) ∩ {u1, . . . , um}), and T (x, 2) := {x, z} ∪
(B1(x) ∩ {u1, . . . , um}).

• Finally, for all x ∈ U , set T (x, 1) := {x}∪ (B1(x)∩W ) and T (x, 2) := S′ ∪ (B1(x)∩W ).

It is easy to verify that T has size at most k and satisfies the inclusion condition for each ball in
B(G).

We now show that T satisfies the non-clashing condition for all pairs of balls in B(G). For all
x ∈ V (G), |B0(x)| = |T (x, 0)| = 1, |T (x, 1)| ≥ 2, and |T (x, 2)| ≥ 2, and thus, T satisfies the
non-clashing condition for all pairs of balls in B(G) where at least one of the balls has radius 0.
For all x ∈ V (G), we have that x ∈ T (x, 1). Furthermore, W ∪ S, W ∪ V ∪ {z}, and U ∪ S are
independent sets. Hence, T satisfies the non-clashing condition for all pairs of balls of radius 1 in
B(G) centered at vertices in

W ∪ S; (1)

W ∪ V ∪ {z}; (2)

U ∪ S. (3)

For all x ∈ W and y ∈ U , |T (x, 1) ∩ U | = m − 1 and |B1(y) ∩ U | = 1. Similarly, for all
x′ ∈ V ∪ {z} and y′ ∈ U ∪ S, |T (x′, 1) ∩ S| ≥ 2 and |B1(y

′) ∩ S| ≤ 1. Hence, in combination
with (1), (2), and (3), T satisfies the non-clashing condition for all pairs of balls of radius 1 in B(G)
centered at vertices in

V (G). (4)

For all x ∈ W and y ∈ U , |T (x, 2) ∩ W | = 1, |T (y, 2) ∩ W | ≥ m − 1, and |B1(z) ∩ W | = 0.
Also, for all x′ ∈ V , |B2(x

′) ∩ S| < m and |T (z, 1) ∩ S| = m. Lastly, |B1(z) ∩ V | = 0 and, for
all y′ ∈ S, either |T (y′, 2) ∩ V | = 0, in which case B1(z) = B2(y

′), or |T (y′, 2) ∩ V | ≥ 1. Recall
that B2(um+1) = B2(z), and hence, T satisfies the non-clashing condition for all pairs of balls in
B(G), where one of the balls is B1(z) and the other has radius 2 and is centered at a vertex in

V (G). (5)

For all x ∈ V (G), there exists a vertex y ∈ T (x, 2) such that d(x, y) = 2. Hence, in combination
with the construction of G, T satisfies the non-clashing condition for all pairs of balls in B(G),
where one of the balls has radius 1 and the other has radius 2, that are centered at vertices in

W ; (6)
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U ; (7)

V ; (8)

S. (9)

For all x ∈ S and y ∈ W , we have that z ∈ T (x, 2), z /∈ B1(y), |T (y, 2) ∩ U | = m − 1, and
|B1(x) ∩ U | = 0. Hence, in combination with (6) and (9), T satisfies the non-clashing condition
for all pairs of balls in B(G), where one of the balls has radius 1 and the other has radius 2, that are
centered at vertices in

W ∪ S. (10)

For all x ∈ V , y ∈ W , and q ∈ {1, 2}, |T (x, q) ∩ S| ≥ 2 and |Bq(y) ∩ S| = 0. Hence, in
combination with (6) and (8), T satisfies the non-clashing condition for all pairs of balls in B(G),
where one of the balls has radius 1 and the other has radius 2, that are centered at vertices in

W ∪ V. (11)

For all x ∈ W and y ∈ U , |T (x, 2) ∩ U | = m − 1, |B1(y) ∩ U | = 1, |T (y, 2) ∩ S| ≥ 1, and
|B1(x) ∩ S| = 0. Hence, in combination with (6) and (7), T satisfies the non-clashing condition
for all pairs of balls in B(G), where one of the balls has radius 1 and the other has radius 2, that are
centered at vertices in

W ∪ U. (12)

For all x ∈ S, y ∈ U , and q ∈ {1, 2}, |T (y, q) ∩W | ≥ m − 1 and |Bq(x) ∩W | = 0. Hence, in
combination with (7) and (9), T satisfies the non-clashing condition for all pairs of balls in B(G),
where one of the balls has radius 1 and the other has radius 2, that are centered at vertices in

U ∪ S. (13)

For all x ∈ V and y ∈ U , |T (y, 2) ∩ W | ≥ m − 1, |B1(x) ∩ W | = 0, |T (x, 2) ∩ S| ≥ 2, and
|B1(y) ∩ S| = 0. Hence, in combination with (7) and (8), T satisfies the non-clashing condition
for all pairs of balls in B(G), where one of the balls has radius 1 and the other has radius 2, that are
centered at vertices in

U ∪ V. (14)

For all x ∈ V and y ∈ S, we have that w1 ∈ T (x, 2), w1 /∈ B1(y), z ∈ T (y, 2), and z /∈ B1(x).
Hence, in combination with (8) and (9), T satisfies the non-clashing condition for all pairs of balls
in B(G), where one of the balls has radius 1 and the other has radius 2, that are centered at vertices
in

V ∪ S. (15)

Combining (5) and (10)–(15), T satisfies the non-clashing condition for all pairs of balls in B(G),
where one of the balls has radius 1 and the other has radius 2, that are centered at vertices in

V (G). (16)

It remains to prove that T satisfies the non-clashing condition for all pairs of balls of radius 2 in
B(G). For all j ∈ [m], T (wj , 2)∩{u1, . . . , um} = B2(wj)∩{u1, . . . , um} = {u1 . . . , um}\{uj}.
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Hence, T satisfies the non-clashing condition for all pairs of balls of radius 2 in B(G), that are
centered at vertices in

W. (17)

For all j ∈ [m], T (uj , 2) ∩ W = B2(uj) ∩ W = W \ {wj}. Also, W ⊂ T (um+1, 2). Hence,
T satisfies the non-clashing condition for all pairs of balls of radius 2 in B(G), that are centered at
vertices in

U. (18)

For any x, y ∈ V , B2(x)\S = B2(y)\S, T (x, 2)∩S = B2(x)∩S, and T (y, 2)∩S = B2(y)∩S.
Hence, T satisfies the non-clashing condition for all pairs of balls of radius 2 in B(G), that are
centered at vertices in

V. (19)

For any x, y ∈ S, B2(x)\V = B2(y)\V , T (x, 2)∩V = B2(x)∩V , and T (y, 2)∩V = B2(y)∩V .
Hence, T satisfies the non-clashing condition for all pairs of balls of radius 2 in B(G), that are
centered at vertices in

