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Abstract
The connections between (convex) optimization and (logconcave) sampling have been considerably
enriched in the past decade with many conceptual and mathematical analogies. For instance, the
Langevin algorithm can be viewed as a sampling analogue of gradient descent and has condition-
number-dependent guarantees on its performance. In the early 1990s, Nesterov and Nemirovski
developed the Interior-Point Method (IPM) for convex optimization based on self-concordant
barriers, providing efficient algorithms for structured convex optimization, often faster than the
general method. This raises the following question: can we develop an analogous IPM for structured
sampling problems?

In 2012, Kannan and Narayanan proposed the Dikin walk for uniformly sampling polytopes,
and an improved analysis was given in 2020 by Laddha-Lee-Vempala. The Dikin walk uses a local
metric defined by a self-concordant barrier for linear constraints. Here we generalize this approach
by developing and adapting IPM machinery together with the Dikin walk for poly-time sampling
algorithms. Our IPM-based sampling framework provides an efficient warm start and goes beyond
uniform distributions and linear constraints. We illustrate the approach on important special cases, in
particular giving the fastest algorithms to sample uniform, exponential, or Gaussian distributions on
a truncated PSD cone. The framework is general and can be applied to other sampling algorithms.
Keywords: Dikin walk, Interior-Point method, sampling with local geometry, warm-start generation.

1. Introduction

Consider the following motivating problem: how can we efficiently sample a d× d matrix from a
distribution with the following density?

sample X ∼ exp
(
−
(
⟨A,X⟩+ ∥X −B∥F + ∥X − C∥2F − log detX

))
s.t. X ⪰ 0, ⟨Di, X⟩ ≥ ci , ∀i ∈ [m] .

This rather complicated looking distribution recovers as special cases the problems of sampling from
the Max-Cut semi-definite programming relaxation and the set of minimum (or bounded) volume
ellipsoids that contain a given set of points. The above density is logconcave, so we can use Ball walk
or Hit-and-Run (with rounding) to sample the distribution with O(d8 log d) membership/evaluation
queries. This “general-purpose” sampler already gives a poly-time mixing algorithm. However, each
term in the density and constraints is “structured”, which poses the following natural question: can
we leverage structure inherent in the problem to get more efficient algorithms?
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Let us consider an ‘optimization’ version of the sampling question above for a moment, motivated
by a conceptual analogy between sampling and optimization: sample from exp(−V ) vs minimize V .
Then, the optimization version turns into a structured convex optimization problem with structured
objectives and constraints. Formally, for proper convex functions fi and hj , we want to minimize∑

i fi(x) subject to hj(x) ≤ 0, for which the interior-point method (IPM) is a powerful framework.

Interior-point method. Given a convex optimization problem – minx∈K f(x) for a real-valued
convex function f on convex K ⊂ Rd – the IPM first replaces f by a new variable t and adds
the epigraph constraint {f(x) ≤ t}. Here, the structured constraints / objectives admit a self-
concordant barrier ϕ for the augmented constraints, and IPM tackles a ‘regularized’ problem –
min fλ(x, t) := t + 1

λϕ(x, t) with parameter λ > 0. Then, an optimization step that is aware of
the local geometry given by ∇2ϕ moves the current point closer to argmin fλ, with the barrier
function ϕ designed to prevent escaping from the feasible region. Increasing λ a bit, IPM repeats this
procedure with the updated point used as a starting point for solving min fλ+δ. As λ increases, the
effect of 1

λϕ vanishes in the regularized problem, which gradually brings us to a point sufficiently
closer to the minimum.

Returning to the sampling problem with IPM in mind, we pose our main question:

Problem Let fi be a proper convex function and hj a convex function on Rd for i ∈ [I] and j ∈ [J ].
Then the goal is to develop a sampling IPM for solving

sample x ∼ π ∝ exp
(
−
∑
i

fi

)
s.t. x ∈ K :=

⋂
j∈[J ]

{x ∈ Rd : hj(x) ≤ 0} , (strLC)

where we assume that K has non-empty interior and π has finite second moments.

In this paper, we derive an IPM framework for structured logconcave sampling, answering two
important questions: (1) What is a geometry-aware algorithm sampling from a regularized distribution,
(2) what should be an annealing schedule of λ, and how to control closeness of distributions?

As for (1), we use Dikin walk as a sampler to implement the “inner” step of IPM, providing a
gentle introduction to Dikin walk and self-concordance in §2. We then provide a mixing-time bound
for Dikin walk, going beyond uniform distributions (§3.1) and recovering previous work as special
cases. This generalization is necessary to be able to utilize Dikin walk within the IPM framework.
As for (2), we present in §3.2 the sampling IPM with its role of warm-start generation and theoretical
guarantees. Our framework is suited for breaking down complicated sampling problems into smaller
structured problems (i.e., write f =

∑
i fi and K = ∩jKj). Toward this divide-and-conquer

approach, we develop in §3.3 a “calculus” for combining multiple constraints and objectives, and
deriving the resulting theoretical guarantees (analogous to and inspired by the work of Nesterov
and Nemirovskii (1994) for optimization). To provide concrete understanding and instances, we
illustrate the framework on some well-known families of constraints in §3.4, in particular obtaining
faster algorithms to sample uniform, exponential, or Gaussian distributions on truncated Positive
Semi-Definite (PSD) cones in §3.5. We refer readers to §4 for background and related work, and to
Figure A.1 for an overall structure of the paper.

2. Warm-up: Dikin walk and self-concordance

We use the same symbol for a distribution and its density w.r.t. the Lebesgue measure. We use
Sd+ (and Sd++) to denote the set of d× d positive semidefinite (and definite) matrices, respectively.
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For two matrices A,B, we use A ≍ B to mean A ≾ B and B ≾ A. A local metric g defines
at each point x ∈ K ⊂ Rd a positive-definite inner product ⟨·, ·⟩g(x) : Rd × Rd → R, which
induces the local norm ∥v∥g(x) := [⟨v, v⟩g(x)]

1/2. We use ∥v∥x to refer to ∥v∥g(x) when the context
is clear. We abuse notation and use g(x) to denote the d × d positive-definite matrix represented
with respect to the canonical basis {e1, . . . , ed}. For a function f defined on K ⊂ Rd, we let
Dif(x)[h1, . . . , hi] denote the i-th directional derivative of f at x in directions h1, . . . , hi ∈ Rd, i.e.,
Dif(x)[h1, . . . , hi] =

di

dt1···dti f(x +
∑i

j=1 tjhj)|t1,...,ti=0. We let N r
g (x) := N (x, r

2

d g(x)
−1) be

the normal distribution with mean x and covariance r2

d g(x)
−1. See §A for other notation.

Dikin walks and self-concordance. Given a local metric g in Rd, the Dikin ellipsoid of radius r at
x ∈ Rd is defined as Drg(x)

def
= {y ∈ Rd : ∥y − x∥g(x) ≤ r}. i.e., it is a norm ball of radius r defined

by the local metric. From this perspective, Dikin walk (Algorithm 1) is a natural generalization of
Ball walk to a local metric setting.

𝐴! , 𝑋 ≥ 𝑏!
𝑋 ≽ 0

𝑋!

𝑋"

𝑋#

Algorithm 1: Dikin walk (π0, π, g, r, T )

Input: Initial dist. π0, target dist. π ∝ e−f 1K ,
local metric g, step size r, # iterations T .

Output: xT
Sample x0 ∼ π0 at random.
for t = 0, · · · , T − 1 do

Sample z ∼ N
(
xt,

r2

d g(xt)
−1
)
.

xt+1 ← z w.p. Axt
(z) := 1 ∧

( pz(xt)π(z)
pxt (z)π(xt−1)

)
.

Otherwise, xt+1 ← xt.
end

Table 1: Iterates of the Dikin walk. Solid lines centered at Xi indicate Dikin ellipsoids, Drg(Xi).
The pdf of N (x, r

2

d g(x)
−1) is denoted by px.

The metric g used to define Dikin walk plays a crucial role in its convergence. Our metrics will
be defined by Hessians of convex self-concordant barrier functions. We now collect definitions of
these functions; they will be important to state our general guarantees for the mixing of Dikin walk.
The concept we need is summarized by the definition of a (ν, ν̄)-Dikin-amenable metric.

Definition 2.1 (Self-concordance (brief version of Definition A.1)) For convex K ⊂ Rd, let ϕ :
int(K)→ R be a smooth convex function, g(·) ≍ ∇2ϕ(·), and N r

g (x) := N
(
x, r

2

d g(x)
−1
)
.

• ν-self-concordant barrier (SC): (i) |D3ϕ(x)[h, h, h]| ≤ 2∥h∥3∇2ϕ(x) for any x ∈ int(K) and

h ∈ Rd, (ii) limx→∂K ϕ(x) =∞, and (iii) ∥∇ϕ(x)∥2[∇2ϕ(x)]−1 ≤ ν for any x ∈ int(K).

• Highly SC (HSC): |D4ϕ(x)[h, h, h, h]| ≤ 6∥h∥4∇2ϕ(x) for any x ∈ int(K) and h ∈ Rd, and
limx→∂K ϕ(x) =∞.

• Strong SC (SSC): ∥g(x)−
1
2Dg(x)[h] g(x)−

1
2 ∥F ≤ 2∥h∥g(x) for any x ∈ int(K) and h ∈ Rd.

• Strongly lower trace SC (SLTSC): Tr
((
ḡ(x) + g(x)

)−1
D2g(x)[h, h]

)
≥ −∥h∥2g(x) for any ḡ :

int(K) → Sd+, x ∈ int(K), and h ∈ Rd. We call it lower trace self-concordant (LTSC) if it is
satisfied when ḡ = 0.
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(b) ν̄-symmetry

Figure 2.1: (a) Self-concordance of barrier/metric (Definition 2.1) ensures that the Hessian (so Dikin
ellipsoids) changes smoothly. (b) ν̄-symmetry (Definition 2.2) indicates how well a Dikin ellipsoid
Drg(X) approximates the locally symmetrized convex body, K ∩ (2X −K).

• Strongly average SC (SASC): For any ε > 0 and ḡ : int(K) → Sd+, there exists rε > 0 such
that Pz∼N r

g+ḡ(x)

(
∥z − x∥2g(z) − ∥z − x∥

2
g(x) ≤

2εr2

d

)
≥ 1 − ε for r ≤ rε. We call it average

self-concordant (ASC) if this is satisfied when ḡ = 0.

SC imposes regularity on the eigenvalues of the directional derivative Dg[h] through−2∥h∥2gg ⪯
Dg[h] ⪯ 2∥h∥2gg (or equivalently the largest magnitude of eigenvalues of g−1/2Dg[h]g−1/2), and
HSC does the same on the higher-order derivative D2g[h, h]. SSC introduced by Laddha et al. (2020)
imposes stronger regularity on the eigenvalues of Dg[h] by definition, as SSC is stated in terms of the
Frobenius norm of g−

1
2Dg[h]g−

1
2 . LTSC relaxes ‘convexity of log det g’ required by Laddha et al.

(2020). In particular, SSC and LTSC control the change of log det g, leading to a refined analysis of
Dikin walk. Lastly, ASC is pertinent to the average of the squared local norm difference of z − x
computed at z and x, which controls the acceptance-probability of each iterate of Dikin walk.

These notions are sophisticated enough to carry out a tight mixing analysis of Dikin walk, but
also simple enough for us to develop a “calculus” for combining metrics for multiple constraints in
§3.3. Moreover, these conditions may look difficult to verify, but we show that a proper scaling of
(H)SC barriers immediately makes them satisfy these properties.

Next, we recall a symmetry parameter of a self-concordant metric. We will later see that it has a
natural connection to Cheeger isoperimetry.

Definition 2.2 (ν̄-symmetry) For convex K ⊂ Rd, a PSD matrix function g : int(K) → Sd+ is
said to be ν̄-symmetric if D1

g(x) ⊆ K ∩ (2x−K) ⊆ D
√
ν̄

g (x) for any x ∈ K.

We note that K ∩ (2x−K) is the locally symmetrized convex body with respect to x. Hence,
ν̄-symmetry measures how accurately a Dikin ellipsoid approximates the locally symmetrized body.
One can show that ν̄ = O(ν2) for any metric induced by a self-concordant barrier.

Going forward, we call a PD matrix function ν̄-Dikin-amenable if it is SSC, LTSC, ASC, and
ν̄-symmetric. We sometimes call it (ν, ν̄)-Dikin-amenable to reveal its self-concordance parameter
ν. For example, the Hessian of the log-barrier for m linear constraints is (m,m)-Dikin-amenable.
We present several concrete examples in §3.4.

4



THE INTERIOR-POINT METHOD FOR LOGCONCAVE SAMPLING

3. Main results and technical overview

We provide four necessary components for a sampling IPM — Dikin walk for the inner-step of IPM
(§3.1), algorithm design (§3.2), calculus for the divide-and-conquer approach (§3.3), and parameter
estimations for well-known families of distributions/constraints (§3.4). Putting them together, we
obtain end-to-end guarantees for sampling from structured logconcave distributions. Generating a
warm start without overhead, the sampling IPM serves a faster sampling algorithm for numerous
constrained distributions previously studied (§3.5). We discuss interesting future directions in §3.6.

3.1. Result 1 - Mixing of Dikin walk for general well-conditioned distributions

We begin with our general analysis of Dikin walk (see §B for the details).

Theorem 3.1 Let K ⊂ Rd be convex and 0 ≤ α ≤ β <∞.
• (Local metric) Assume that a C1-matrix function g : int(K)→ Sd++ is ν̄-Dikin-amenable.
• (Distribution) Let π0 and π ∝ exp(−f) · 1K be an initial and target distribution respectively,

where f is α-relatively strongly convex and β-smooth in g. Let ∥π0/π∥ = Eπ0
[
dπ0
dπ

]
and P be the

transition kernel of Dikin walk with the local metric g and step size r = O(1 ∧ β−1/2).
Then for any ε > 0, it holds that dTV(π0P

(T ), π) ≤ ε for T ≳ d(1 ∨ β) (ν̄ ∧ 1/α) log ∥π0/π∥
ε .

This result serves as a unifying framework that recovers as special cases previous works on
Dikin walk for uniform sampling (Kannan and Narayanan, 2012; Narayanan, 2016; Chen et al.,
2018; Laddha et al., 2020), as seen later in §3.5. Our analysis extends beyond uniform sampling,
considering Dikin walk under a more general setting where the potential f satisfies αg ⪯ ∇2f ⪯ βg
on int(K). This setting is a generalization of αI ⪯ ∇2f ⪯ βI to a local metric ∇2ϕ ≍ g. We
also note that Dikin walk is the first implementable algorithm that provides a clean mixing guarantee
under this general setting, which is a necessary ingredient for theory of our sampling IPM.

Challenges. Laddha et al. (2020) attempted to characterize properties of g (or ϕ) that determine
mixing times of Dikin walks for uniform sampling. These necessitates that g satisfy ν̄-symmetry,
SSC, convexity of log det g(x), and x ∈ Drg(z) w.h.p. z ∼ Unif

(
Drg(x)

)
. However, when a

constraint is given as a set of convex sets, their framework encounters a challenge arising from the
difficulty of verifying the convexity of log det(g1 + g2) when log det gi is convex for each i = 1, 2.