S. (20)

For all x ∈ W and y ∈ S, we have that x ∈ T (x, 2) and |B2(y) ∩W | = 0. Hence, in combination
with (17) and (20), T satisfies the non-clashing condition for all pairs of balls of radius 2 in B(G),
that are centered at vertices in

W ∪ S. (21)

For all x ∈ V and y ∈ W , |T (x, 2)∩S| ≥ 2 and |B2(y)∩S| = 0. Hence, in combination with (17)
and (19), T satisfies the non-clashing condition for all pairs of balls of radius 2 in B(G), that are
centered at vertices in

W ∪ V. (22)

For all x ∈ W and y ∈ U , |T (y, 2)∩S| ≥ 1 and |B2(x)∩S| = 0. Hence, in combination with (17)
and (18), T satisfies the non-clashing condition for all pairs of balls of radius 2 in B(G), that are
centered at vertices in

W ∪ U. (23)

For all x ∈ S and y ∈ U , |T (y, 2) ∩W | ≥ m − 1 and |B2(x) ∩W | = 0. Hence, in combination
with (18) and (20), T satisfies the non-clashing condition for all pairs of balls of radius 2 in B(G),
that are centered at vertices in

U ∪ S. (24)

For all x ∈ V and y ∈ S, we have that w1 ∈ T (x, 2) and w1 /∈ B2(y). Hence, in combination
with (19) and (20), T satisfies the non-clashing condition for all pairs of balls of radius 2 in B(G),
that are centered at vertices in

V ∪ S. (25)

For all x ∈ V , by the construction, B2(x) ∩ S′ ̸= S′ since S′ corresponds to the set cover S ′, and,
for all y ∈ U , S′ ⊂ T (y, 2). Hence, in combination with (18) and (19), T satisfies the non-clashing
condition for all pairs of balls of radius 2 in B(G), that are centered at vertices in

U ∪ V. (26)
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Combining (21)–(26), we get that T satisfies the non-clashing condition for all pairs of balls of
radius 2 in B(G), that are centered at vertices in

V (G). (27)

Combining (4), (16), and (27), we get that T is an NCTM+ of size at most k for B(G).
Now, suppose that ϕ does not admit a set cover of size at most t. In this case, we prove that

there is no NCTM+ of size at most k for B(G). We first prove that |T (um+1, 2) ∩ W | = m for
any NCTM+ T for B(G). Indeed, for all 1 ≤ j ≤ m, B2(um+1) = B2(uj) ∪ {wj}, and so,
to ensure that T satisfies the non-clashing condition for the pair B2(um+1) and B2(uj), we must
have that wj ∈ T (um+1, 2). Now, we prove that |T (um+1, 2) ∩ S| > t for any NCTM+ T for
B(G) in this case, which completes the proof. Observe that, for all i ∈ [n], B2(vi) ⊂ B2(um+1)
and (B2(um+1) \ B2(vi)) ⊂ S. Hence, for each i ∈ [n], to ensure that T satisfies the non-
clashing condition for the pair B2(um+1) and B2(vi), it is necessary that sj ∈ T (um+1, 1) for some
j ∈ [m] such that sj /∈ B1(vi). However, sj /∈ B1(vi) if and only if i ∈ Sj in ϕ. In other words,
T (um+1, 2) ∩ S must correspond to a set cover in ϕ, and thus, |T (um+1, 2)| > k. This concludes
the proof for bipartite graphs.

Proposition 2 B-NCTD+ and B-NCTD admit algorithms running in time 2O(n2·diam(G)).

Proof For any x ∈ V (G) and r ∈ N, there are at most 2n possible choices for T (x, r), and there are
at most n ·min{(diam+1), n} unique balls in G. Thus, for each possible (positive) NCTM, it can
be checked in polynomial time whether it satisfies the non-clashing condition for all pairs of balls in
B(G), and the inclusion condition (for B-NCTD+) for each ball in B(G). Hence, there is a brute-
force algorithm running in time 2O(n2·min{diam+1,n}) = 2O(n2·diam(G)) (since G is connected).

Lemma 5 If ϕ is satisfiable, then G admits an NCTM+ for B(G) of size k.

Proof Suppose that π : Xα ∪ Xβ ∪ Xγ → {True,False} is a satisfying assignment for ϕ. Let us
define the set π′ of vertices in Aα ∪ Aβ ∪ Aγ corresponding to π. Initially, set π′ := ∅. Now, for
each δ ∈ {α, β, γ} and xδi in ϕ, if π(xδi ) = True (π(xδi ) = False, respectively), then add tδ2i (f δ

2i−1,
respectively) to π′. Thus, |π′| = 3N and π′ corresponds to a satisfying assignment for ϕ in the sense
that, from π′, we can extract the satisfying assignment π for ϕ. Using π′, we define an NCTM+ T
of size k for B(G) as follows. Also, note that we only need to define T for balls of G of radius at
most 2 since, for all x ∈ V (G), B3(x) = B2(u3M+1) = V (G). Furthermore, we do not need to
define T for B2(u

′
3M+1) nor B2(z) since B2(z) = B2(u

′
3M+1) = B2(u3M+1), and we will define

T for B2(u3M+1).

• For all x ∈ V (G), set T (x, 0) := {x}.

• For each δ ∈ {α, β, γ} and x ∈ Aδ, set T (x, 1) := B1(x) and T (x, 2) := {u1, tδ
′

2 , t
δ′′
2 } ∪

B1(x), where δ′, δ′′ ∈ {α, β, γ} such that δ /∈ {δ′, δ′′} and δ′ ̸= δ′′. Note that T (x, 1) ⊂
T (x, 2) and |T (x, 2)| = O(logM).

• For each δ ∈ {α, β, γ} and x ∈ V δ ∪ V δ,∗, set T (x, 1) := B1(x) \ U and T (x, 2) :=
{w1, z} ∪ (B1(x) \ U). Note that T (x, 1) ⊂ T (x, 2) and |T (x, 2)| < 2N + 3M + 3.
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• For each x ∈ V W , set T (x, 1) := {u3M+1, u
′
3M+1} ∪ V W ∪ (B1(x) ∩ U) and T (x, 2) :=

{u3M+1, u
′
3M+1, z}∪V W∪U . Note that T (x, 1) ⊂ T (x, 2) and |T (x, 2)| = 3M+O(logM).

• For each δ ∈ {α, β, γ} and x ∈ C ∪ Cδ, set T (x, 1) := B1(x) and T (x, 2) := {x,w1} ∪
(B2(x) ∩ (Aα ∪ Aβ ∪ Aγ)). Note that |T (x, 1)| = O(logM) and |T (x, 2)| ≤ 6N + 2 <
3N + 3M = k.

• For each x ∈ U ∪ {u3M+1, u
′
3M+1}, set T (x, 1) := B1(x) \ (C ∪ Cα ∪ Cβ ∪ Cγ) and

T (x, 2) := (B2(x) ∩ W ) ∪ π′. Note that |T (x, 1)| ≤ 3M + O(logM) and |T (x, 2)| ≤
3N + 3M = k.