To address this and succinctly characterize essential characteristics of a metric for one-step
coupling, we relax the convexity of log det to (S)LTSC and introduce the notion of ASC to account
for the condition “x ∈ Drg(z) w.h.p.”. Then under Dikin-amenability of a metric, we establish a
one-step coupling, one of main proof ingredients in obtaining a mixing-time guarantee of Dikin walk.

Proof ideas. We use a conductance argument (Lovász and Simonovits, 1993), lower-bounding
the conductance of a Markov chain, which follows from two ingredients: one-step coupling and
isoperimetry. We focus on the first, a main difficulty when extending to general distributions.

One-step coupling requires that transition kernels at two nearby points have TV-distance bounded
away from one. All previous analyses of Dikin walk do not go through for general distributions, since
those techniques either have gap or yield a wrong proof.

A key distinction in extension lies in establishing a lower bound for the ratio exp(f(x))
exp(f(z)) to ensure a

high acceptance probability. One can show exp(f(x))
exp(f(z)) ≥ 1− ε at the expense of 1

2 + ε probability, by
using the Taylor expansion of f , self-concordance of g, and symmetry of the proposal. However, this
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1
2 + ε loss is incompatible with previous approach based on the triangle inequality: for a transition
kernel T and proposal kernel P , we have dTV(Tx, Ty) ≤ dTV(Tx, Px)+ dTV(Px, Py)+ dTV(Py, Ty),
but the bound of 1

2 + ε for both dTV(Tx, Px) and dTV(Ty, Py) makes the RHS vacuous.
We instead work with the exact formula for dTV(Tx, Ty): for the Gaussian px = N (x, r

2

d g(x)
−1),

Rx(z) =
pz(x)

px(z)

π(z)

π(x)
=
pz(x)

px(z)

exp(f(x))

exp(f(z))
, Ax(z) = min

(
1, Rx(z)1K(z)

)
,

the transition kernel is Tx(dz) = (1− EpxAx) δx(dz) +Ax(z) px(dz). For rx := 1− EpxAx,

dTV(Tx, Ty) =
rx + ry

2
+

1

2

∫
|Ax(z) px(z)−Ay(z) py(z)| dz .

As for rx and ry, we bound below pz(x)
px(z)

by 1− ε at the cost of ε-probability through SSC, LTSC,

and ASC of g. As mentioned earlier, exp(f(x))
exp(f(z)) ≥ 1− ε at the cost of 1

2 + ε probability. Combining
these results, we obtain upper bounds of 1

2 + ε for small ε > 0 on rx and ry.
Establishing a bound of 1/4+ε on the second term is a more involved task. It requires the closeness

of acceptance probabilities Ax(z) and Ay(z) as well as that of the probability densities px(z) and
py(z). This closeness can be achieved through sophisticated conditioning on high-probability events
due to ASC, SSC, and symmetry of Gaussian proposals. We refer readers to the sketch in §B.1.

3.2. Result 2 - Sampling IPM: Gaussian cooling with the Dikin walk (GCDW)

We present Gaussian cooling (see §C for details), essentially a sampling analogue of the optimization
IPM. The function counterpart refers to a self-concordant barrier ϕ such that∇2ϕ ≍ g on int(K).

Theorem 3.2 For convex K ⊂ Rd, suppose that g : int(K)→ Sd++ is (ν, ν̄)-Dikin-amenable and
ϕ is its function counterpart such that minK ϕ exists. Gaussian cooling with Dikin walk (Algorithm 3
with Dikin walk serving as a non-Euclidean sampler) generates a sample that is ε-close to exp(−f) ·
1K in TV-distance using O

(
d (d νβ+dνα+d ∨ ν ∨ ν̄) log

dν
ε

)
iterations of Dikin walk with g, where a

C2-function f : int(K) → R satisfies α∇2ϕ ⪯ ∇2f ⪯ β∇2ϕ on K for 0 ≤ α ≤ β < ∞. In
particular, when f(x) = αTx or cϕ(x) for α ∈ Rd and c ∈ R+, the algorithm uses Õ(d (d ∨ ν ∨ ν̄))
iterations of the Dikin walk.

The inner loop of Gaussian cooling runs Dikin walk. The basic GC algorithm was introduced
in Cousins and Vempala (2018) for efficient sampling and volume computation. Lee and Vempala
(2018) studied its extension to Hessian manifolds for uniformly sampling polytopes. Our framework
is more general in that it handles more general distributions through a sophisticated annealing scheme.

This framework provides an efficient algorithm for generating a warm start for constrained
log-concave distributions. If we were to apply Theorem 3.1 with initial distribution being a single
point at some distance from boundary, even for the simplest case of uniform sampling, then an
additional factor of d would be incurred. On the other hand, given that ν and ν̄ are typically O(d),
our framework only has a logarithmic (in dimension) factor overhead for generating a warm start. An
important reason why this works is the affine-invariance of Dikin walk. Samplers like Ball walk have
to apply isotropic transformation to achieve a warm start efficiently, which requires a near-linear
number of samples and thus have at least a linear in dimension overhead.
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Derivation of the algorithm. We describe this algorithm alongside its interpretation as a ‘sampling
analogue of the interior-point method’. To this end, we revisit high-level ideas of IPM, derive its
sampling version via a conceptual analogy between optimization and sampling, and then refine the
derived sampling IPM by highlighting the distinctions between the two method. See §C.1 for details.

(1) Optimization IPM (Algorithm 2). In solving the optimization problem, minx∈K f(x) for a
real-valued convex function f on convex K ⊂ Rd, IPM first replaces f by a new variable t and
appends the epigraph {(x, t) ∈ Rd+1 : f(x) ≤ t} to the constraint in addition to x ∈ K. Then
summation of self-concordant barriers for K and the epigraph results in a ν-self-concordant barrier
ϕ for the augmented constraints. This barrier ϕ allows one to convert the constrained problem to a
unconstrained one, min fλ(x, t) := t+ 1

λϕ(x, t) for a parameter λ > 0. Then an optimization step
(e.g., the Newtonian gradient descent) that takes into account the local geometry given by∇2ϕmoves
a current point closer to an optimal point, with the barrier ϕ preventing escape from the constraints.
Increasing λ ← λ(1 + 1√

ν
), IPM repeats this procedure with the updated point used as a starting

point. As λ increases (until λ ≤ ν/ε for target accuracy ε > 0), the effect of 1
λ ϕ(x, t) vanishes in

the regularized problem, which gradually brings us to a point sufficiently closer to the minimum.

(2) Translation to sampling (Figure C.1). We recall the following conceptual match between
convex optimization and logconcave sampling: for convex K ⊂ Rd and convex function f : K → R

min f(x) s.t. x ∈ K ←→ sample x ∼ π ∝ exp(−f) s.t. x ∈ K .

With the connection in mind, we can translate IPM’s machinery into the sampling context. As in
IPM, we replace f by a new variable t, introduce the epigraph constraint, and attempt to sample
a ‘regularized’ distribution µσ2(x, t) ∝ exp

(
−fσ2(x, t)

)
= exp

(
−
(
t + 1

σ2 ϕ(x, t)
))

, where a
parameter σ2 corresponds to λ above. This sampling step should be carried out with a sampler aware
of the local geometry given by∇2ϕ (call it NE-sampler, which is Dikin walk in our case). Then we
increase σ2 slightly, and using the previous regularized distribution µσ2 as a warm start, we sample a
next regularized distribution µσ2+ε. This iterative procedure continues until σ2 reaches ν.

(3) Refinements (Figure C.2). We now make this conceptual algorithm concrete in Algorithm 3.
The finalized sampling IPM1 consists of four phases — Phase 1 for initialization, Phase 2 and 3 for
increasing σ2 with control, and Phase 4 for high-accuracy sampling.

Phase 1 initializes the algorithm by a Gaussian truncated over a Dikin ellipsoid of radius
O(d−Θ(1)). This Gaussian serves as a good warm start for a regularized distribution with small σ2.

The sampling IPM, in contrast to both the optimization IPM and the basic GC algorithm,
proceeds with a distinct annealing scheme. Phase 2 updates σ2 ← σ2(1+ 1/

√
d) until σ2 reaches ν/d,

annealing not only ϕ but also the ‘modified’ potential νt/d. While ν
d ≤ σ2 ≤ ν, Phase 3 updates

σ2 ← σ2(1+ σ/
√
ν) but only ϕ part with the potential t now fixed. We note that the basic GC anneals

only regularization term throughout.
Lastly, the sampling IPM runs Dikin walk once in Phase 4. If one stopped after Phase 3 (when

σ2 reaches as the optimization version, then the total iterates of Dikin walk would be O(d (d ∨
ν)/poly(ε)). This guarantee can avoid the symmetry parameter, but this comes at the cost of low-
accuracy of the sampler (i.e., dependence on poly(ε−1)). Hence, we finish up the algorithm with
another execution of Dikin walk, obtaining high-accuracy O(d (d ∨ ν ∨ ν̄) log 1

ε )-mixing.
GCDW is exactly this refined algorithm with Dikin walk used for the NE-sampler (Algorithm 3).

Specifically in the inner loop, it runs Dikin walk to sample regularized exponential distributions of

1. We focus on e−t for exposition. Our algorithm can deal with more general potentials (relatively convex and smooth).
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the form exp(−(c1t + c2ϕ(x, t)) subject to x ∈ K and {(x, t) ∈ Rd+1 : f(x) ≤ t}, where the
local metric therein consists of the Hessians of self-concordant barriers for K and the level set of
f . Comparing with Ball walk for a general logconcave distribution (Lovász and Vempala, 2007),
incorporating the geometry of a level set of f (not∇2f ) is a natural approach to sampling from e−f .

Closeness of consecutive distributions. At the heart of the algorithm lies closeness of regularized
distributions in consecutive iterations. That is, a distribution µi := µσ2

i
serves as a good warm start

for the subsequent distribution µi+1 := µσ2
i+1

(i.e., ∥µi/µi+1∥ is small).
For the first two phases, closeness of consecutive distributions follows purely from a property of

log-concave distributions, which is independent of local metrics. To sketch the idea, in Phase 2, it
holds that for ψ := νt

d + ϕ on K and F (σ2) :=
∫
K exp(−ψ/σ2),

∥µi/µi+1∥ = F
(( 2

σ2i
− 1

σ2i+1

)−1
)
F (σ2i+1)/F (σ

2
i )

2 .

As the function a 7→ adF
(
σ2

a

)
is log-concave (Lemma C.2), the update rule σ2i+1 = (1+ 1√

d
)σ2i and

the definition of logconcavity with endpoints 2
σ2
i
− 1

σ2
i+1

and 1
σ2
i+1

, and the middle point 1
σ2
i

, lead to

F
((

2
σ2
i
− 1

σ2
i+1

)−1)
F (σ2i+1)

F (σ2i )
2

≤

( (
1
σ2
i

)2(
2
σ2
i
− 1

σ2
i+1

)
1

σ2
i+1

)d
=

((
1 + 1√

d

)2
1 + 2√

d

)d
≤
(
1 +

1

d

)d
≤ e .

In Phase 3, for r = σi√
ν

, s = r
1+r , σ = σi, and F (σ2) =

∫
exp(−t− ϕ/σ2), we have

R2(µi ∥ µi+1) =
2 log

F
(
σ2

1+s

)
F
(
σ2

1−s
)

F (σ2)2
=

∫ s

0

∫ 1+l

1−l
g′′(q) dq dl =

∫ s

0

∫ 1+l

1−l

1

σ4
Varνqϕ dq dl

where g(l) := logF
(
σ2

l

)
for l > 0 and νq ∝ exp

(
−t − qϕ

σ2

)
is a probability measure. By the

Brascamp-Lieb inequality with a function V := t+ qϕ
σ2 , for a self-concordance parameter ν

Varνqϕ ≤ Eνq
[
(∇ϕ)T

(
∇2V

)−1∇ϕ
]
≤ σ2

q
Eνq [∥∇ϕ∥2(∇2ϕ)−1 ] ≤

σ2ν

q
.

Putting this back to the integral, one can check R2(µi ∥ µi+1) ≲ νs2

σ2 . It follows from s = r
1+r and

r = σ√
ν

that µi is an O(1)-warm start for µi+1. As for Phase 4, the same technique along with a
limiting argument shows that the final distribution µν is an O(1)-warm start for the target π.

Inexact error analysis. The law of iterate of Dikin walk slightly deviates from an actual target in
each phase, so the sampling IPM uses as an initial distribution an inexact one µ̄σ2 , not µσ2 . One can
resolve this discrepancy through the triangle inequality.

Let m = O(
√
d) be the number of total phases involved in the sampling IPM with initial

distribution π0, a target distribution πi in phase i ∈ [m], and the Markov kernel Pi defined by
Dikin walk such that dTV(πi−1Pi, πi) ≤ ε. Then, the law of sample at the end of each phase is
actually π̂i := π0P1 · · ·Pi = π̂i−1Pi. Using the triangle inequality and data-processing inequality,

dTV(πi, π̂i) ≤ dTV(πi, πi−1Pi) + dTV(πi−1Pi, π̂i−1Pi) ≤ ε+ dTV(πi−1, π̂i−1) ≤ iε .

Hence, dTV(πm, π̂m) ≤ mε, so it suffices to work with ε/m in place of ε throughout the analysis.

2. R2 := log(χ2 + 1) = log ∥µi/µi+1∥ is the 2-Rényi divergence.
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3.3. Result 3 - Self-concordance theory for combining barriers

The sampling IPM allows us to focus on the following reduced problem: Let t1, . . . , tI ∈ R and
y = (x, t1, . . . , tI) ∈ Rd × RI = Rd+I . We denote Ei := {(x, ti) ∈ Rd+1 : fi(x) ≤ yn+i} for
i ∈ [I] and Kj := {x ∈ Rd : hj(x) ≤ 0} for j ∈ [J ], whose convexity follows from convexity of fi
and hj . Denoting the embeddings of Ei and Kj onto Rd+I by Ēi and K̄j , we can reduce (strLC) to

sample y ∼ π̃ ∝ exp
(
−(0, . . . , 0︸ ︷︷ ︸

d times

, 1, . . . , 1︸ ︷︷ ︸
I times

)T y
)

s.t. y ∈ K ′ :=
I⋂
i=1

Ēi ∩
J⋂
j=1

K̄j , (redLC)

where K ′ is closed convex and has non-empty interior, and we are given self-concordant barriers for
each Ei and Kj . As the x-marginal of π̃ is π, we just project a drawn sample from π̃ to the x-space.
When fi(x) can be written as d separable terms (i.e., fi(x) =

∑d
l=1 fi,l(xl)), it is more convenient

to introduce d many variables ti,1, . . . ti,d for fi,1(x1), . . . , fi,d(xd).
In §D, we study how to combine a self-concordant metric and its parameters from each epigraph

Ei and convex set Kj (for the mixing estimation of Dikin walk). As in the optimization IPM, the
addition of all barriers is actually a good candidate of a barrier for K ′, but under an appropriate
scaling. However, the sampling version requires not only self-concordance parameters but also
symmetry parameters, SSC, and LTSC for final mixing time guarantees. Notably, SSC and LTSC
assume invertibility of a local matrix function, but the Hessian of a barrier for a lower-dimensional
space is degenerate w.r.t. the augmented variable y ⊂ Rd+I . We address this technical issue by
working with Definition D.16 and several matrix lemmas to study how to maintain or update each of
the main properties such as symmetry, SSC, and LTSC under addition and scaling.