• For each x ∈ W , set T (x, 1) := B1(x) and T (x, 2) := {x, z, u3M+1, u
′
3M+1}∪(B2(x)∩U).

Note that |T (x, 1)| = O(logM) and |T (x, 2)| ≤ 3M + 4.

• Finally, set T (z, 1) := {z, u1}.

Hence, T has size at most k, and it is easy to verify that T satisfies the inclusion condition for
each ball in B(G).

We now show that T satisfies the non-clashing condition for all pairs of balls in B(G). For all
x ∈ V (G), |B0(x)| = |T (x, 0)| = 1, |T (x, 1)| ≥ 2, and |T (x, 2)| ≥ 2, and thus, T satisfies the
non-clashing condition for all pairs of balls in B(G) where at least one of the balls has radius 0.
For all x ∈ V (G), x ∈ T (x, 1). Furthermore, W ∪ U ∪ C ∪ Cα ∪ Cβ ∪ Cγ ∪ Aα ∪ Aβ ∪ Aγ ,
{z} ∪ W ∪ V α ∪ V β ∪ V γ ∪ V α,∗ ∪ V β,∗ ∪ V γ,∗, {u3M+1, u

′
3M+1} ∪ U ∪ Aα ∪ Aβ ∪ Aγ ,

C ∪ V α,∗ ∪ V β,∗ ∪ V γ,∗, Cα ∪ Cβ ∪ Cγ ∪ V α ∪ V β ∪ V γ , and {z} ∪ C ∪ Cα ∪ Cβ ∪ Cγ are
independent sets. Hence, T satisfies the non-clashing condition for all pairs of balls of radius 1 in
B(G) centered at vertices in

W ∪ U ∪ C ∪ Cα ∪ Cβ ∪ Cγ ∪Aα ∪Aβ ∪Aγ ; (1)

{z} ∪W ∪ V α ∪ V β ∪ V γ ∪ V α,∗ ∪ V β,∗ ∪ V γ,∗; (2)

{u3M+1, u
′
3M+1} ∪ U ∪Aα ∪Aβ ∪Aγ ; (3)

C ∪ V α,∗ ∪ V β,∗ ∪ V γ,∗; (4)

Cα ∪ Cβ ∪ Cγ ∪ V α ∪ V β ∪ V γ ; (5)

{z} ∪ C ∪ Cα ∪ Cβ ∪ Cγ . (6)

For all x ∈ W and y ∈ V W , |B1(x)∩ V W | = p, |T (y, 1)∩ V W | = 2p, and |T (u3M+1, 1)∩W | =
|T (u′3M+1, 1) ∩ W | = 3M . Hence, in combination with (1) and (2), T satisfies the non-clashing
condition for all pairs of balls of radius 1 in B(G), where one of the balls is centered at a vertex in

W. (7)

For all x ∈ V W and x′ ∈ U ∪ {u3M+1, u
′
3M+1}, we have that z ∈ T (x′, 1) and z /∈ B1(x).

Further, for all x ∈ V W and x′′ ∈ V (G) \ (V W ∪ W ∪ U ∪ {u3M+1, u
′
3M+1}), we have that

x′′ ∈ T (x′′, 1) and x′′ /∈ B1(x). Lastly, for all x, y ∈ V W , B1(x) \ (W ∪ U) = B1(y) \ (W ∪ U),
(B1(x) ∩ U) ⊂ T (x, 1), (B1(y) ∩ U) ⊂ T (y, 1), and B1(x) ∩ U = B1(y) ∩ U if and only if
B1(x) ∩ W = B1(y) ∩ W by the construction. Hence, in combination with (7), T satisfies the
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non-clashing condition for all pairs of balls of radius 1 in B(G), where one of the balls is centered
at a vertex in

V W . (8)

For all x ∈ U ∪{u3M+1, u
′
3M+1}, |T (x, 1)∩V W | ≥ p. Further, for all y ∈ V (G)\(V W ∪W ∪U ∪

{u3M+1, u
′
3M+1}), |B1(y) ∩ V W | = 0. Hence, in combination with (3), (7), and (8), this implies

that T satisfies the non-clashing condition for all pairs of balls of radius 1 in B(G), where one of
the balls is centered at a vertex in

U ∪ {u3M+1, u
′
3M+1}. (9)

For all x ∈ C, y ∈ Cα ∪Cβ ∪Cγ , and δ ∈ {α, β, γ}, |T (x, 1)∩V δ| ≥ p and |T (y, 1)∩V δ,∗| ≥ p.
Hence, in combination with (1), (4), (5), (6), (8), and (9), T satisfies the non-clashing condition for
all pairs of balls of radius 1 in B(G), where one of the balls is centered at a vertex in

C ∪ Cα ∪ Cβ ∪ Cγ . (10)

For all x ∈ Aα ∪ Aβ ∪ Aγ and δ ∈ {α, β, γ}, |T (x, 1) ∩ V δ| ≥ p and z ∈ T (x, 1). Hence, in
combination with (1), (2), and (7)–(10), T satisfies the non-clashing condition for all pairs of balls
of radius 1 in B(G) centered at vertices in

V (G). (11)

For all x ∈ V (G) \ (U ∪ Aα ∪ Aβ ∪ Aγ ∪ {u3M+1, u
′
3M+1}), we have that x ∈ T (x, 2) and

x /∈ B1(z). For all δ ∈ {α, β, γ} and x′ ∈ Aδ, |T (x′, 2) ∩ V δ| = p and |B1(z) ∩ V δ| = 0.
Lastly, for all x′′ ∈ U ∪ {u3M+1}, |T (x′′, 2) ∩W | ≥ 3M − 1 and |B1(z) ∩W | = 0. Recall that
B2(u3M+1) = B2(u

′
3M+1) = B2(z), and hence, T satisfies the non-clashing condition for all pairs

of balls in B(G), where one of the balls is B1(z) and the other has radius 2 and is centered at a
vertex in

V (G). (12)

For all x ∈ V (G), there exists a vertex y ∈ T (x, 2) such that d(x, y) = 2. Hence, in combination
with the construction of G, T satisfies the non-clashing condition for all pairs of balls in B(G),
where one of the balls has radius 1 and the other has radius 2, that are centered at vertices in

W ; (13)

V W ; (14)

U ∪ {u3M+1, u
′
3M+1}; (15)

C ∪ Cα ∪ Cβ ∪ Cγ ; (16)

V α ∪ V β ∪ V γ ∪ V α,∗ ∪ V β,∗ ∪ V γ,∗; (17)

Aα ∪Aβ ∪Aγ . (18)