Using these notions, we can state how to put together information of a barrier for each constraint /
epigraph. The readers can note the analogy to Nesterov and Nemirovski’s IPM theory for optimization.

Theorem 3.3 In the reduced problem (redLC), assume the following:
• For i ∈ [I], the epigraph Ei admits a PSD matrix function gei (x, ti) (or gei (x, ti,1, . . . , ti,d)) that is

a (νi, ν̄i)-SC barrier, SSC along some subspace, SLTSC, and SASC.
• For j ∈ [J ], the constraint Kj admits a PSD matrix function gcj(x) that is a (ηj , η̄j)-SC barrier,

SSC along some subspace, SLTSC, and SASC.
For appropriate projections πei and πc, a matrix function g on y ∈ int(K ′) defined by

⟨u, v⟩g(y) := (I + J)
( I∑
i=1

⟨πei u, πei v⟩gei (πe
i (y))

+
J∑
j=1

⟨πcu, πcv⟩gcj (πc(y))

)
for u, v ∈ Rd

is
(
(I + J)(

∑I
i=1 νi +

∑J
j=1 ηj), (I + J)(

∑I
i=1 ν̄i +

∑J
j=1 η̄j)

)
-Dikin-amenable on K ′.

3.4. Result 4 - Metrics for well-known structured instances

In §E, we examine required parameters and properties of a barrier for a structured constraint and
potential, such as linear, quadratic, entropy, ℓp-norm, and PSD cone. See Table 2.

(1) Linear constraints. We start with linear constraints given by K := {x ∈ Rd : Ax ≥ b} for
A ∈ Rm×d and b ∈ Rm, where A is assumed to have no all-zero rows. For x ∈ int(K) and i ∈ [m],
let ai be the i-th row of A, and denote Sx := Diag(aTi x− bi) ∈ Rm×m and Ax := S−1

x A ∈ Rm×d.
These linear constraints admit efficiently computable self-concordant barriers: logarithmic barrier,

Vaidya metric, and Lewis-weight metric. The simplest one is the logarithmic barrier defined by

9
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Constraints / Epigraphs Barrier ν ν̄ SSC LTSC SLTSC ASC SASC

Ax ≥ b
ϕlog m m

gVaidya
√
md

√
md

gLw d d
√
d

√
d

√
d

√
d

∥x− µ∥2Σ ≤ 1 ϕellip d d d

∥x− µ∥2Σ ≤ t ϕGauss d d d

∥x− µ∥Σ ≤ t ϕSOC d d d d d

X ⪰ 0 ϕPSD d d d d d2

−xi log xi ≤ ti ∀i ∈ [d] ϕent d d d d

|xi|p ≤ ti ∀i ∈ [d] ϕpower d d d d

Table 2: Self-concordance and symmetry parameters, and required scaling factors for a family of
barriers. Here, we assume A ∈ Rm×d, x ∈ Rd, and X ∈ Sd+. Empty entries indicate O(1)-scalings.

ϕlog(x) := −
∑m

i=1 log(a
T
i x − bi). When the number of constraints m is large, one can use a

self-concordant metric due to Vaidya (1996). For a full-rank matrix A, the resulting Vaidya metric
takes advantage of the leverage scores σ(Ax) of Ax, the diagonal entries of the orthogonal projection
matrix Px = Ax(A

T
xAx)

−1Ax ∈ Rm×m, i.e., [σ(Ax)]i := (Px)ii > 0 for i ∈ [m]. For Σx =
Diag(σ(Ax)) ∈ Rm×m, the Vaidya metric is defined by gVaidya(x) := O(1)

√
m
d A

T
x

(
Σx+

d
mIm

)
Ax,

which satisfies gVaidya ≍ ∇2
(√

m
d (ϕvol +

d
mϕlog)

)
for ϕvol :=

1
2 log det(∇

2ϕlog).
Its self-concordance parameter is still poly(m). It turns out that dependence on m can be made

poly-logarithmic by a Lewis-weight metric that utilizes the Lewis weights ofAx. The ℓp-Lewis weight
of Ax is the vector wx ∈ Rm satisfying the implicit equation wx = σ

(
Diag(wx)

1/2−1/pAx
)
. Note

that the leverage scores can be recovered as the ℓ2-Lewis weight ofAx. Then the Lewis-weight metric
is defined by gLw(x) := O(logO(1)m)AT

xWxAx. With p = O(logΘ(1)m), the self-concordance
parameter of this metric can be made O∗(d).

For the sampling purpose, we need to look into other properties: SSC, SLTSC, and SASC, etc.
The log-barrier and Vaidya metric fulfill these without additional scaling, while the Lewis-weight
metric requires a

√
d-scaling for SLTSC and SASC. We summarize these results below.

Theorem 3.4 (Linear constraints (Informal)) We assume m ≥ d in the cases of the Vaidya and
Lewis-weight. Let wx be the ℓp-Lewis weights with p = O(logΘ(1)m).
• Log-barrier ϕlog: g = ∇2ϕlog satisfies ν, ν̄ ≤ m, SSC, SLTSC, and SASC.
• Vaidya metric gVaidya: g = 44gVaidya satisfies ν, ν̄ = O(

√
md), SSC, SLTSC, and SASC.

• Lewis-weight metric gLw: g =
√
dgLw satisfies ν, ν̄ = Õ(d3/2), SSC, SLTSC, and SASC.

(2) Quadratic potentials and constraints. Now consider quadratic potential (i.e., Gaussian) and
constraints (i.e., ellipsoid and second-order cone). A self-concordant barrier introduced by Nesterov
and Nemirovskii (1994) serves as an efficient barrier for each constraint or epigraph of a potential.
We show that all barriers are HSC, so the scaling of d makes it satisfy SLTSC and SASC.

10
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Theorem 3.5 (Quadratic) Let K1 = {x ∈ Rd : 1
2x

TQx + pTx + l ≤ 0} with p ∈ Rd and 0 ̸=
Q ∈ Sd+. Let K2 = {(x, t) ∈ Rd+1 : 1

2∥x− µ∥
2
Σ ≤ t} and K3 = {(x, t) ∈ Rd+1 : ∥x− µ∥Σ ≤ t}

with µ ∈ Rd and Σ ∈ Sd++. Let x ∈ int(Ki) and h ∈ Rdim(Ki).
• Ellipsoid ϕellip(x) = − log(−l − pTx − 1

2x
TQx) for K1: g = d∇2ϕellip satisfies ν, ν̄ = O(d),

SSC when Q ∈ Sd++, D2g(x)[h, h] ⪰ 0 (so SLTSC), and SASC.
• Gaussian ϕGauss(x, t) = − log(t − 1

2∥x− µ∥
2
Σ) for K2: g = d∇2ϕGauss satisfies ν, ν̄ = O(d),

SSC, and D2g(x, t)[h, h] ⪰ 0 (so SLTSC), and SASC.
• Second-order cone ϕSOC(x, t) = − log(t2 − ∥x− µ∥2Σ) for K3: g = d∇2ϕSOC satisfies ν, ν̄ =
O(d), SSC, SLTSC, and SASC.

(3) PSD cone. Another fundamental constraint is the PSD cone Sd+. This convex region admits
a d-self-concordant barrier ϕPSD(·) = − log det(·). We show that it satisfies SLTSC, while the
d-scaling further guarantees SSC and ASC. In establishing ASC, we find an interesting connection to
the Gaussian orthogonal ensemble (GOE), one of the main objects studied in random matrix theory.
However, we cannot prove SASC, so we need the d(d+1)/2-scaling for SASC (due to HSC of ϕPSD).

Theorem 3.6 (PSD cone) Let K = Sd+, X ∈ int(K), and H ∈ Sd.Then, d∇2ϕPSD satisfies
ν, ν̄ = O(d2), SSC, D2g(X)[H,H] ⪰ 0 (so SLTSC), and ASC. d(d+1)

2 ∇2ϕPSD is SASC.

(4) Entropy and ℓp-norm. It is sometime more convenient to introduce d many new variables.

Theorem 3.7 (Entropy and ℓp-norm) Let K1 =
∏d
i=1{(xi, ti) ∈ R2 : xi ≥ 0, ti ≥ xi log xi}

and K2 =
∏d
i=1{(xi, ti) ∈ R2 : |xi|p ≤ ti}.

• Entropy ϕent(x, t) = −
∑d

i=1

(
log(ti − xi log xi) + 36 log xi

)
for K1: g = d∇2ϕent satisfies

ν, ν̄ = O(d2), SSC, SLTSC, and SASC.
• The p-th power of ℓp-norm ϕpower(x, t) = −

∑d
i=1

(
log(t

2/p
i − x2i ) + 72 log ti

)
for K2: g =

d∇2ϕpower satisfies ν, ν̄ = O(d2), SSC, SLTSC, and SASC.

3.5. Examples

Our theory (Theorem 3.2 and 3.3) with the study of barriers (Table 2) proposes local metrics for
structured instances. GCDW with them mixes in poly-time faster than Ball walk. For fair comparison,
the complexity of Ball walk refers to that of isotropic rounding3 (see §F).

Motivating example: Let us introduce a variable for each of ∥X − B∥F and ∥X − C∥2F .
Then our theory suggests the following barrier: 4(ϕlog + d2ϕGaussian + d2ϕSOC + d2ϕPSD), which is
O(1) (m+ d3,m+ d3)-self-concordant, SSC, LTSC, and ASC. By Theorem 3.2 with α = 0 and
β = 1 (due to ϕPSD in the potential), we need Õ

(
d2(m+ d3)

)
iterations of Dikin walk in total.

Uniform and exponential sampling: Let us first consider uniform sampling over linear
constraints given by Ax ≥ b for A ∈ Rm×d and b ∈ Rm. Recall that for uniform sampling
Ball walk mixes in Õ(d3) iterations (including isotropic rounding). On the other hand, Õ(md)
queries are enough for GCDW with the (m,m)-Dikin amenable metric induced by ϕlog. This
recovers the mixing time of Kannan and Narayanan (2012) without warmness. If we use the
(
√
md,
√
md)-Dikin-amenable Vaidya or (d3/2, d3/2)-Dikin-amenable Lewis-weight metric instead,

3. For general logconcave sampling, Ball walk needs isotropic rounding, using Õ(d4) queries (Lovász and Vempala,
2006b, 2007), after which it mixes in Õ(d2) queries. Without rounding, it is not necessarily poly-time mixing. For
uniform sampling only, the complexity of isotropic rounding was improved to Õ(d3) by Jia et al. (2021).
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then GCDW with each metric recovers the Õ(m1/2d3/2) and Õ(d5/2) mixing of the Vaidya walk
and Approximate John walk (Chen et al., 2018) without warmness. For a second-order cone with
linear constraints, we can use the Hessian of 2(ϕlog +dϕSOC) that is (m+d,m+d)-Dikin-amenable,
with which GCDW mixes in Õ(d (m+ d)) iterations in total. Lastly, for the PSD cone with linear
constraints, we can use the (m+d3,m+d3)-Dikin-amenable 2∇2(ϕlog+d

2ϕPSD). GCDW with this
needs Õ(d2(m+d3)) queries. For largem, we use the (d3, d3)-Dikin-amenable 2(dgLw+d

2∇2ϕPSD),
with which GCDW mixes in Õ(d5) iterations. In the same setting, Ball walk needs Õ(d6) queries.

For exponential sampling, GCDW requires the same number of iterations of Dikin walk for each
case (i.e., polytope, second-order cone, PSD), while Ball walk needs Õ(d4) iterations for the polytope
and second-order cone, and Õ(d8) iterations for the PSD cone. Detailed statements on the mixing
times and efficient per-step implementation can be found in §F.3.

Uniform sampling over hyperbolic cones: Narayanan (2016) went beyond linear constraints
and analyzed Dikin walk for uniform sampling over a convex region given as the intersection of (1)
linear constraints, (2) a hyperbolic cone with a νh-SC hyperbolic barrier ϕh, and (3) a general convex
set with a νs-SC barrier ϕs. Using ∇2(ϕlog + dϕh + d2ϕs) as a local metric, this work shows that
Dikin walk mixes inO

(
d
(
m+dνh+(dνs)

2
))

steps from a warm start. The term d(dνs)
2 induced by

self-concordance alone is typically the largest one in the provable guarantee. Interesting results of this
work arise when K is the intersection of (1) and (2). Since a hyperbolic barrier is HSC (Güler, 1997,
Theorem 4.2), the d-scaling of a HSC barrier makes it SSC, SLTSC, and SASC. Also, as a νh-SC
hyperbolic barrier isO(νh)-symmetric (implied in Güler (1997, §4)), it follows that dϕh is (dνh, dνh)-
Dikin-amenable. Hence, ϕlog + dϕh induces an (m+ dνh,m+ dνh)-Dikin-amenable metric, and
Dikin walk with this metric mixes in O(d (m+ dνh)) iterations from a warm start by Theorem 3.1.
Without warmness, Narayanan (2016) showed that Dikin walk started at x ∈ K, where s ≥ |p|/|q| for
any chord pq of K passing through x, mixes in O

(
d(m+ dνh)

[
d log

(
s(m+ dνh)

)
+ log 1

ε

])
steps.

On the other hand, GCDW requires only O
(
d(m+ dνh) log

d(m+dνh)
ε

)
iterations.

Gaussian sampling: Going forward, we consider only logarithmic barriers for linear constraints.
Ball walk for general log-concave distributions mixes in Õ(d4) iterations. As per our reduction,
we first replace a quadratic potential (coming from the Gaussian distribution) by a new variable,
adding its epigraph to a constraint. For a polytope, one can use the (m+ d,m+ d)-Dikin-amenable
2∇2(ϕlog + dϕGauss), so GCDW needs Õ(d (m+ d)) iterations of Dikin walk. For the second-order
cone with linear constraints, GCDW with the (m+ d,m+ d)-Dikin-amenable metric 3∇2(ϕlog +

dϕSOC + dϕGauss) requires Õ(d (m + d)) iterations. For the PSD cone with linear constraints,
GCDW with the (m+ d3,m+ d3)-Dikin-amenable metric 3∇2(ϕlog + d2ϕPSD + d2ϕGauss) mixes
in Õ(d2(m+ d3)) iterations. Ball walk is much slower, requiring Õ(d8) iterations in this setting.

Entropy sampling: For a polytope, we use the (m+ d2,m+ d2)-Dikin-amenable 2∇2(ϕlog +

dϕent) in 2d-dimensional space. Thus, GCDW needs Õ(d (m + d2)) iterations of Dikin walk. For
the second-order cone with linear constraints, GCDW with the (m+ d2,m+ d2)-Dikin-amenable
3∇2(ϕlog + dϕSOC + dϕent), requires in Õ(d (m + d2)) iterations. Lastly, for the PSD cone with
linear constraints, GCDW with the (m+ d4,m+ d4)-Dikin-amenable 3∇2(ϕlog + d2ϕPSD + d2ϕent)

mixes in Õ(d2(m+ d4)) iterations. Ball walk mixes in Õ(d8) iterations in this setting.

3.6. Discussion

The inner loop of the sampling IPM samples from a distribution whose potential is of the form
cTx + αϕ(x). Thus, the study of other non-Euclidean samplers for relatively convex and smooth
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potentials will be interesting future work. Next, one question unanswered is if the d2-scaling of ϕPSD
can be improved, which is mathematically interesting in its own right. The d-scaling for ASC is
shown through the random matrix theory, which is challenging to extend to SASC (see Remark G.7).

4. Background and related work

Our problem (strLC) is a special case of logconcave sampling: sample from a distribution π with
density proportional to exp(−V ) for a convex function V on Rd. This problem has spawned a long
line of research in several communities, as it captures various important distributions, including
uniform distributions over convex bodies and Gaussians.

A large body of recent work in machine learning and statistics makes the assumption of 0 ⪯
αI ⪯ ∇2V ⪯ βI on Rd (i.e., α-strong convexity and β-smoothness of the potential V ) for the
logconcave sampling, where the strong-convexity assumption is sometimes relaxed to isoperimetry
assumptions such as log-Sobolev (LSI), Poincaré (PI), and Cheeger isoperimetry (see Chewi (2024)
for a survey on this topic). The guarantees provided on the mixing time of samplers under this
assumption have polynomial dependence on the condition number defined as β/α (or α is replaced
by the isoperimetric constant). These guarantees do not apply to constrained sampling. For example,
in uniform sampling, the simplest constrained sampling problem, V is set to be a constant within
the convex body and infinity outside the body, which leads to discontinuity of V and β =∞. The
sudden change of V around the boundary requires special consideration, such as small step size, use
of a Metropolis filter, projection, etc., making it a more challenging problem.
Uniform sampling. Uniform sampling can be accomplished through Ball walk (Lovász and
Simonovits, 1993; Kannan et al., 1997), Hit-and-Run (Smith, 1984), and In-and-Out (Kook et al.,
2024), which only require access to a function proportional to the density. When a convex body
K ⊂ Rd satisfies Br(x0) ⊂ K ⊂ BR(x0) for some x0, both Ball walk (Kannan et al., 1997) and
Hit-and-Run (Lovász, 1999; Lovász and Vempala, 2006a) mix from a warm start in the total variation
(TV) using Õ(d2(R/r)2) queries. In-and-Out, the proximal sampler for a uniform distribution, mixes
in the q-Rényi divergence using Õ(qd2(R/r)2) queries from a warm start. Lovász and Vempala
(2007) further extended these results to general logconcave distributions. These algorithms need to
use a “step size” of Ω(1/

√
d), and their mixing is affected by the skewed geometry of the convex

body (i.e., when R/r ≫ 1). The latter can be addressed by rounding the body, after which the three
samplers mix in Õ(d2) steps from a warm start, due to bounds on the KLS constant by Chen (2021);
Klartag (2023) and stochastic localization by Chen and Eldan (2022).
Sampling with local geometry. Ball walk uses the same radius ball for every point in the convex
body. One might want to use a different radius depending on the distance to the boundary. This by
itself does not work as it simply makes the current point converge to the boundary. However, replacing
balls with ellipsoids whose shape changes based on the proximity to the boundary does work. Several
sampling algorithms are motivated by the use of local metrics: Dikin walk (Kannan and Narayanan,
2012), Riemannian Hamiltonian Monte Carlo (RHMC), Riemannian Langevin algorithm (RLA)
(Girolami and Calderhead, 2011), etc.

Which local metrics would be suitable candidates? It turns out that a suitable metric can be
derived from self-concordant barriers, a concept dating back to the development of the interior-point
method in convex-optimization literature (Nesterov and Nemirovskii, 1994). It is well-known that any
convex body admits a d-self-concordant barrier such as universal barrier (Nesterov and Nemirovskii,
1994; Lee and Yue, 2021) and entropic barrier (Bubeck and Eldan, 2015; Chewi, 2023), but these are
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computationally expensive. Moreover, as noted in Laddha et al. (2020), the symmetry parameter of
these general barriers is Ω(d2) for d-dimensional bodies (even for second-order cones), and so the
resulting complexity for Dikin walk on the PSD cone is Ω(d2 · d4) = Ω(d6). Thus, there is a need to
find barriers that are more closely aligned with the structure of sets we wish to sample.

Polytope sampling. Samplers such as Ball walk and Hit-and-Run can be used to sample polytopes,
but they do not really use any special properties of polytopes.

For polytopes with m linear constraints in Rd (m > d), the first theoretical result via self-
concordant barriers dates back to Kannan and Narayanan (2012) which proposed Dikin walk with
the m-self-concordant logarithmic barrier and established the mixing rate of Õ(md) for uniform
sampling. Chen et al. (2018) revisited the idea of Vaidya (1996) using the O(m1/2d1/2)-self-
concordant barrier, which is a hybrid of the volumetric barrier and log-barrier, for a faster IPM. They
presented Dikin walk with the hybrid barrier giving an Õ(m1/2d3/2)-mixing guarantee.

While the next point proposed by all these Markov chains is obtained by a Euclidean straight
line step, Geodesic walk and RHMC use curves (geodesics and Hamiltonian-preserving curves
respectively). Lee and Vempala (2017) and Lee and Vempala (2018) showed that for uniform
sampling, Geodesic walk and RHMC with the log-barrier mix in Õ(md3/4) and Õ(md2/3) steps
respectively. Kook et al. (2023) extended theoretical analysis of RHMC to truncated exponential
distributions and showed that discretization of Hamilton’s equations by practical numerical integrators
maintains a fast mixing rate. Gatmiry et al. (2023) showed that RHMC with a hybrid barrier consisting
of the Lewis weights and log-barrier mixes in Õ(m1/3d4/3) steps. Their proof is based on developing
suitable properties and algorithmic bounds for Riemannian manifolds.

Generalization of approaches. Extending these non-Euclidean methods to general domains (e.g.,
the PSD cone) and to more general densities (e.g., Relatively strong convex and smooth, Gaussian)
to potentially improve the complexity of the problem significantly beyond the bounds that follow
from general convex body sampling, have been open research directions and motivate our paper.

Narayanan (2016) explored the first direction, analyzing Dikin walk for uniform sampling over
the intersection of linear constraints, a hyperbolic cone with a hyperbolic barrier, and a general
convex set with a self-concordant barrier. Our current understanding of the second direction is rather
limited. A line of work has focused on the analysis of first-order non-Euclidean samplers, such
as Mirror Langevin algorithm (MLA) or RLA but under strong assumptions. For example, Li et al.
(2022) provided mixing-rate guarantees of MLA under the modified self-concordance (msc) of ϕ in
the setting α∇2ϕ ⪯ ∇2f ⪯ β∇2ϕ. However, the msc is not affine-invariant, so it does not correctly
capture affine-invariance of the algorithm. Ahn and Chewi (2021); Gatmiry and Vempala (2022)
avoid the msc, analyzing MLA and RLA under an alternative discretization scheme that requires an
exact simulation of the Brownian motion ∇2ϕ(Xt)

−1/2 dWt which is not known to be achievable
algorithmically. Gopi et al. (2023) proposed a non-Euclidean version of the proximal sampler based
on the log-Laplace transformation (LLT) and analyzed its mixing when a potential is strongly convex
and Lipschitz (not smooth) relatively in∇2ϕ. However, the LLT has no closed form in general.

Our study of Dikin walk for general cones and general densities provides a rather complete
picture of zeroth-order non-Euclidean samplers. It also provides a general framework and improved
bounds as well as a “handbook” for structured sampling.
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Appendix A. Missing notation

Definition A.1 (Self-concordance) For convex K ⊂ Rd, let ϕ : int(K)→ R be a convex function,
g : int(K)→ Sd+ a PSD matrix function, and N r

g (x) := N
(
x, r

2

d g(x)
−1
)
.

• Self-concordance (SC): A C3-function ϕ is called a self-concordant barrier if |D3ϕ(x)[h, h, h]| ≤
2∥h∥3∇2ϕ(x) for any x ∈ int(K) and h ∈ Rd, and limx→∂K ϕ(x) = ∞. The first condition
is equivalent to −2∥h∥∇2ϕ(x)∇2ϕ(x) ⪯ D3ϕ(x)[h] ⪯ 2∥h∥∇2ϕ(x)∇2ϕ(x). We call it a ν-self-
concordant barrier for K if suph∈Rd(2⟨∇ϕ(x), h⟩ − ∥h∥2∇2ϕ(x)) ≤ ν for any x ∈ int(K) in

addition to self-concordance. A C1-PSD matrix function g : int(K) → Sd+ is called self-
concordant if −2∥h∥g(x)g ⪯ Dg(x)[h] ⪯ 2∥h∥g(x)g for any x ∈ int(K) and h ∈ Rd, and
there exists a self-concordant function ϕ : int(K)→ R such that∇2ϕ ≍ g on int(K). We call it
a ν-self-concordant barrier for K if its counterpart ϕ is ν-self-concordant.

• Highly self-concordant function (HSC): A C4-function ϕ is called highly self-concordant if
|D4ϕ(x)[h, h, h, h]| ≤ 6∥h∥4∇2ϕ(x) for any x ∈ int(K) and h ∈ Rd, and limx→∂K ϕ(x) =∞.

• Strong self-concordance (SSC): A SC matrix function g is called strongly self-concordant if g is
PD on int(K) and ∥g(x)−1/2Dg(x)[h] g(x)−1/2∥F ≤ 2∥h∥g(x) for any x ∈ int(K) and h ∈ Rd.
We call a SC function ϕ strongly self-concordant if∇2ϕ(x) is strongly self-concordant.

• Lower trace self-concordant matrix (LTSC): A SC matrix function g is called lower trace self-
concordant if g is PD on int(K) and Tr

(
g(x)−1D2g(x)[h, h]

)
≥ −∥h∥2g(x) for any x ∈ int(K)

and h ∈ Rd. We call it strongly lower trace self-concordant (SLTSC) if for any PSD matrix function
ḡ on int(K) it holds that Tr

((
ḡ(x)+ g(x)

)−1
D2g(x)[h, h]

)
≥ −∥h∥2g(x) for any x ∈ int(K) and

h ∈ Rd.
• Average self-concordance (ASC): A matrix function g is called average self-concordant if for any
ε > 0 there exists rε > 0 such that Pz∼N r

g (x)

(
∥z − x∥2g(z) − ∥z − x∥

2
g(x) ≤

2εr2

d

)
≥ 1 − ε for

r ≤ rε. We call it strongly average self-concordant (SASC) if for ε > 0 and any PSD matrix
function ḡ on int(K) it holds that Pz∼N r

g+ḡ(x)

(
∥z − x∥2g(z) − ∥z − x∥

2
g(x) ≤

2εr2

d

)
≥ 1 − ε for

r ≤ rε.

Basics. For n ∈ N, let [n] := {1, · · · , n}. We use f ≲ g to denote f ≤ cg for some universal
constant c > 0. The Õ complexity notation suppresses poly-logarithmic factors and dependence on
error parameters. For v ∈ Rd, the Euclidean norm (or ℓ2-norm) is denoted by ∥v∥2

def
=
√∑

i∈[d] v
2
i ,
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and the infinity norm is denoted by ∥v∥∞
def
= maxi∈[d] |vi|. A Gaussian distribution with mean

µ ∈ Rd and covariance Σ ∈ Rd×d is denoted by N (µ,Σ).

Matrices. We use Sd to denote the set of symmetric matrices of size d × d. For X ∈ Sd, we
call it positive semidefinite (PSD) (resp. positive definite (PD)) if hTXh ≥ 0 (> 0) for any
h ∈ Rd. We use Sd+ to denote the set of positive definite matrices of size d × d. Note that
their effective dimension is ds := d(d + 1)/2 due to symmetry. For a positive (semi) definite
matrix X , its square root is denoted as X

1
2 , and is the unique positive (semi) definite matrix

satisfying X
1
2X

1
2 = X . For A,B ∈ Sd, we use A ⪯ B (A ≺ B) to indicate that B − A

is PSD (PD). We use A ≍ B to indicate A ≾ B and B ≾ A. For a matrix A ∈ Rd×d, its
trace is denoted by Tr(A) =

∑d
i=1Aii. The operator norm and Frobenius norm are denoted by

∥A∥2
def
= supx∈Rd ∥Ax∥2/∥x∥2 and ∥A∥F

def
=
(∑d

i,j=1A
2
ij

)1/2
=
√

Tr(ATA), respectively.

Basic operations. For X ∈ Sd, its vectorization vec(X) ∈ Rd2 is obtained by stacking each
column ofX vertically. Its symmetric vectorization svec(X) ∈ Rds is obtained by stacking the lower
triangular part in vertical direction. For a matrix A ∈ Rd×d and vector x ∈ Rd, we use diag(A)
to denote the vector in Rd with [diag(A)]i = Aii for i ∈ [d], Diag(A) to denote the diagonal
matrix with [Diag(A)]ii = Aii for i ∈ [d] and Diag(x) to denote the diagonal matrix in Rd×d with
[Diag(x)]ii = xi for i ∈ [d].

Matrix operations. For matrices A,B ∈ Rd×d, their inner product is defined as the inner product
of vec(A) and vec(B), denoted by ⟨A,B⟩ = Tr(ATB). Their Hadamard product A ◦ B is the
matrix of size d× d defined by (A ◦B)ij = AijBij (i.e., obtained by element-wise multiplication).
For A ∈ Rp×q and B ∈ Rr×s, their Kronecker product A⊗B is the (pr × qs) matrix defined by

A⊗B =

 A11B · · · A1qB
...

...
Ap1B · · · ApqB

 ,
where AijB is a matrix of size r × s obtained by multiplying each entry of B by the scalar Aij .

Projection matrix, Leverage score and Lewis weights. For a full-rank matrix A ∈ Rm×d with
m ≥ d, we recall that P (A) := A(ATA)−1AT is the orthogonal projection matrix onto the column
space of A. The leverage scores of A is denoted by σ(A) := diag

(
P (A)

)
∈ Rm. We let Σ(A) :=

Diag
(
σ(A)

)
= Diag

(
P (A)

)
and P (2)(A) := P (A) ◦ P (A). The ℓp-Lewis weights of A is denoted

by w(A), the solution w to the equation w(A) = diag
(
W 1/2−1/pA(ATW 1−2/pA)−1ATW 1/2−1/p

)
∈

Rm for W = Diag(w). When m < d or A is not full rank, both leverage scores and Lewis weights
can be generalized via the Moore-Penrose inverse in place of the inverse in the definitions.