For all x ∈ W and y ∈ V W , we have that z ∈ T (x, 2), z /∈ B1(y), z ∈ T (y, 2), and z /∈ B1(x).
Hence, in combination with (13) and (14), T satisfies the non-clashing condition for all pairs of
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balls in B(G), where one of the balls has radius 1 and the other has radius 2, that are centered at
vertices in

W ∪ V W . (19)

For all x ∈ W and y ∈ U ∪ {u3M+1, u
′
3M+1}, |T (x, 2) ∩ {u3M+1, u

′
3M+1}| = 2, |B1(y) ∩

{u3M+1, u
′
3M+1}| ≤ 1, |T (y, 2) ∩ Aα| = N , and |B1(x) ∩ Aα| = 0. Hence, in combination with

(13) and (15), T satisfies the non-clashing condition for all pairs of balls in B(G), where one of the
balls has radius 1 and the other has radius 2, that are centered at vertices in

W ∪ U ∪ {u3M+1, u
′
3M+1}. (20)

For all x ∈ W and y ∈ V (G) \ (W ∪ V W ∪ U ∪ {u3M+1, u
′
3M+1, z}), we have that x ∈ T (x, 2),

x /∈ B1(y), y ∈ T (y, 2), and y /∈ B1(x). Hence, in combination with (13) and (16)–(18), T satisfies
the non-clashing condition for all pairs of balls in B(G), where one of the balls has radius 1 and the
other has radius 2, that are centered at vertices in

W ∪ C ∪ Cα ∪ Cβ ∪ Cγ ; (21)

W ∪ V α ∪ V β ∪ V γ ∪ V α,∗ ∪ V β,∗ ∪ V γ,∗; (22)

W ∪Aα ∪Aβ ∪Aγ . (23)

For all x ∈ V W and y ∈ U ∪ {u3M+1, u
′
3M+1}, |T (x, 2) ∩ {u3M+1, u

′
3M+1}| = 2, |B1(y) ∩

{u3M+1, u
′
3M+1}| ≤ 1, |T (y, 2) ∩ Aα| = N , and |B1(x) ∩ Aα| = 0. Hence, in combination with

(14) and (15), T satisfies the non-clashing condition for all pairs of balls in B(G), where one of the
balls has radius 1 and the other has radius 2, that are centered at vertices in

V W ∪ U ∪ {u3M+1, u
′
3M+1}. (24)

For all x ∈ V W and y ∈ V (G) \ (W ∪ V W ∪U ∪ {u3M+1, u
′
3M+1, z}), we have that x ∈ T (x, 2),

x /∈ B1(y), y ∈ T (y, 2), and y /∈ B1(x). Hence, in combination with (14) and (16)–(18), T satisfies
the non-clashing condition for all pairs of balls in B(G), where one of the balls has radius 1 and the
other has radius 2, that are centered at vertices in

V W ∪ C ∪ Cα ∪ Cβ ∪ Cγ ; (25)

V W ∪ V α ∪ V β ∪ V γ ∪ V α,∗ ∪ V β,∗ ∪ V γ,∗; (26)

V W ∪Aα ∪Aβ ∪Aγ . (27)

For all x ∈ U ∪{u3M+1, u
′
3M+1} and y ∈ V (G)\(W ∪V W ∪U ∪{u3M+1, u

′
3M+1, z}), |T (x, 2)∩

W | ≥ 3M−1, |B1(y)∩W | = 0, |T (y, 2)∩(Aα∪Aβ∪Aγ)| ≥ 1, and |B1(x)∩(Aα∪Aβ∪Aγ)| = 0.
Hence, in combination with (15)–(18), T satisfies the non-clashing condition for all pairs of balls in
B(G), where one of the balls has radius 1 and the other has radius 2, that are centered at vertices in

U ∪ {u3M+1, u
′
3M+1} ∪ C ∪ Cα ∪ Cβ ∪ Cγ ; (28)

U ∪ {u3M+1, u
′
3M+1} ∪ V α ∪ V β ∪ V γ ∪ V α,∗ ∪ V β,∗ ∪ V γ,∗; (29)

U ∪ {u3M+1, u
′
3M+1} ∪Aα ∪Aβ ∪Aγ . (30)
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For all x ∈ C ∪ Cα ∪ Cβ ∪ Cγ and y ∈ V α ∪ V β ∪ V γ ∪ V α,∗ ∪ V β,∗ ∪ V γ,∗, we have that
w1 ∈ T (x, 2), w1 /∈ B1(y), z ∈ T (y, 2), and z /∈ B1(x). Hence, in combination with (16) and
(17), T satisfies the non-clashing condition for all pairs of balls in B(G), where one of the balls has
radius 1 and the other has radius 2, that are centered at vertices in

C ∪ Cα ∪ Cβ ∪ Cγ ∪ V α ∪ V β ∪ V γ ∪ V α,∗ ∪ V β,∗ ∪ V γ,∗. (31)

For all x ∈ C ∪ Cα ∪ Cβ ∪ Cγ and y ∈ Aα ∪ Aβ ∪ Aγ , we have that x ∈ T (x, 2), x /∈ B1(y),
y ∈ T (y, 2), and y /∈ B1(x). Hence, in combination with (16) and (18), T satisfies the non-clashing
condition for all pairs of balls in B(G), where one of the balls has radius 1 and the other has radius 2,
that are centered at vertices in

C ∪ Cα ∪ Cβ ∪ Cγ ∪Aα ∪Aβ ∪Aγ . (32)

For all x ∈ V α∪V β ∪V γ ∪V α,∗∪V β,∗∪V γ,∗ and y ∈ Aα∪Aβ ∪Aγ , we have that w1 ∈ T (x, 2),
w1 /∈ B1(y), z ∈ T (y, 2), and z /∈ B1(x). Hence, in combination with (17) and (18), T satisfies
the non-clashing condition for all pairs of balls in B(G), where one of the balls has radius 1 and the
other has radius 2, that are centered at vertices in

V α ∪ V β ∪ V γ ∪ V α,∗ ∪ V β,∗ ∪ V γ,∗ ∪Aα ∪Aβ ∪Aγ . (33)

Combining (12) and (19)–(33), T satisfies the non-clashing condition for all pairs of balls in B(G),
where one of the balls has radius 1 and the other has radius 2, that are centered at vertices in

V (G). (34)

It remains to prove that T satisfies the non-clashing condition for all pairs of balls of radius 2 in
B(G). For all ℓ ∈ [3M ], T (wℓ, 2) ∩ U = B2(wℓ) ∩ U = U \ {uℓ}. Hence, T satisfies the
non-clashing condition for all pairs of balls of radius 2 in B(G) that are centered at vertices in

W. (35)

For any x, y ∈ V W , B2(x) = B2(y). Hence, T satisfies the non-clashing condition for all pairs of
balls of radius 2 in B(G) that are centered at vertices in

V W . (36)