Derivatives. For a function f : Rd → R, let ∇f(x) ∈ Rd denote the gradient of f at x (i.e.,
[∇f(x)]i = ∂f

∂xi
(x)) and ∇2f(x) ∈ Rd×d denote the Hessian of f at x (i.e., [∇2f(x)]ij =

∂2f
∂xi∂xj

(x)). For a matrix function g : Rd → Rd×d in x, we use Dg and D2g to denote the

third-order and fourth-order tensor defined by [Dg(x)]ijk =
∂[g(x)]ij
∂xk

and [D2g(x)]ijkl =
∂2[g(x)]ij
∂xk∂xl

.
We use the following shorthand notation: g′x,h := Dg(x)[h] and g′′x,h := D2g(x)[h, h]. We let
Dig(x)[h1, · · · , hi] = Dig(x)[h1 ⊗ · · · ⊗ hi] denote the i-th directional derivative of g at x in
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directions h1, · · · , hi ∈ Rd, i.e.,

Dig(x)[h1, · · · , hi] =
di

dt1 · · · dti
g
(
x+

i∑
j=1

tjhj

)∣∣∣∣
t1,··· ,ti=0

.

Local norm. At each point x in a set K ⊂ Rd, a local metric g, denoted as gx or g(x), is a
positive-definite inner product gx : Rd × Rd → R, which naturally induces the local norm as
∥v∥g(x) :=

√
gx(v, v). We use ∥v∥x to refer to ∥v∥g(x) when the context is clear. When an ambient

space has an orthogonal basis as in our setting (e.g., {e1, . . . , ed}), the local metric gx can be
represented as a positive-definite matrix of size d× d. With this perspective, the inner product can
be written as gx(v, w) = vTg(x)w. Going forward, we use gx = g(x) to denote a local metric
(or positive definite matrix of size dim(x) × dim(x)) at each point x ∈ K. The local metric g is
assumed to be at least twice differentiable.

Markov chains. We use the same symbol for a distribution and its density with respect to the
Lebesgue measure. Many sampling algorithms are based on Markov chains. A transition kernel
P : Rd × B(Rd) → R≥0 (or one-step distribution) for the Borel σ-algebra B(Rd) quantifies the
probability of the Markov chains transitioning from one point to another measurable set. The
next-step distribution is defined by Px(A) := P (x,A), which is the probability of a step from
x landing in the set A. The transition kernel characterizes the Markov chain in the sense that if
a current distribution is µ, then the distribution after n steps can be expressed as µP (n), where
µP (i)(x) :=

∫
Rd P (·, x)µP (i−1) is defined recursively for i ∈ [n] with the convention µP (0) = µ.

We call π a stationary distribution of the Markov chain if π = πP . If the stationary distribution
further satisfies

∫
A P (x,B)π(dx) =

∫
B P (x,A)π(dx) for any two measurable subsets A,B, then

the Markov chain is said to be reversible with respect to π.
It is expected that the Markov chain approaches the stationary distribution. We measure this with

the total variation distance (TV-distance): for two distributions µ and π on Rd, the TV-distance is
defined as dTV(µ, π)

def
= supA∈B(Rd) |µ(A)− π(A)| = 1

2

∫
Rd

∣∣dµ
dx −

dπ
dx

∣∣dx, where the last equality
holds when the two distributions admit densities with respect to the Lebesgue measure on Rd. We
also recall other probabilistic distances: when µ≪ ν,

The chi-squared divergence χ2(µ ∥ ν) def
=

∫ (dµ
dν
− 1
)
dν ,

L2-distance ∥µ/ν∥ def
=

∫
dµ

dν
dµ = χ2(µ ∥ ν) + 1 .

Moreover, the rate of convergence can be quantified by the mixing time: for an error parameter
ε ∈ (0, 1) and an initial distribution π0, the mixing time is defined as the smallest n ∈ N such that
dTV(π0P

(n), π) ≤ ε. In this paper, we consider a lazy Markov chain, which does not move with
probability 1

2 at each step, in order to avoid a uniqueness issue of a stationary distribution. Note
that this change worsens the mixing time by at most a factor of 2. One of the standard tools to
control progress made by each iterate is the conductance Φ of the Markov chain with its stationary
distribution π, defined by

Φ
def
= inf

measurable S

∫
S P (x, S

c)π(dx)

π(S) ∧ π(Sc)
.
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Figure A.1: Outline

Another crucial factor affecting the convergence rate is geometry of the stationary distribution π, as
measured by Cheeger isoperimetry

ψπ
def
= inf

measurable S

limδ→0+
1
δ π
(
{x : 0 < d(S, x) ≤ δ}

)
π(S) ∧ π(Sc)

,

where d(S, x) is some distance between x and the set S.

Appendix B. Mixing of the Dikin walk

We follow a standard conductance based argument (see e.g., Lovász and Simonovits (1993); Vempala
(2005)). A lower bound on the conductance of a Markov chain provides an upper bound on the
mixing time of the Markov chain due to the following result.

Lemma B.1 (Lovász and Simonovits (1993)) Let πT be the distribution obtained after T steps of
a lazy reversible Markov chain of conductance at least Φ with stationary distribution π and initial
distribution π0. For Λ = Eπ0

[
dπ0
dπ

]
and any ε > 0, we have dTV(πT , π) ≤ ε+(ε−1Λ)1/2

(
1− Φ2

2

)T .

A lower bound on the conductance follows from two ingredients: (i) one-step coupling and (ii)
isoperimetry. The first refers to showing that the one-step distributions of the Dikin walk from two
nearby points have TV-distance bounded away from one. The second is a purely geometry property
about the expansion of the target distribution. Combining these two leads to a lower bound on the
conductance:

Lemma B.2 (Kook et al. (2023), Adapted from Proposition 9) Let π be the stationary distribution
of a lazy reversible Markov chain onM with a transition kernel Px. Assume the isoperimetry ψM
under the Riemannian distance dg(x, y) and the following one-step coupling: if ∥x−y∥g(x) ≤ ∆ < 1
for x, y ∈ M, then dTV(Px, Py) ≤ 0.9. Then the conductance Φ of the Markov chain is bounded
lower by Ω(ψM∆).
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B.1. One-step coupling and isoperimetry

Recall that a ν̄-Dikin-amenable metric is ν̄-symmetric, SSC, LTSC, and ASC. Laddha et al. (2020)
was the first to attempt characterizing essential properties of g (or ϕ) that determine mixing times of
Dikin walks for uniform sampling. Their framework necessitates that g satisfies ν̄-symmetric, SSC,
convexity of log det g(x), and x ∈ Drg(z) w.h.p. (where z ∼ Unif

(
Drg(x)

)
).

However, their framework encounters a challenge when further incorporating the work of
Narayanan (2016), which analyzes the Dikin walk for uniform sampling over a convex region given
as the intersection of various convex sets. The challenge arises from the difficulty of verifying the
convexity of log det(g1 + g2) when log det gi is convex for each i = 1, 2.

To address this challenge and succinctly characterize essential characteristics of a metric for
one-step coupling, we relax the convexity of log det to (S)LTSC and introduce the notion of ASC to
account for the condition “x ∈ Drg(z) w.h.p.”. We show that one-step coupling lemma below, one of
main proof ingredients in obtaining a mixing-time guarantee of the Dikin walk, can be established
under Dikin-amenability of a metric. Our characterization of a metric for achieving one-step coupling
is general and unifies previous work on Dikin walks (Kannan and Narayanan, 2012; Narayanan,
2016; Chen et al., 2018; Laddha et al., 2020).

We now proceed to establish one-step coupling under the relative smoothness in ϕ.

Lemma B.3 (One-step coupling) For convex K ⊂ Rd, let g : int(K) → Sd++ be SSC, ASC,
LTSC, and ϕ : int(K) → R be its function counterpart. Suppose that the potential f of the
target distribution π is β-relatively smooth in ϕ. Then there exist constants s1, s2 > 0 such that if
∥x− y∥g(x) ≤ s1r/

√
d with r = s2 (1 ∧ 1/

√
β) for x, y ∈ int(K), then dTV(Px, Py) ≤ 3

4 + 0.01.

We provide a sketch of the proof (see §G.1.1 for the full proof). A key distinction when extending
beyond uniform distributions lies in establishing a lower bound for the ratio exp(f(x))

exp(f(z)) to ensure a
high acceptance probability. To tackle this issue, we use the symmetry of the proposal distribution,
claiming exp(f(x))/exp(f(z)) ≥ 1−ε at the expense of 1

2+ε probability. However, this 1
2+ε probability

loss is incompatible with previous proof techniques based on the triangle inequality: for a transition
kernel T and proposal kernel P , the triangle inequality leads to

dTV(Tx, Ty) ≤ dTV(Tx, Px) + dTV(Px, Py) + dTV(Py, Ty) ,

and then bound the second term in the RHS by Pinsker’s inequality, making it arbitrarily small by
taking r = O(1) small enough. However, this approach yields a bound of 1

2 + ε for both dTV(Tx, Px)
and dTV(Ty, Py), making the RHS vacuous.

We instead work with the exact formula for dTV(Tx, Ty): for the Gaussian px = N (x, r
2

d g(x)
−1),

Rx(z) =
pz(x)

px(z)

π(z)

π(x)
=
pz(x)

px(z)

exp(f(x))

exp(f(z))
, Ax(z) = min

(
1, Rx(z)1K(z)

)
,

the transition kernel Tx of the Dikin walk started at x can be written as

Tx(dz) =
(
1− Epx [Ax(·)]

)︸ ︷︷ ︸
=:rx

δx(dz) +Ax(z) px(dz) .

Then,

dTV(Tx, Ty) =
rx + ry

2
+

1

2

∫
|Ax(z) px(z)−Ay(z) py(z)| dz .
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As for rx and ry, we bound below pz(x)
px(z)

by 1 − ε at the cost of ε-probability through SSC,
LTSC, and ASC of g, following Laddha et al. (2020) with convexity of log det replaced by LTSC.
As mentioned earlier, we also deduce exp(f(x))/exp(f(z)) ≥ 1− ε through the symmetry of Gaussian
distributions at the cost of 1

2 probability. Combining these results, we obtain upper bounds of 1
2 + ε

for small ε > 0 on rx and ry.
Establishing a bound of 1/4 + ε on the second term is a more involved task. It requires the

closeness of acceptance probabilities Ax(z) and Ay(z) as well as that of the probability densities
px(z) and py(z). This closeness can be achieved through sophisticated conditioning on high-
probability events due to ASC, SSC, and symmetry of Gaussian proposals. To be precise, define good
eventsGx = ∩i=0,2,3B

c
x,i andGy = ∩i=0,2,3B

c
y,i such that PN r

g (x)
(Gcx) ≤ 3ε and PN r

g (y)
(Gcy) ≤ 3ε,

where

Bx,0 = {∥z − x∥x ≥ cr} with c ≥ 1 +
2√
d
log

1

ε
, (Tail bound for Gaussian)

Bx,1 = {−⟨∇f(x), x− z⟩ ≤ 0} , (Symmetry of Gaussian)

Bx,2 = {∥z − x∥2z − ∥z − x∥2x > 2ε
r2

d
} , (ASC of g)

Bx,3 =
{
⟨∇φ(x), z − x⟩ ≤ −2 r√

d
∥g(x)−1/2∇φ(x)∥2 log

1

ε

}
. (SSC & tail bound for Gaussian)

We further denote G := Gx ∪Gy and a partition of G by

Gx\y := Gx\Gy, Gx,y := Gx ∩Gy, Gy\x := Gy\Gx .

Then,

1

2

∫
|Ax(z) px(z)−Ay(z) py(z)|︸ ︷︷ ︸

=:Q

dz ≤ 3ε+
1

2

∫
Gx\y

Qdz︸ ︷︷ ︸
=:A

+
1

2

∫
Gy\x

Qdz︸ ︷︷ ︸
=:B

+
1

2

∫
Gx,y

Qdz︸ ︷︷ ︸
=:C

.

We can bound A and B by O(ε) by Pinsker’s inequality and a well-known formula for the KL
divergence between two Gaussians. As for C, conditioning on Bx,1 and using the triangle inequality
lead to

C ≤ 1

4
+2ε+

1

2

∫
Gx∩Gy∩Bc

x,1

∣∣∣min
(
1,

exp f(x)

exp f(z)

pz(x)

px(z)︸ ︷︷ ︸
=:U

)
−min

(py(z)
px(z)︸ ︷︷ ︸
=:V

,
exp f(y)

exp f(z)

pz(y)

px(z)︸ ︷︷ ︸
=:W

)∣∣∣ px(z) dz .
The bound of logU ≥ −4ε was already obtained when bounding rx. We then show that |logV| ≤ 5ε
and logW ≥ −7ε conditioned on Gx ∩Gy ∩Bc

x,1 via closeness of SSC (Lemma D.6). Using these,∫
Gx∩Gy∩Bc

x,1

|1 ∧ U− V ∧W| px(z) dz ≤ e5ε − e4ε ,

which results in C ≤ 1/4 +O(ε). Putting the bounds on rx, ry,A,B, and C together, we conclude
that the TV-distance is bounded by 3/4 +O(ε).

Remark B.4 We further note that ∥x− y∥x can be replaced by the Riemannian distance dϕ(x, y)
with the metric defined by∇2ϕ, since these two distance are within a constant factor of each other:
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Lemma B.5 (Nesterov et al. (2002), Lemma 3.1) Let ϕ : int(K) → R be self-concordant, and
x, y ∈ int(K) with δ := ∥x− y∥x < 1. Then,

δ − 1

2
δ2 ≤ dϕ(x, y) ≤ − log(1− δ) .

Next, we present two isoperimetric inequalities derived from distinct sources: the first comes
from the symmetry of a barrier, while the second arises from strong convexity in a local metric.

Isoperimetry via barrier parameters. The first one states that isoperimetry of log-concave
distributions under distance dg(x, y) (or ∥x− y∥g(x) due to Lemma B.5) is Ω(1/

√
ν̄). The following

lemma is an extension of Laddha et al. (2020) from uniform distributions (over a convex body) to
general log-concave distributions. We defer the proof to §G.1.2.

Lemma B.6 For a log-concave distribution π, isoperimetry ψπ under distance dϕ is Ω(1/
√
ν̄).

Isoperimetry from relative strong convexity. Another kind of isoperimetry comes from relative
strong-convexity of the potential of a distribution. For a scalar α > 0, isoperimetry of e−αϕ on a
Hessian manifold equipped with the metric ∇2ϕ is Ω(

√
α) if D4ϕ(x)

[
h⊗4

]
≥ 0 for all x ∈ K and

h ∈ Rd (Lee and Vempala, 2018, Lemma 37). Gopi et al. (2023, Lemma 9) further generalizes
this to show that if ϕ is self-concordant and the potential f is α-relatively strong convex, then its
isoperimetry is Ω(

√
α). We can adapt this lemma by restricting this to a convex setK (not necessarily

bounded). See §G.1.2 for the proof.

Lemma B.7 (Gopi et al. (2023), Adapted from Lemma 9) For a closed convex set K ⊂ Rd, let
a convex function ϕ : int(K)→ R be self-concordant on K, f : int(K)→ R α-relatively strongly
convex in ϕ, and π a log-concave distribution with π ∝ exp(−f) · 1K . For a partition {S1, S2, S3}
of K and the Riemannian distance dϕ induced by the inner product ⟨a, b⟩x := aT∇2ϕ(x) b, it holds
that

π(S3) ≳
√
αdϕ(S1, S2)π(S1)π(S2) .

B.2. Mixing time: Proof of Theorem 3.1

Putting all these components together, we obtain the following mixing-time bounds for the Dikin walk.

Theorem 3.1 Let K ⊂ Rd be convex and 0 ≤ α ≤ β <∞.
• (Local metric) Assume that a C1-matrix function g : int(K)→ Sd++ is ν̄-Dikin-amenable.
• (Distribution) Let π0 and π ∝ exp(−f) · 1K be an initial and target distribution respectively,

where f is α-relatively strongly convex and β-smooth in g. Let ∥π0/π∥ = Eπ0
[
dπ0
dπ

]
and P be the

transition kernel of Dikin walk with the local metric g and step size r = O(1 ∧ β−1/2).
Then for any ε > 0, it holds that dTV(π0P

(T ), π) ≤ ε for T ≳ d(1 ∨ β) (ν̄ ∧ 1/α) log ∥π0/π∥
ε .

Proof Lemma B.2 ensures that Φ ≳ r√
d
ψ due to the one-step coupling in Lemma B.3. Lemma B.6

leads to ψ ≳ 1√
ν̄

, while Lemma B.7 implies ψ ≳
√
α due to∇2ϕ ≍ g. Thus,

Φ ≳
1√
d

(√
α ∨ 1√

ν̄

)(
1 ∨ 1√

β

)
,

and using Lemma B.1, we can enforce dTV(πT , π) ≤ ε by solving ε
2 +

√
Λ
ε/2e

−TΦ2/2 ≤ ε for T ,

which results in T ≳ d (1 ∨ β)
(
ν̄ ∧ 1

α

)
log Λ

ε .
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Algorithm 2: Interior-Point Method
Input: A ν-self-concordant barrier ϕ for a constraint
Output: yλ
Denote fλ(y) := cTy + 1

λ ϕ(y).
// Phase 1: Starting feasible point

Find y0 = argminϕ(y), set λ = 1
6 ∥c∥

−1
[∇2ϕ(y0)]−1 , and ȳλ ← y0.

// Phase 2: Increasing λ until λ ≤ ν+1
ε

while λ ≤ ν+1
ε do

ȳλ ← ȳλ − [∇2fλ(ȳλ)]
−1∇fλ(ȳλ) // ‘‘Opt. step’’ (e.g., the Newton step)

λ← (1 + r)λ with r = 1
9
√
ν

. // Increase λ

end

Appendix C. Gaussian cooling on manifolds revisited: IPM framework for sampling

We derive a sampling analogue of the Interior-Point Method through comparison with IPM in
optimization, by extending Gaussian cooling on manifolds introduced in Cousins and Vempala
(2018); Lee and Vempala (2018). Combining the sampling IPM framework with the Dikin walk
efficiently generates a warm start for a target distribution π ∝ e−f · 1K with finite second moment.

C.1. Derivation of sampling IPM

Let us recall our setup. Let K ⊂ Rd be a closed convex set, g : int(K)→ Sd++ a (ν, ν̄)-SC matrix
function, and ϕ : int(K)→ R its (strictly convex) SC counterpart. We assume minx ϕ(x) = 0 by
considering ϕ−minx ϕ(x) (here, argminϕ(x) can be efficiently found by the optimization IPM).
We assume that f is α-relatively strongly convex and β-relatively smooth in ϕ for 0 ≤ α ≤ β <∞,
i.e., 0 ⪯ α∇2ϕ ⪯ ∇2f ⪯ β∇2ϕ on int(K). We define f̄(·) := ν

d f(·) and gϕ(·) := ∇2ϕ(·).

Interior-point method for optimization. A structural convex optimization problem is formulated
as minx∈K f(x), where f : Rd → R is a convex function, and K ⊂ Rd is a closed convex set. Also,
both K and {(x, t) : f(x) ≤ t} admit efficiently computable self-concordant barriers denoted by ϕ1
and ϕ2, respectively. We can simplify the problem by equivalently solving minx∈K, {(x,t):f(x)≤t} t

and in general focus on minx∈K, {(x,t):f(x)≤t} c
T(x, t) for a constant c ∈ Rd+1.

IPM then regularizes cT(x, t) by adding 1
λ ϕ(x, t) = 1

λ

(
ϕ1(x) + ϕ2(x, t)

)
for λ > 0. This

regularization removes the hard constraint ofK∩{f(x) ≤ t}, and the resulting formulation becomes

min
y=(x,t)∈Rd+1

fλ(y) := cTy +
1

λ
ϕ(y) ,

where ϕ(y) blows up as y approaches the boundary of the constraint. For each fixed λ > 0, there
exists a minimum yλ of the convex function fλ(y). Intuitively, as λ → ∞ the regularization term
1
λ ϕ(y) vanishes, so yλ converges to argminy∈K∩{f(x)≤t} c

Ty. The path followed by {yλ}λ>0 is
called the central path, and IPM aims to approximately follow this central path as λ increases.

To be precise, suppose that for λ1 > 0, an approximation solution ȳλ1 maintained by IPM is
close enough to yλ1 . Then IPM takes an optimization step (e.g., a Newton step), which takes into
account the local geometry induced by the Hessian of the barrier ϕ, to find an approximate solution
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Figure C.1: Comparison between the optimization IPM and the sampling IPM.

ȳλ2 when λ2 > λ1. As long as ȳλ1 is sufficiently close to yλ1 , this approximate solution ȳλ1 serves a
good starting point for the non-Euclidean optimizer, which takes ȳλ1 to ȳλ2 . IPM alternates between
increasing λ and updating ȳλ, until λ reaches ν/ε. This is described formally as Algorithm 2.

The ideas behind IPM are justified by the following theoretical guarantee: Algorithm 2 returns y in
O
(√
ν log

(
ν
ε∥c∥[∇2ϕ(y0)]−1

))
iterations such that cTy ≤ cTy∗+ε for y∗ = argminy∈K∩{f(x)≤t} c

Ty.

Translation to sampling. Now let us adapt each step of IPM into the sampling context with the
conceptual analogy between convex optimization and logconcave sampling in mind: For convex
K ⊂ Rd and convex function f : K → R

min f(x) ←→ sample x ∼ exp(−f)
s.t. x ∈ K s.t. x ∈ K .

Similar to the optimization IPM, we first replace f(x) by a new variable t and add the constraint
{f(x) ≤ t} (which is convex due to convexity of f ), resulting in the following sampling problem:
sample (x, t) from a distribution with density proportional to e−t subject to x ∈ K and {(x, t) ∈
Rd+1 : f(x) ≤ t}. We note that this is indeed an equivalent sampling problem, since the x-marginal
of the distribution is exp(−f) · 1K :∫

{(x,t)∈Rd+1:f(x)≤t}
exp(−t) · 1K(x) dt =

∫ ∞

f(x)
exp(−t) · 1K(x) dt = exp(−f) · 1K .

Now assume that K ∩{f(x) ≤ t} admits a barrier ϕ. Thus, this motivates our focus on sampling
from distributions of the form exp(−cTy) subject to a convex region K with a barrier ϕ, where
y := (x, t) ∈ Rd+1 is a variable in the augmented space and c ∈ Rd+1 is a vector.

Regularizing the potential cTy of the distribution by adding 1
σ2 ϕ(y) for some σ2 > 0, we can

ignore the hard constraint K and obtain the following formulation: for fσ2 := ⟨c, ·⟩+ 1
σ2 ϕ,

sample y ∼ µσ2 ∝ exp(−fσ2(y)) = exp
(
−
(
cTy +

1

σ2
ϕ(y)

))
,
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Figure C.2: We refine the derived sampling IPM to obtain the Gaussian cooling on manifolds. The
red dashed line indicates a centra path of measures. The red dots are target probability measures
appearing in the sampling IPM, while blue dots are probability measures given by a non-Euclidean
sampler, which are approximately close to those target measures (red dots). Closeness of two dots
(bounded by the green dashed boxes) is quantified by the TV-distance.

where ϕ(y) goes to infinity as it approaches the boundary of K. The regularization 1
σ2 ϕ vanishes as

σ2 → ∞, so we can expect µσ2 → π ∝ exp(−⟨c, ·⟩) · 1K . Comparing this with the optimization
IPM, the path of measures {µσ2}σ2>0 can be viewed as the central path in the space of measures. In
an ideal scenario, a sampling IPM should closely follow this central path while increasing σ2 along
the path. To this end, we update the current distribution µ̄σ2 , which is already close to µσ2 on the
central path. This update should leverage a sampling step that is aware of the local geometry induced
by∇2ϕ, which may involve running a non-Euclidean sampler such as the Dikin walk. This update
brings µ̄σ2 to a new distribution µ̄σ2+δ that should be close to µσ2+δ for small δ > 0, while µ̄σ2

serves a good starting point for this sampling step to find µ̄σ2+δ. This procedure is repeated until σ2

becomes large enough.

To use this sampling IPM, we further refine the framework via Gaussian cooling on manifolds.

Comparison with the Gaussian cooling on manifolds (GCM). Gaussian Cooling introduced
in Cousins and Vempala (2018) was extended to manifolds by Lee and Vempala (2018). It was
initially proposed for volume computation but shares remarkable similarities with our sampling IPM.
In fact, GCM can be identified with the sampling IPM with c = 0 (i.e., uniform sampling) and the
Riemannian Hamiltonian Monte Carlo employed for the non-Euclidean sampling step.

Returning to the comparison with the optimization IPM, we note that two algorithms use different
rules for updating σ2. While the optimization IPM updates σ2 ←

(
1 + 1√

ν

)
σ2, GCM utilizes two

28



THE INTERIOR-POINT METHOD FOR LOGCONCAVE SAMPLING

distinct annealing schemes:

σ2 ←

{
σ2
(
1 + 1√

d

)
if σ2 ≤ ν

d

σ2
(
1 + σ√

ν

)
o.w.

While the first type of update in the small regime of σ2 relies on a property of logconcavity of
regularized distributions µσ2 ∝ exp

(
−
(
sϕ(y)+ cTy

))
, the second type of update in the large regime

of σ2 is justified by concentration of measure e−sϕ in a thin shell for s > 0. We note that the second
type in fact accelerates the annealing process.

However, significant challenges remain for the sampling IPM. First, we need to extend this
annealing scheme to exponential distributions (recall that GCM was proposed for uniform sampling).
To be precise, we must account for the linear term cTy (in addition to the ϕ term) when designing the
annealing scheme. Unfortunately, the previous update scheme (which is applied only to ϕ part) with
its analysis do not go through for this purpose.

To address this issue, we introduce a further generalization of the GCM annealing scheme in
the small regime of σ2, enabling us to leverage logconcavity of µσ2 . In the large regime of σ2, we
use the same annealing scheme but employ a different analytical approach, utilizing a functional
inequality with no need to quantify the thin-shell phenomenon of µσ2 .

To discuss another remaining issue, we note that a non-Euclidean sampler used in the sampling
step must have a provable mixing-time guarantee for µσ2 . We already provided this through
Theorem 3.1 in §B for the Dikin walk, since the target potential is s-relatively strongly convex and
s-relatively smooth in ϕ!

C.2. IPM algorithm for sampling

Our algorithm consists of four phases, where each phase updates a current distribution in a different
way. For generality, we present this annealing process for a general potential f instead of linear
functions, where α∇2ϕ ⪯ ∇2f ⪯ β∇2ϕ.

Going forward, we use the following notation: for f̄(x) := ν
d f(x),

F (σ2) :=

{∫
K exp

(
− f̄(x)+ϕ(x)

σ2

)
dx if σ2 ≤ ν

d ,∫
K exp

(
−f(x)− ϕ(x)

σ2

)
dx if νd ≤ σ

2 ≤ ν .

We can show that x∗ = argminK(f̄ + ϕ) exists in Line 3 of Algorithm 3 and that all distributions
involved in the algorithm are indeed integrable. We defer the proof to §G.2.1.

Proposition C.1 Each probability density involved in the algorithm is integrable.

C.2.1. CLOSENESS OF DISTRIBUTIONS IN SAMPLING IPM

In this section, we demonstrate that within each phase a probability distribution µσ2
i

serves as a good
warm start for sampling the subsequent distribution µσ2

i+1
.

For the first two phases, closeness of consecutive distributions follow purely from a property of
log-concave distributions, which is independent of local metrics.

Lemma C.2 (Kalai and Vempala (2006), Lemma 3.2) For a log-concave function g : Rd → R,
the function a 7→ ad

∫
g(x)a dx is log-concave in a.
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Algorithm 3: Interior-Point Method for sampling
Input: Target accuracy ε, local metric g, its counterpart ϕ, non-Euclidean sampler
NE-Sampler(g, ε), target distribution π ∝ exp(−f).

Output: x′
Let f̄ = ν

d f and µσ2 ∝ exp(−Vσ2), where

Vσ2 :=

{
f̄+ϕ
σ2 if σ2 ≤ ν

d ,

f + 1
σ2 ϕ o.w.

// Phase 1: Initial distribution

Find x∗ = argminx∈K(f̄ + ϕ) and let D := D3σ0
√
d

g (x∗) for σ20 := 10−5/d3.

Draw x0 ∼ NE-Sampler
(
g, ε√

d

)
with initial dist. N

(
x∗,

σ2
0

1+νβ/d g(x
∗)−1

)
· 1D and target µσ2

0
.

// Phase 2 & 3: Annealing until σ2 ≤ ν
while σ2 ≤ ν do

Update σ2 by

σ2 ←

{
σ2
(
1 + 1√

d

)
if σ2 ≤ ν

d (Phase 2)

σ2
(
1 + σ√

ν

)
if νd ≤ σ

2 ≤ ν (Phase 3),

Draw xi+1 ∼ NE-Sampler
(
g, ε√

d

)
started at xi with target dist. µσ2 , and increment i.

end
// Phase 4: Sampling from e−f

Draw x′ ∼ NE-Sampler
(
g, ε√

d

)
started at xi with target dist. π.

In Phase 1, we leverage another fundamental property of log-concave distributions. It allows us to
establish that the Gaussian distribution truncated over a small Dikin ellipsoid in Phase 1 provides an
O
(( νβ+d

να+d

)d)-warm start for µσ2
0
. Thus, the Dikin walk which has a log-dependency on the warmness

parameter introduces an additional factor of d.

Lemma C.3 (Lovász and Vempala (2007), Lemma 5.16) Let X be a random point drawn from a
log-concave distribution with a density g : Rd → R. If γ ≥ 2, then

P
(
g(X) ≤ e−γ(d−1) max g

)
≤ (γ e1−γ)d−1 .