For all ℓ ∈ [3M ], T (uℓ, 2) ∩ W = B2(uℓ) ∩ W = W \ {wℓ}, and W ⊂ T (u3M+1, 2). Hence,
T satisfies the non-clashing condition for all pairs of balls of radius 2 in B(G) that are centered at
vertices in

U ∪ {u3M+1}. (37)

For any x, y ∈ C ∪ Cα ∪ Cβ ∪ Cγ , B2(x) \ (Aα ∪ Aβ ∪ Aγ) = B2(y) \ (Aα ∪ Aβ ∪ Aγ),
B2(x) ∩ (Aα ∪ Aβ ∪ Aγ) ⊂ T (x, 2), and B2(y) ∩ (Aα ∪ Aβ ∪ Aγ) ⊂ T (y, 2). Hence, T satisfies
the non-clashing condition for all pairs of balls of radius 2 in B(G) that are centered at vertices in

C ∪ Cα ∪ Cβ ∪ Cγ . (38)

For any x, y ∈ V α∪V β∪V γ∪V α,∗∪V β,∗∪V γ,∗, B2(x)\(Aα∪Aβ∪Aγ) = B2(y)\(Aα∪Aβ∪Aγ),
B2(x)∩ (Aα ∪Aβ ∪Aγ) = B1(x)∩ (Aα ∪Aβ ∪Aγ) ⊂ T (x, 2), and B2(y)∩ (Aα ∪Aβ ∪Aγ) =

30



NON-CLASHING TEACHING MAPS FOR BALLS IN GRAPHS

B1(y) ∩ (Aα ∪ Aβ ∪ Aγ) ⊂ T (y, 2). Hence, T satisfies the non-clashing condition for all pairs of
balls of radius 2 in B(G) that are centered at vertices in

V α ∪ V β ∪ V γ ∪ V α,∗ ∪ V β,∗ ∪ V γ,∗. (39)

For any x, y ∈ Aα∪Aβ∪Aγ , we have that B1(x) ⊂ T (x, 2), B1(y) ⊂ T (y, 2), and B2(x) ̸= B2(y)
if and only if B1(x) ̸= B1(y). Hence, T satisfies the non-clashing condition for all pairs of balls of
radius 2 in B(G) that are centered at vertices in

Aα ∪Aβ ∪Aγ . (40)

For all x ∈ W and y ∈ V W , B2(x) \ U = B2(y) \ U and U ⊂ T (y, 2). Hence, in combination
with (35) and (36), T satisfies the non-clashing condition for all pairs of balls of radius 2 in B(G)
that are centered at vertices in

W ∪ V W . (41)

For all x ∈ W ∪V W and y ∈ V (G)\(W ∪V W ∪{u′3M+1}∪{z}), |T (y, 2)∩(Aα∪Aβ∪Aγ)| ≥ 1

and |B2(x) ∩ (Aα ∪ Aβ ∪ Aγ)| = 0. Hence, in combination with (37)–(41), T satisfies the non-
clashing condition for all pairs of balls of radius 2 in B(G) that are centered at vertices in

W ∪ V W ∪ U ∪ {u3M+1}; (42)

W ∪ V W ∪ C ∪ Cα ∪ Cβ ∪ Cγ ; (43)

W ∪ V W ∪ V α ∪ V β ∪ V γ ∪ V α,∗ ∪ V β,∗ ∪ V γ,∗; (44)

W ∪ V W ∪Aα ∪Aβ ∪Aγ . (45)

For all x ∈ U∪{u3M+1} and y ∈ C∪Cα∪Cβ∪Cγ , we have that π′ ⊂ T (x, 2) and B2(y)∩π′ ̸= π′.
Indeed, for all y ∈ C ∪ Cα ∪ Cβ ∪ Cγ , the only vertices in Aα ∪ Aβ ∪ Aγ that are not in B2(y)
are those corresponding to the literals contained in the clause corresponding to y in ϕ (as mentioned
before, for each i ∈ [N ] and δ ∈ {α, β, γ}, the vertex cδi can be thought of as a clause containing
only the positive and negative literals of xδi ). The property then follows since π′ corresponds to
the satisfying assignment π for ϕ. Hence, in combination with (37) and (38), T satisfies the non-
clashing condition for all pairs of balls of radius 2 in B(G) that are centered at vertices in

U ∪ {u3M+1} ∪ C ∪ Cα ∪ Cβ ∪ Cγ . (46)

For all x ∈ U ∪ {u3M+1} ∪ C ∪ Cα ∪ Cβ ∪ Cγ and y ∈ Aα ∪ Aβ ∪ Aγ , |T (x, 2) ∩W | ≥ 1 and
|B2(y)∩W | = 0. Hence, in combination with (40) and (46), T satisfies the non-clashing condition
for all pairs of balls of radius 2 in B(G) that are centered at vertices in

U ∪ {u3M+1} ∪ C ∪ Cα ∪ Cβ ∪ Cγ ∪Aα ∪Aβ ∪Aγ . (47)

For all x ∈ U∪{u3M+1}∪C∪Cα∪Cβ∪Cγ∪Aα∪Aβ∪Aγ , y ∈ V α∪V β∪V γ∪V α,∗∪V β,∗∪V γ,∗,
and δ ∈ {α, β, γ}, |T (x, 2) ∩ Aδ| ≥ 1 and, for some δ′ ∈ {α, β, γ}, |B2(y) ∩ Aδ′ | = 0. Hence,
in combination with (39) and (47), T satisfies the non-clashing condition for all pairs of balls of
radius 2 in B(G) that are centered at vertices in

U ∪{u3M+1}∪C ∪Cα ∪Cβ ∪Cγ ∪Aα ∪Aβ ∪Aγ ∪V α ∪V β ∪V γ ∪V α,∗ ∪V β,∗ ∪V γ,∗. (48)
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Combining (42)–(45) and (48), T satisfies the non-clashing condition for all pairs of balls of radius 2
in B(G) that are centered at vertices in

V (G). (49)

Combining (11), (34), and (49), we get that T is an NCTM+ of size at most k for B(G).

Lemma 6 If G admits an NCTM+ for B(G) of size k, then ϕ is satisfiable.

Proof Suppose that T is an NCTM+ for B(G) of size k. We first prove some properties of T . For
each ℓ ∈ [3M ], to ensure that T satisfies the non-clashing condition for the pair B2(u3M+1) =
V (G) and B2(uℓ) = V (G) \ {wℓ}, we have that |T (u3M+1, 2) ∩ W | = 3M . For each i ∈ [N ]
and δ ∈ {α, β, γ}, to ensure that T satisfies the non-clashing condition for the pair B2(u3M+1) =
V (G) and B2(c

δ
i ) = V (G) \ {tδ2i, f δ

2i−1}, we have that |T (u3M+1, 2) ∩ {tδ2i, f δ
2i−1}| ≥ 1. Since

k = 3N + 3M , by the two previous arguments, it must be that |T (u3M+1, 2) ∩ {tδ2i, f δ
2i−1}| = 1

for each i ∈ [N ] and δ ∈ {α, β, γ}.
From T (u3M+1, 2), we extract an assignment π : Xα ∪Xβ ∪Xγ → {True,False} for ϕ. For

each i ∈ [N ] and δ ∈ {α, β, γ}, if T (u3M+1, 2) ∩ {tδ2i, f δ
2i−1} = {tδ2i}, then set π(xδi ) = True, and

otherwise, set π(xδi ) = False. Thus, each variable in ϕ is assigned exactly one truth value by π. It
remains to show that π is a satisfying assignment for ϕ.

Recall that, for each ℓ ∈ [M ], we have that cℓ is the vertex in G corresponding to the clause Cℓ

in ϕ. By the construction, for each i ∈ [N ] and δ ∈ {α, β, γ}, if xδi appears as a positive (negative,
respectively) literal in Cℓ, then tδ2i /∈ B2(cℓ) (f δ

2i−1 /∈ B2(cℓ), respectively). Moreover, these are
the only vertices of G that are not in B2(cℓ). Since, for all ℓ ∈ [M ], T satisfies the non-clashing
condition for the pair B2(u3M+1) = V (G) and B2(cℓ), we have that T (u3M+1, 2) contains at least
one of the vertices missing from B2(cℓ). Further, for each of these vertices in T (u3M+1, 2) that are
missing from B2(cℓ), π assigns the corresponding truth value of that vertex to the corresponding
variable. Since this is true for the clause vertices in C corresponding to all the clauses in ϕ, we have
that π is a satisfying assignment for ϕ.

Theorem 7 B-NCTD+ admits

• an algorithm running in time 22
O(vc) · nO(1), and

• a kernelization algorithm outputting a kernel with 2O(vc) vertices.

Proof We begin by proving that B-NCTD+ admits a kernelization algorithm outputting a kernel
with 2O(vc) vertices. Given a graph G, let X ⊆ V (G) be a minimum vertex cover of G, that is,
I =: V (G) \X is an independent set. If a minimum vertex cover is not given, then we can compute
a 2-approximate vertex cover in polynomial time. The kernelization algorithm exhaustively applies
Reduction Rule 1 to G, which is safe by Lemma 8. Now, for any instance on which Reduction
Rule 1 cannot be applied, it holds that, for any Y ⊆ X , there are at most 2vc+1 vertices in I whose
open neighborhoods are exactly Y . Since there are 2vc distinct subsets of vertices of X , there are at
most 2vc · (2vc + 1) + vc = 2O(vc) vertices in the reduced instance.

To obtain an algorithm running in time 22
O(vc) · nO(1), one can apply the above (polynomial-

time) kernelization algorithm to the graph G, and then apply the algorithm from Proposition 2 to
the resulting kernel.
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Lemma 8 Reduction Rule 1 is safe for B-NCTD+.

Proof Let S ⊆ I be a set of 2|X| + 2 vertices that are pairwise false twins. Let T be an NCTM+ of
size at most k for B(G). Since T satisfies the non-clashing condition, for any u, v ∈ S, at least one
of the inclusions u ∈ T (u, 1), v ∈ T (v, 1) holds. Thus, there is at most one vertex w ∈ S such that
w /∈ T (w, 1). Note that, for any u ∈ S, T (u, 1) ⊆ B1(u) ⊆ X ∪ {u}. As there are at most 2|X|

distinct subsets of the vertices of X , and there is at most one vertex w ∈ S such that w /∈ T (w, 1),
since |S| = 2|X| + 2, there exist two vertices x, y ∈ S such that x ∈ T (x, 1), y ∈ T (y, 1),
and T (x, 1) \ {x} = T (y, 1) \ {y}. Pick any vertex z ∈ V (G) \ {y} and any r ∈ N such that
y ∈ T (z, r). We assert that removing y from T (z, r) and adding another carefully chosen vertex v
to T (z, r) maintains that T is an NCTM+ of size at most k for B(G). If it was not the case that x
was in T (z, r), then v = x, and otherwise, v is any other vertex in S \ {y} (if S \ {y} ⊆ T (z, r),
then y is simply removed from T (z, r) and no vertex is added to it).

Namely, let T ′ be the map obtained from T by applying the above procedure for all z ∈ V (G) \
{y} and any r ∈ N such that y ∈ T (z, r). Note that x ∈ T ′(z, r) and T (z, r) \ {y} ⊆ T ′(z, r).
Clearly, T ′ has size at most k, so it remains to show that T ′ is an NCTM+ for B(G). The presence
of y in T (z, r) could only be used to satisfy the non-clashing condition between Br(z) (which
contains S) and a ball B′ that contains at most 1 vertex from S \ {y} since any ball in G contains 0,
1 or |S| vertices from S as the vertices of S are pairwise false twins. If |B′ ∩ S| = 0, then T ′(z, r)
satisfies the non-clashing condition for the pair Br(z) and B′ since x ∈ T ′(z, r) ∩ S. Otherwise,
|B′ ∩ S| = 1, and so, B′ is a ball of radius 0 or 1 centered at a vertex in S. In this case, T ′(z, r)
clearly satisfies the non-clashing condition for the pair Br(z) and B′, as long as B′ is not the ball
of radius 0 or 1 centered at x. Thus, let B′ ∈ {B0(x), B1(x)}. For T to be an NCTM+ for B(G),
it must be that T (z, r) ̸= {x}, and thus, T ′(z, r) ̸= {x}, since otherwise T would not satisfy
the non-clashing condition for the pair Br(z) and B0(x). Hence, let B′ = B1(x). If there exists
w1 ∈ T (z, r) such that w1 /∈ B′∪{y}, then T ′ satisfies the non-clashing condition for the pair Br(z)
and B′ since T (z, r)\{y} ⊆ T ′(z, r). So, assume no such vertex w1 exists. Similarly, if there exists
w2 ∈ T (x, 1) such that w2 /∈ Br(z), then T ′ satisfies the non-clashing condition for the pair Br(z)
and B′. So, assume no such vertex w2 exists. Then, it must be that T (z, r) \ {y} ⊆ B1(x) and
T (x, 1) ⊆ Br(z). Thus, T (y, 1) ⊆ Br(z) since T (x, 1) \ {x} = T (y, 1) \ {y} and x, y ∈ Br(z).
Since T is an NCTM+ for B(G), T (z, r) \B1(y) ̸= ∅. Let the vertex s be in T (z, r) \B1(y), and
note that s ∈ T ′(z, r)\B1(y) since T (z, r)\{y} ⊆ T ′(z, r). If s ̸= x, then T ′(z, r) satisfies the non-
clashing condition for the pair Br(z) and B1(x). If s = x, then there exists t ∈ T ′(z, r)∩(S\{x, y})
since either v = t or t was already in T (z, r). In this case, T ′(z, r) satisfies the non-clashing
condition for the pair Br(z) and B1(x). Consequently, T ′ is an NCTM+ for B(G). Since y is not
contained in T ′(z, r), then T ′ restricted to the vertices of G \ {y} is an NCTM+ of size at most k
for B(G \ {y}).