Remark C.4 If we can show that the Dikin walk has a log log-dependency through the blocking
conductance or Gaussian isoperimetry, or if we utilize a non-Euclidean sampler with a double-log
dependency, we can avoid the additional factor of d.

We defer the proofs for closeness to §G.2.2.

Lemma C.5 (Phase 1) Let x∗ = argminK(f̄ + ϕ). For σ2 = 10−5/d3 and g = ∇2ϕ, let µ be
the Gaussian distribution N

(
x∗, σ2

1+νβ/d g(x
∗)−1

)
truncated over D3σ

√
d

g (x∗), and µ0 the initial

distribution used in Phase 2 such that µ0 ∝ exp
(
− f̄+ϕ

σ2

)
· 1K . Then ∥µ/µ0∥ ≲

( νβ+d
να+d

)d.
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In the following lemmas, we show that within each phase of our algorithm µσ2
i

serves as anO(1)-
warm start for the following distribution µσ2

i+1
. In Phase 2, for 1/d3 ≲ σ2 ≤ ν/d the multiplicative

update of (1 + 1/
√
d) allows us to achieve an O(1)-warm start.

Lemma C.6 (Phase 2) In Phase 2 (i.e., σ2i ≤ ν/d with the update σ2i+1 = (1+1/
√
d)σ2i ), a previous

distribution µi serves as an O(1)-warm start for the next distribution µi+1, i.e., ∥µi/µi+1∥ = O(1).
In the large regime of ν/d ≤ σ2 ≤ ν during Phase 3, we leverage the Brascamp-Lieb inequality

to show that the accelerated update of (1+σ/
√
ν) ensures anO(1)-warm start. Moreover, we employ

the same technique along with a limiting argument to show that in Phase 4 the final distribution of
µν is an O(1)-warm start for the target distribution π.

Lemma C.7 (Phase 3 and 4) In Phase 3 (i.e., ν/d ≤ σ2i ≤ ν with the update σ2i+1 = σ2i (1 +
σi/
√
ν), a previous distribution µi serves as an O(1)-warm start for the next distribution µi+1, i.e.,

∥µi/µi+1∥ = O(1). In Phase 4, the distribution µ ∝ exp
(
−(f + ϕ/ν)

)
· 1K is an O(1)-warm start

for the target distribution π ∝ exp(−f) · 1K .

C.2.2. PROOF OF THEOREM 3.2

We now prove Theorem 3.2, Algorithm 3 with the Dikin walk employed for the non-Euclidean
sampler.

Theorem 3.2 For convex K ⊂ Rd, suppose that g : int(K)→ Sd++ is (ν, ν̄)-Dikin-amenable and ϕ
is its function counterpart such that minK ϕ exists. Gaussian cooling with Dikin walk (Algorithm 3
with Dikin walk serving as a non-Euclidean sampler) generates a sample that is ε-close to exp(−f) ·
1K in TV-distance using O

(
d (d νβ+dνα+d ∨ ν ∨ ν̄) log

dν
ε

)
iterations of Dikin walk with g, where a

C2-function f : int(K) → R satisfies α∇2ϕ ⪯ ∇2f ⪯ β∇2ϕ on K for 0 ≤ α ≤ β < ∞. In
particular, when f(x) = αTx or cϕ(x) for α ∈ Rd and c ∈ R+, the algorithm uses Õ(d (d ∨ ν ∨ ν̄))
iterations of the Dikin walk.

Proof By Theorem 3.1, if the potential V of a target distribution satisfies α∇2ϕ ⪯ ∇2V ⪯ β∇2ϕ,
the mixing time of the Dikin walk is d (1 ∨ β) (ν̄ ∧ 1/α) log Λ

ε . Let κ̄ = νβ+d
να+d .

• Phase 1: When a target distribution is exp
(
− f̄+ϕ

σ2

)
) with σ2 = 10−5/d3,

d2
(
1 +

νβd−1 + 1

σ2
)
min

(
ν̄,

σ2

1 + ναd−1

)
log
(νβ + d

να+ d

)
≤ d2κ̄ log κ̄ .

• Phase 2 (1/d3 ≲ σ2 ≤ ν/d): Note that we need O∗(
√
d)-many iterations to double σ2. Hence, in

this phase the number of iterations of the Dikin walk with a target exp
(
− f̄+ϕ

σ2

)
adds up to

d
(
1 +

νβd−1 + 1

σ2
)
min

(
ν̄,

σ2

1 + ναd−1

)
·
√
d ≤ d1.5κ̄+

√
dν .

• Phase 3 (ν/d ≤ σ2 ≤ ν): We need O∗(√ν
σ

)
-many iterations to double σ2. Hence, in this phase

the total number of iterations of the Dikin walk with a target exp
(
−
(
f + ϕ

σ2

))
is

d
(
1 + β +

1

σ2
)
min

(
ν̄,

1

α+ σ−2

)
·
√
ν

σ
≤ d
√
ν

σ

(
κ̄+ σ2

)
≤ (d1.5κ̄+

√
dν) ∨ (dκ̄+ dν)

• Phase 4: The Dikin walk takes O(dν̄) iterations.
Adding up all iterations, we need Õ(d (dκ̄ ∨ ν ∨ ν̄)) iterations of the Dikin walk in total.
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Appendix D. Self-concordance theory for sampling IPM

Theorem 3.2 shows that GCDW running with a (ν, ν̄)-Dikin-amenable metric for exponential
distributions mixes in Õ(dmax (d, ν, ν̄)) iterations. Since every log-concave sampling problem
can be reduced to an exponential sampling problem (as shown in (redLC)), Theorem 3.2 ensures a
poly-time mixing algorithm that utilizes local geometry if we have a (ν, ν̄)-Dikin-amenable metric
for the reduced sampling problem.

This poses a natural question of how to construct such an efficiently computable Dikin-amenable
metric for structured sampling problems. Suppose that the structured sampling problems assume a
Dikin-amenable metric for each constraint and epigraph of potentials. Motivated by self-concordance
theory of the optimization IPM, we consider the sum of each barrier (and thus, the sum of metrics) as
a candidate for the metric of the reduced sampling problem. In fact, this choice aligns seamlessly with
the Dikin walk. However, obtaining a provable guarantee of the sampling IPM with the Dikin walk
necessitates a comprehensive understanding not only of self-concordance but also of SSC, SLTSC,
SASC, and ν̄-symmetry under the addition of barriers (or metrics).

In this section, we develop a “calculus” for combining metrics for multiple constraints and
epigraphs, deriving the resulting theoretical guarantees (Theorem 3.3). This leads to a consistent
analogy with the work of Nesterov and Nemirovskii (1994) for the optimization IPM.

D.1. Basic properties: Scaling, addition and closeness

Self-concordance is a central notion in the theory of interior-point methods for optimization (we
refer interested readers to Nesterov and Nemirovskii (1994); Nesterov et al. (2018)). We first recall
basic properties of self-concordance and then investigate those of strong self-concordance and lower
trace self-concordance, which are crucial to our analysis.

Self-concordance.

Lemma D.1 (Nesterov (2003)) Let fi be a νi-self-concordant function on a convex set Ki ⊂ Rd for
i ∈ [2], and α > 0 be a scalar.
• (Theorem 4.1.1 and 4.2.2) f1 + f2 is (ν1 + ν2)-self-concordant on K1 ∩K2.
• (Corollary 4.1.2) g = ∇2(αf1) satisfies ∥g(x)−1/2Dg(x)[h] g(x)−1/2∥2 ≤ 2√

α
∥h∥g(x) for x ∈

int(K1 ∩K2) and h ∈ Rd.
• If f1 is a ν-self-concordant, then cf1 is (cν)-self-concordant for c > 1.

We can extend this to self-concordant matrices as well.

Lemma D.2 Let gi : int(Ki)→ Sd+ be a PSD matrix function on a convex set Ki ⊂ Rd for i ∈ [2],
and α > 0 be a scalar.
• g1 + g2 is (ν1 + ν2)-self-concordant on K1 ∩K2.
• If g1 is self-concordant, then αg1 satisfies D(αg1)(x)[h] ⪯ 2√

α
∥h∥αg1(αg1) for x ∈ int(K1∩K2)

and h ∈ Rd.
• If g1 is ν-self-concordant, then cg1 is (cν)-self-concordant for c > 1.

Proof Let ϕi be a νi-self-concordant function counterpart of gi on Ki for i ∈ [2]. Then for
x ∈ int(K1 ∩K2) and h ∈ Rd

D(g1 + g2)(x)[h] ⪯ 2
(
∥h∥g1g1 + ∥h∥g2g2

)
⪯ 2

(
∥h∥g1+g2g1 + ∥h∥g1+g2g2

)
= 2 ∥h∥g1+g2(g1 + g2) .
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Clearly, ϕ1 + ϕ2 is a function counterpart of g1 + g2. Thus, g1 + g2 is a (ν1 + ν2)-self-concordant
matrix function on K1 ∩K2.

For c > 1, if g1 is self-concordant, then D(cg1)(x)[h] ⪯ 2√
c
∥h∥cg1(cg1) ⪯ 2 ∥h∥cg1(cg1),

and its function counterpart cϕ1 is (cν)-self-concordant by Lemma D.2. Hence, cg1 is (cν)-self-
concordant.

The following lemma ensures that the Dikin walk stays inside the convex body. This lemma was
proven only for self-concordant function in Nesterov et al. (2018, Theorem 5.1.5), but it can be
straightforwardly extended to self-concordant matrices as well.

Lemma D.3 D1
g(x) ⊂ K for a convex set K and self-concordant matrix function g on K.

Proof Consider a matrix function gε from int(K) to Sd++ defined by gε(x) := g(x) + εI . It is
self-concordant with a function counterpart ϕ(x) + ε

2 ∥x∥
2, where ϕ : int(K) → R is a function

counterpart of g. For fixed x ∈ int(K) and h ∈ Rd, let us define a function defined by ψ(t) :=(
hTgε(x+ th)h

)−1/2 for any feasible t. Then,

ψ′(t) = −Dgε(x+ th)[h⊗3]

2∥h∥3gε(x+th)
,

and the definition of self-concordance leads to |ψ′(t)| ≤ 1. This function can be defined on the
interval

(
−ψ(0), ψ(0)

)
due to ψ(t) ≥ ψ(0)− |t| (see Nesterov et al. (2018, Corollary 5.14)). This

implies that K contains the set{
x+ th : |t| ≤ ψ(0) = ∥h∥−1

gε(x)

}
= {x+ th : ∥th∥gε(x) ≤ 1} .

By sending ε→ 0, the claim follows.

The following lemma states that self-concordant metrics are similar for nearby points.

Lemma D.4 (Nesterov (2003), Theorem 4.1.6) Given any self-concordant matrix function g on
K ⊂ Rd and x, y ∈ K with ∥x− y∥g(x) < 1, we have

(1− ∥x− y∥g(x))2g(x) ⪯ g(y) ⪯ (1− ∥x− y∥g(x))−2g(x) .

Strong self-concordance. Strong self-concordance is additive up to a constant scaling. See §G.3.1
for the proof.

Lemma D.5 If gi is a SSC matrix function on Ki for i ∈ [2], then 2 (g1 + g2) is strongly self-
concordant on K1 ∩K2.

Note that if we add k-many strongly self-concordant metrics, then we need the scaling of
2log2 k = k. We remark that the factor of 2 above might be redundant. Next, we recall an analogue of
Lemma D.4 for strong self-concordance.

Lemma D.6 (Laddha et al. (2020), Lemma 1.2) Given a strongly self-concordant matrix function
g on K, and any x, y ∈ K with ∥x− y∥g(x) < 1,

∥g(x)−1/2
(
g(y)− g(x)

)
g(x)−1/2∥F ≤ (1− ∥x− y∥g(x))−2∥x− y∥g(x) .
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Symmetry. Recall that ν̄-symmetry requires two-sided inclusion: the first part is D1
g(x) ⊂ K ∩

(2x−K), and the second part is K ∩ (2x−K) ⊂ D
√
ν̄

g (x). The first part immediately follows when
a metric is induced by a self-concordant function.

Lemma D.7 If ϕ is a self-concordant function on K, then D1
g(x) ⊂ K ∩ (2x−K) for g = ∇2ϕ

and x ∈ K.

Proof Lemma D.3 ensures that y ∈ K whenever y ∈ D1
g(x). Then 2x − y ∈ D1

g(x) and thus
2x− y ∈ K. It implies that y ∈ 2x−K.

When a metric is induced by a self-concordant barrier with a barrier parameter ν, it holds that
ν̄ = O(ν2).

Lemma D.8 For a self-concordant barrier ϕ with a barrier parameter ν on K and g = ∇2ϕ, it
follows that ν̄ = O(ν2).

Proof By Nesterov (2003, Theorem 4.2.5), for any x, y ∈ K with ∇ϕ(x) · (y − x) ≥ 0 it follows
that ∥y − x∥g(x) ≤ ν + 2

√
ν. Now, let x ∈ K and y ∈ K ∩ (2x − K). The latter implies that

y − x = x− z for some z ∈ K.
If∇ϕ(x)·(y−x) ≥ 0, then ∥y−x∥g(x) ≤ ν+2

√
ν. If∇ϕ(x)·(y−x) < 0, then∇ϕ(x)·(z−x) >

0 and thus ∥y − x∥g(x) = ∥z − x∥g(x) ≤ ν + 2
√
ν. From these two cases, it holds in general that

∥y−x∥g(x) ≤ ν+2
√
ν and thusK∩(2x−K) ⊂ Dν+2

√
ν

g (x). By Lemma D.7,D1
g(x) ⊂ K∩(2x−K)

and thus ν̄ = O(ν2).

For affine constraints Ax ≥ b, the first inclusion above has a useful equivalent description as
follows:

Lemma D.9 Let x ∈ K = {Ax > b}. It holds that y ∈ K∩(2x−K) if and only if ∥Ax(y−x)∥∞ ≤
1.

Proof For y ∈ K, we have Ay > b and thus sx = Ax− b > A(x− y) (elementwise inequality). As
sx > 0, we have Ax(x− y) ≤ 1. When y ∈ (2x−K), we can write y = 2x− z for some z ∈ K.
Note that

A(x− y) = A(z − x) > b−Ax = −sx ,
and thus Ax(x− y) ≥ −1. Therefore, ∥Ax(y − x)∥∞ ≤ 1.

Lemma D.10 For α ≥ 1, if g is ν̄-symmetric, then αg is αν̄-symmetric.

Symmetry parameters and self-concordance parameters are additive.

Lemma D.11 If a PSD matrix function gi is ν̄i-symmetric on Ki for i ∈ [2], then g1 + g2 is
(ν̄1 + ν̄2)-symmetric on K1 ∩K2.

Proof For g := g1 + g2, let y ∈ D1
g(x). It implies y ∈ D1

g1(x)∩D
1
g2(x) and so y ∈ Ki ∩ (2x−Ki).