For the reverse direction, let T ′ be an NCTM+ of size at most k for B(G \ {y}). Without loss
of generality, assume that T ′(z, r) ̸= ∅ for any z ∈ V (G) and any integer r ≥ 0. First, note that
the addition of y does not make any two balls that were the same in G \ {y} become distinct in G.
Indeed, if both balls contained every vertex in S\{y}, then they will both contain y; if both balls did
not contain any vertex in S \{y}, then neither of them will contain y; if both balls contained exactly
one vertex in S \ {y}, then neither of them will contain y. Hence, it suffices to extend T ′ to an
NCTM+ T of size at most k for B(G), by defining T (y, r) for all r ∈ N so that T satisfies the non-
clashing condition for any pair of balls, where one ball is centered in y. Thus, let T (z, r) := T ′(z, r)

33



CHALOPIN CHEPOI MC INERNEY RATEL

for all z ∈ V (G) \ {y} and r ∈ N. As before, let x ∈ S be such that x ∈ T (x, 1) (there must be
such an x since there is at most one vertex w ∈ S such that w /∈ T (w, 1)). Set T (y, 0) := {y},
T (y, 1) := {y} ∪ (T ′(x, 1) \ {x}), and T (y, r) = T ′(x, r) for all integers r ≥ 2. Note that
B1(x) \ {x} = B1(y) \ {y} and Br(x) = Br(y) for all integers r ≥ 2.

To show that T is an NCTM+ for B(G), we have to show that it satisfies the non-clashing
condition for a ball B ∈ {B0(y), B1(y)} and any other ball B′ = Br(z). First, let z = y. Since
T ′ satisfies the non-clashing condition for B0(x) and Br(x) for any r > 0, T ′(x, r) \ {x} ≠ ∅,
and thus, T (y, r) \ {y} ≠ ∅ since T ′(x, r) \ {x} ⊆ T (y, r) \ {y} for all r > 0. Moreover,
since T ′ satisfies the non-clashing condition for B1(x) and Br(x) for any r > 1, there exists
u ∈ T ′(x, r)\B1(x). Note that u ̸= y, and thus, u ∈ T (y, r)\B1(y). Consequently, T satisfies the
non-clashing condition for a ball B in {B0(y), B1(y)} and any other ball Br(y). Now, let z = x.
If r ≤ 1, then y ∈ T (y, r) \ Br(x). If r ≥ 2, then Br(x) = Br(y) and, by the previous case, T
satisfies the non-clashing condition for B ∈ {B0(y), B1(y)} and Br(x). Finally, let z /∈ {x, y}.
Since T (z, r) = T ′(z, r) is non-empty and does not contain y, we have that T (z, r) \ B0(y) ̸= ∅.
If T (z, r) \ B1(y) ̸= ∅, then T satisfies the non-clashing condition for B1(y) and Br(z). Suppose
now that T (z, r) ⊆ B1(y). Since y /∈ T (z, r) = T ′(z, r), T ′(z, r) ⊆ B1(y) \ {y} ⊆ B1(x). Since
T ′ satisfies the non-clashing condition for Br(z) and B1(x), there exists u ∈ T ′(x, 1) \ Br(z). If
u ̸= x, then u ∈ T (y, 1) \ Br(z), and if u = x, then Br(z) contains neither x nor y, and thus,
y ∈ T (y, 1) \ Br(z). In any case, T satisfies the non-clashing condition for B1(y) and Br(z).
Hence, T is an NCTM+ of size at most k for B(G).

We continue with Lemma 14, which we reformulate and prove in a more general form through
the following lemma and its corollary:

Lemma 17 (Lemma 11, Chalopin et al. (2023)) Let B ∈ B, X be a realizable sample for B, and
{u, v} be a diametral pair of X+ in K. If Br(x) ∈ [B], x′ is the apex of x with respect to u and v,
and r′ = r − d(x, x′), then X is a realizable sample for Br′(x

′). Consequently, the path of cycles
C(u, v) contains a center of a ball realizing X .

Corollary 18 If {u, v} is a diametral pair of a ball Br(x), x′ is the apex of x with respect to u and
v, and r′ = r − d(x, x′), then Br′(x

′) = Br(x). In particular, if B ∈ B, {u, v} is a diametral pair
of B, and Br(x) is a minimal ball of [B], then x belongs to C(u, v).

Proof Set X := V (K). By Lemma 17, Br(x) = X+ ⊂ Br′(x
′) ⊆ Br(x), yielding Br′(x

′) =
Br(x).

Theorem 15 Let B1, B2 ∈ B be two balls of the same diameter in a tree of cycles K such that, for
all q ∈ T (B1) ∪ T (B2), q ∈ B1 if and only if q ∈ B2. Then, B2 = B1. Consequently, T is an
NCTM of size 4 for B(K), and thus, NCTD(B(K)) ≤ 4, while VCD(B(K)) ≤ 3.

Proof First, analogous to the case of trees, T is non-clashing for any pair of balls including a ball
of radius 0. Now, suppose that B1 is defined by the minimal ball Br1(x) ∈ [B1] and let u, v be the
diametral pair of B1 defining T+(B1). Analogously, suppose that B2 is defined by the minimal ball
Br2(y) ∈ [B2]. By contradiction, assume that B1 ̸= B2 and that T does not satisfy the non-clashing
condition for B1 and B2. Without loss of generality, suppose that there exists a vertex z ∈ B2 \B1.
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Claim 19 The vertex x is not a cut vertex of C(u, v).

Proof By Corollary 18, x belongs to C(u, v). If x disconnects u and v, we can suppose, without
loss of generality, that x also disconnects z and u. Consequently, d(z, u) = d(z, x) + d(x, u) >
r1 + d(x, u) ≥ d(v, x) + d(x, u) = d(v, u). Thus, diam(B2) ≥ d(u, z) > d(u, v) = diam(B1),
contrary to the assumption that B1 and B2 have the same diameter.

Consequently, x belongs to a unique (gated) cycle C of C(u, v). Let y′ and z′ be the gates of y
and z in C. Recall also that u′ and v′ are the gates of u and v in C. Since diam(B1) = diam(B2)
and T+(B1) ⊂ B2, u, v is also a diametral pair of B2. By Corollary 18 applied to B2 = Br2(y)
and the diametral pair u, v of B2, we conclude that y ∈ C(u, v). Therefore, either y belongs to the
cycle C or the gate y′ of y in C coincides with u′ or v′.

Claim 20 z′ /∈ I(x, u′) ∪ I(x, v′).

Proof Suppose by way of contradiction that z′ ∈ I(x, u′). Then, z′ and v′ separate v and z, and
thus, d(v, z) = d(v, v′) + d(v′, z′) + d(z′, z). First, suppose that x ∈ I(v′, z′). Then, x ∈ I(v, z).
Since u ∈ Br1(x) and z /∈ Br1(x), we obtain that d(v, u) ≤ d(v, x) + d(x, u) < d(v, x) +
d(x, z) = d(v, z). Consequently, diam(B2) > diam(B1), a contradiction. Now, suppose that
x /∈ I(v′, z′). This implies that u′ ∈ I(z′, v′). Since u, v is a diametral pair of B2, we obtain that
d(v, v′) + d(v′, u′) + d(u′, z′) + d(z′, z) = d(v, z) ≤ d(v, u) = d(v, v′) + d(v′, u′) + d(u′, u),
yielding d(u′, z′) + d(z′, z) ≤ d(u′, u). Since z′ ∈ I(x, u′), u ∈ Br1(x), and z /∈ Br1(x),
we obtain that d(x, z′) + d(z′, u′) + d(u′, u) = d(x, u) ≤ r1 < d(x, z) = d(x, z′) + d(z′, z),
yielding d(z′, u′) + d(u′, u) < d(z′, z). From the inequalities d(u′, z′) + d(z′, z) ≤ d(u′, u) and
d(z′, u′) + d(u′, u) < d(z′, z), we obtain that d(u′, z′) < 0, a contradiction.

Since x is the apex of x with respect to u and v, the shortest paths I(x, u′) and I(x, v′) intersect
only in x, and their union is the (u′, v′)-path passing via x. By Claim 20, z′ belongs to the comple-
mentary (u′, v′)-path P of C and I(x, z′) ∩ {u′, v′} ̸= ∅. Hence, the set Z(x, u, v) is non-empty.
Indeed, let w be a vertex of I(x, z) at distance r1+1 from x. Then, either z′ is the gate of w in C or
w is a vertex of the path P , showing that w ∈ Z(x, u, v). Consequently, Z(x, u, v) ̸= ∅, and thus,
at least one of the vertices s, t exists. If s (t, respectively) exists, then its gate s′ (t′, respectively) in
C belongs to the path P . Since T does not satisfy the non-clashing condition for B1 and B2, if s (t,
respectively) exists, then s /∈ B2 (t /∈ B2, respectively), and thus, z ̸= s (z ̸= t, respectively).

Claim 21 z′ ∈ I(u′, s′) ∪ I(v′, t′)

Proof Suppose first that C ⊈ B1. If the claim does not hold, then z′ belongs to the (s′, t′)-path of
C that does not contain x. This implies that removing s = s′ and t = t′ disconnects z and u. Since
u, z ∈ B2 and s, t /∈ B2, we obtain a contradiction.

Suppose now that C ⊆ B1. Since z′ /∈ I(x, u′) ∪ I(x, v′), u′ and v′ disconnect x from z′

and z. Consequently, I(x, z) ∩ {u′, v′} ≠ ∅. Without loss of generality, assume that u′ ∈ I(x, z′)
and consider a vertex w ∈ I(x, z) such that d(x,w) = r1 + 1. Since C ⊆ B1, w /∈ C and z′

disconnects x and w, i.e., w′ = z′. Therefore, w ∈ Zu(x, u, v), and thus, by the definition of s, we
have d(u′, s′) ≥ d(u′, w′). Consequently, w′ = z′ ∈ I(u′, s′), and we are done.
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Without loss of generality, assume that z′ ∈ I(u′, s′). By Claim 20, z′ ̸= u′. Since u′ ∈
I(z′, x) ⊆ I(s′, x), z′ ∈ I(x, z), and s′ ∈ I(x, s), we obtain that d(x, z) = d(x, u′) + d(u′, z′) +
d(z′, z) and d(x, s) = d(x, u′) + d(u′, z′) + d(z′, s′) + d(s′, s). Since d(x, z) ≥ r1 + 1 = d(x, s),
from the two previous equalities we conclude that d(z′, z) ≥ d(z′, s′) + d(s′, s). Recall that the
vertex y belongs to C(u, v), and thus, either y = y′ ∈ C or y′ ∈ {u′, v′}. Consequently, d(y, z) =
d(y, y′)+d(y′, z′)+d(z′, z). Since s /∈ B2, r2 < d(y, s) = d(y, y′)+d(y′, s′)+d(s′, s) ≤ d(y, y′)+
d(y′, z′) + d(z′, s′) + d(s′, s) ≤ d(y, y′) + d(y′, z′) + d(z′, z) = d(y, z) ≤ r2, a contradiction (by
the triangle inequality and the inequality d(z′, s′) + d(s′, s) ≤ d(z′, z) established above). This
contradiction establishes that under the conditions of the theorem, we must have B1 = B2.

The second assertion is a consequence of the first one since two balls with distinct diameters are
distinguished by the diametral pair of the ball with the larger diameter. Finally, VCD(B(K)) ≤ 3
follows from the fact that trees of cycles K cannot be contracted to K4 and the result of Bousquet
and Thomassé (2015); Chepoi et al. (2007) that if a graph G does not contain Kd+1 as a minor, then
VCD(B(G)) ≤ d.

We continue with the proof of the theorem for δ-hyperbolic graphs.

Theorem 16 For a δ-hyperbolic graph H, T is an NCTM+
2δ of size 2 for B(H).

Proof The proof is similar to the proof for trees. Clearly, T (x, r) ⊆ Br(x) for any vertex x and any
radius r, and thus, the map T satisfies the inclusion condition. Hence, since |T (x, r)| = 2 for any
ball Br(x) with r ≥ 1, T is non-clashing for any pair of balls that includes a ball of radius 0. Now,
assume that Br1(x) and Br2(y) are not δ-identical, and suppose, without loss of generality, that there
exists z ∈ Br2(y) \ Br1+2δ(x). Let T (y, r2) = {u, v} and note that, since H is δ-hyperbolic, we
have d(x, z)+d(u, v) ≤ max{d(x, u)+d(v, z), d(x, v)+d(u, z)}+2δ. Without loss of generality,
assume that d(x, z) + d(u, v) ≤ d(x, v) + d(u, z) + 2δ. Since u, z ∈ Br2(y) and since {u, v} is a
diametral pair of Br2(y), d(u, z) ≤ d(u, v). Consequently, r1 + 2δ < d(x, z) ≤ d(x, v) + 2δ, and
thus, v /∈ Br1(x). Therefore, v ∈ (Br2(y) \ Br1(y)) ∩ (T (x, r1) ∪ T (y, r2)), establishing that T
satisfies the non-clashing condition for Br1(x) and Br2(y).
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