Due to∩i
(
Ki∩(2x−Ki)

)
= K∩(2x−K), we have y ∈ K∩(2x−K) and soD1

g(x) ⊂ K∩(2x−K).
Now let y ∈ K ∩ (2x−K). It is obvious that y ∈ Ki ∩ (2x−Ki) for i = 1, 2, and thus

(y − x)Tg1(x)(y − x) ≤ ν1 , and (y − x)Tg2(x)(y − x) ≤ ν2 .

By adding up these two, it follows that ∥y − x∥2g(x) ≤ ν1 + ν2.
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Lower trace self-concordance. It readily follows that (strongly) LTSC holds under scaling by a
scalar greater than or equal to 1.

We provide a useful sufficient condition under which the sum of PSD matrix functions is LTSC.

Lemma D.12 For a PSD matrix function gi on Ki, let g :=
∑

i gi be PD on
⋂
iKi. If gi is SLTSC

on Ki, then g is LTSC on
⋂
iKi.

We note that D2gi(x)[h, h] ⪰ 0 is a stronger condition than Tr
(
g(x)−1D2gi(x)[h, h]

)
≥

−∥h∥2gi(x). Thus, a special case of the lemma is that if D2g1[h, h] ⪰ 0 and D2g2[h, h] ⪰ 0,
then g1 + g2 is LTSC. Note that this condition is additive.

We also find that highly self-concordance is a handy sufficient condition by which one can
establish strongly lower trace self-concordance, whose proof is deferred to §G.3.2.

Lemma D.13 For K ⊂ Rd, let ḡ : int(K) → Sd+ be a HSC matrix function, and define another
matrix function by g := dḡ on K. Then g is SLTSC.

Average self-concordance. Just as (S)LTSC, (S)ASC still holds under scaling by a scalar greater
than or equal to 1. Also, the definition of SASC immediately leads to the following additive condition:

Lemma D.14 For a PSD matrix function gi on Ki for i ∈ [m], let m = O(1) and g :=
∑m

i=1 gi be
PD on

⋂
iKi. If gi is SASC on Ki, then g is ASC on

⋂
iKi.

Proof Fix ε > 0. Each gi invokes ri(ε) such that if r ≤ ri(ε/m), then

Pz
(
∥z − x∥2gi(x) − ∥z − x∥

2
gi(x)

≤ 2ε

m

r2

d

)
≥ 1− ε

m
.

If r ≤ r̄(ε) := mini ri(ε/m), then the union bound leads to ASC of
∑
gi on

⋂
iKi.

When does SASC hold? It is implied in Narayanan (2016) that HSC implies SASC. For
completeness, we provide the proof in §G.3.3.

Lemma D.15 (HSC to SASC) If ϕ : int(K)→ R is HSC, then dϕ is SASC.

D.2. Collapse and embedding: Lifting up SSC, SLTSC, and SASC

SSC, (S)LTSC, (S)ASC of a local metric do not carry over into an extended space in the reduced
sampling problem. For instance, SSC assumes the invertibility of the local metric, which may become
singular in the extended space. To address this challenge, we introduce the notions of collapse and
embedding, based on which we can pass those properties from the original sampling problem to the
reduced problem.

Definition D.16 Let K and K ′ be convex sets in Rd and in Rm with d ≤ m, respectively. Let
g : int(K)→ Sd+ be a PSD matrix function.
• We say g is collapsed onto a linear subspace W ⊂ Rd if ⟨u, v⟩g(x) = ⟨PWu, PW v⟩g(x) for any
x ∈ int(K) and u, v ∈ Rd where PW is the orthogonal projection onto W .
– In other words, for an orthonormal basis {u1, . . . , uk} of W there exists the PSD matrix

function gW : int(K)→ Sk+ such that ⟨ei, ej⟩gW (x) = ⟨ui, uj⟩g(x) for i, j ∈ [k] (i.e., gW (x) =

UTg(x)U where the columns of U ∈ Rd×k are {u1, . . . , uk}).
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• For g collapsed onto W , we say
– g is PD along W if gW is PD. In other words, ∥h∥g(x) = 0 implies h ⊥W .
– g is SSC along W if g is a self-concordant matrix function and gW ≻ 0 satisfies

∥gW (x)−1/2DgW (x)[h] gW (x)−1/2∥F ≤ 2∥h∥g for any x ∈ int(K) and h ∈ Rd .

• Embedding ḡ of g into K ′

– Let P : Rm → Rd be the projection onto the set of coordinates appearing in the variable x
of g. The embedding of g onto K ′ is a PSD matrix function ḡ(y) : int(K ′) → Sm+ such that
⟨u, v⟩ḡ(y) = ⟨Pu, Pv⟩g(P (y)).

We note that these notions are well-defined independently of the choice of an orthonormal basis
of W . The proof can be found in §G.3.4.

Proposition D.17 Let K ⊂ Rd be convex and g : int(K)→ Sd+ a PSD matrix function collapsed
onto a subspace W ⊂ Rd. Then PD and SSC along W are well-defined (i.e., the condition for each
property holds for any orthonormal basis of W ).

Affine transformation. Using these notions, we can make it precise that an inverse mapping of
affine transformations preserves SSC. We begin with a barrier version and subsequently extend it to
a matrix-function version. The detailed proofs are deferred to §G.3.5.

Lemma D.18 Let T : Rd → Rm be a linear operator defined by T (x) = Ax + b for A ∈ Rm×d

and b ∈ Rm. Let ϕ(y) : int(K) ⊂ Rm → R be a self-concordant barrier for K and define
ψ(x) := ϕ(T (x)) = ϕ(y) on K̄ := T−1K ⊂ Rd.
• If ϕ is a (ν, ν̄)-self-concordant barrier for K, so is ψ for K̄.
• If D4ϕ(y)[v, v] ⪰ 0 for y ∈ int(K) and v ∈ Rm, then D4ψ(x)[u, u] ⪰ 0 for x ∈ int(K̄) and
u ∈ Rd.

• If ϕ is HSC, so is ψ.

Lemma D.19 Let g : int(K) ⊂ Rm → Sm+ be a self-concordant matrix function and T (x) = Ax+b
with A ∈ Rm×d and b ∈ Rm be a linear operator. Let ḡ(x) := ATg(Tx)A be a PSD matrix function
from K̄ := T−1K ⊂ Rd to Sd+.
• If g is (ν, ν̄)-self-concordant barrier, so is ḡ for K̄.
• If g is SSC, then ḡ is SSC along W = row(A).
• If D2g(y)[h, h] ⪰ 0 for y ∈ int(K) and h ∈ Rm, then D2ḡ(x)[h̄, h̄] ⪰ 0 for x ∈ int(K̄) and
h̄ ∈ Rd.

• If A is invertible and g is SLTSC, then ḡ is SLTSC.
• If A is invertible and g is SASC, then ḡ is SASC.

Intuitively, embedding should not affect self-concordance and symmetry parameter, which is
indeed the case.

Corollary D.20 Assume K ⊂ Rd is embeddable into K ′ ⊂ Rm. If g : int(K) → Sd+ is a (ν, ν̄)-
self-concordant matrix function, then its embedding ḡ : int(K ′)→ Sm+ is a (ν, ν̄)-self-concordant
matrix function.
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Proof Since K can be embedded into K ′, there exists a projection matrix P ∈ {0, 1}d×m such
that ḡ(y) = PTg(Py)P with x = Py ∈ int(K) and y ∈ int(K ′). As we can view ḡ as a
matrix function induced by the inverse of the linear map x = Py, Lemma D.19 shows that ḡ is a
(ν, ν̄)-self-concordant matrix function for K ′ = P−1K.

Lifting up SSC, SLTSC, and SASC via embedding. In reduction to the exponential sampling
problem, passing essential properties (e.g., SSC, SLTSC, and SASC) of metrics from the original
space to the extended space poses technical issues. We address these issues in the following two
lemmas, whose proofs are deferred to §G.3.6.

As mentioned earlier, SSC in the original space does not automatically imply SSC for its
embedding ḡ, as SSC assumes invertibility. However, there is a useful method for extending SSC
from the original space to the extended space.

Lemma D.21 For convex K ⊂ Rd, let g : int(K)→ Sd+ be SSC along a subspace W ⊂ Rd, and
assume K is embeddable into convex K ′ ⊂ Rm with m ≥ d. For the embedding ḡ : int(K ′)→ Sm+
of g into K ′, it holds that ḡ + εIm is SSC on K ′ for any ε > 0.

When extending SLTSC and SASC to the embedding space, we encounter a different subtlety.
The conditions in SLTSC and SASC of ḡ consider every PSD matrix functions g′ such that ḡ + g′ is
invertible in the extended space K̄. However, the embedding ḡ of g is collapsed onto the subspace
corresponding to the original space K. As SLTSC and SASC convolve ḡ and g′ by considering
(ḡ + g′)−1 in their formulations, it is not evident whether SLTSC and SASC can be transferred to the
extended space K̄ from the original space K. However, by employing with Schur complements we
can show that these properties can indeed carry over into the extended space.

Lemma D.22 For convex K ⊂ Rd, let g : int(K)→ Sd+ is SLTSC, and assume K is embeddable
into convex K ′ ⊂ Rm with m ≥ d. Then its embedding ḡ : int(K ′)→ Sm+ is also SLTSC. The same
is true for SASC.

D.3. Proof of Theorem 3.3

With our understanding of how to combine properties of barriers for constraints and epigraphs, we
are prepared to prove Theorem 3.3. Let us revisit the reduced sampling problem in (redLC):

sample y ∼ π̃ ∝ exp
(
−⟨(0, . . . , 0︸ ︷︷ ︸

d times

, 1, . . . , 1︸ ︷︷ ︸
I times

), ·⟩
)

s.t. y ∈
I⋂
i=1

Ei ∩
J⋂
j=1

Kj︸ ︷︷ ︸
=::K

=: K ′ ,

where Ei :=
{
y = (x, t1, . . . , tI) ∈ Rd+I : fi(x) ≤ yd+i

}
for a proper closed convex function fi

and i ∈ [I], and Kj :=
{
y = (x, t1, . . . , tI) ∈ Rd+I : hj(x) ≤ 0

}
for a closed convex function hj

and j ∈ [J ], and K has non-empty interior.
We begin with a useful geometric property of K ′.

Lemma D.23 If the original sampling problem (strLC) is well-defined, then the extended convex
region K ′ in the reduced sampling problem (redLC) has non-empty interior and no straight line.
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Proof Since fi and hj are closed and convex, K ′ is convex and closed. Since fi is continuous on
int(K) due to convexity (see Rockafellar (1997, Theorem 10.1)), its epigraph has non-empty interior.
Thus, K ′ has non-empty interior.

Since K ′ is closed and convex, it can be written as K ′ =
⋂
iHi where Hi = {x : aTi x ≥ bi} is

any halfspace containing K ′. Suppose K ′ contains a straight line ℓ := {p+ th : t ∈ R} for some
p, h ∈ Rd. Then ℓ ⊂ Hi for any i, and thus ℓ must be parallel to any halfspace Hi (i.e., h ⊥ ai).

Fix y ∈ int(K ′). The translated line ℓy of ℓ containing y is still included in Hi for all i. As
y ∈ int(K ′), the distance from y to ∂Hi is bounded lower by δ > 0 for all i. Hence, ℓy +Bδ is fully
contained in Hi and thus in K ′.

Clearly, integration of the exponential distribution along the fiber ℓy is infinite. Since K ′ contains
the cylinder ℓy +Bδ, integration of the exponential distribution over K ′ must be infinite, leading to
contradiction.

The following is the extension of Nesterov et al. (2018, Theorem 5.1.6) to self-concordant matrix
functions, which implies invertibility of Dikin-amenable metrics in the reduced problem.

Lemma D.24 For convex K ⊂ Rd containing no straight line, a self-concordant matrix function
g : int(K)→ Sd+ is non-degenerate on K.

Proof Suppose ∥h∥g(x) = 0 for some 0 ̸= h ∈ Rd and x ∈ int(K). Clearly, the line x + th for
t ∈ R is contained inD1

g(x). AsD1
g(x) ⊂ K due to Lemma D.3, it implies that K contains a straight

line x+ th, which leads to contradiction.

Theorem 3.3 In the reduced problem (redLC), assume the following:
• For i ∈ [I], the epigraph Ei admits a PSD matrix function gei (x, ti) (or gei (x, ti,1, . . . , ti,d)) that is

a (νi, ν̄i)-SC barrier, SSC along some subspace, SLTSC, and SASC.
• For j ∈ [J ], the constraint Kj admits a PSD matrix function gcj(x) that is a (ηj , η̄j)-SC barrier,

SSC along some subspace, SLTSC, and SASC.
For appropriate projections πei and πc, a matrix function g on y ∈ int(K ′) defined by

⟨u, v⟩g(y) := (I + J)
( I∑
i=1

⟨πei u, πei v⟩gei (πe
i (y))

+
J∑
j=1

⟨πcu, πcv⟩gcj (πc(y))

)
for u, v ∈ Rd

is
(
(I + J)(

∑I
i=1 νi +

∑J
j=1 ηj), (I + J)(

∑I
i=1 ν̄i +

∑J
j=1 η̄j)

)
-Dikin-amenable on K ′.

Proof First of all, ḡei is (νi, ν̄i)-self-concordant (Corollary D.20), and SLTSC and SASC on K ′

(Lemma D.22). For fixed ε > 0, ḡei + εI is SSC by Lemma D.21. We can make similar arguments
for ḡcj regarding self-concordance, symmetry, SLTSC, SASC, and SSC. Hence, g + (I + J)εI is
SSC by Lemma D.5. Since g is self-concordant on K ′ by Lemma D.2 and K ′ contains no straight
line, g is PD by Lemma D.24. Sending ε to 0, we can obtain SSC of g. LTSC and ASC of g follows
from Lemma D.12 and D.14. The symmetry parameter of g follows from Lemma D.11.
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D.4. Direct product

For i ∈ [m] and domain Ei ⊂ Rdi , let gi(xi) : int(Ei) → Sdi++ be a self-concordant matrix. For
l :=

∑
i di and E :=

∏
iEi, we define a self-concordant matrix g on E ⊂ Rl with block diagonals

being gi. To be precise, we can write

g(x) = g(x1, . . . , xm) :=
∑
i

ḡi(x) ,

where ḡi : Rl → Sl+ is a matrix function whose entry is all zero but the i-th block diagonal being gi.
When handling the direct product of domains, it is common for each domain to have an O(1)-

dimension. In such cases, scaling the barriers by dimension worsens mixing time at most constant
factors while making the barriers SSC and SLTSC. We defer the proofs to §G.3.7.

Lemma D.25 (SSC under direct product) For open Ei ⊂ Rdi , let gi : Ei → Sdi++ be SC. Then
g :=

∑
diḡi defined on

∏
Ei is SSC.

Lemma D.26 (SLTSC under direct product) For open Ei ⊂ Rdi , let gi : Ei → Sdi++ be HSC.
Then g :=

∑
diḡi defined on

∏
Ei is SLTSC.

D.5. Inverse images under non-linear mappings

Nesterov and Nemirovskii (1994) introduced the notion of compatibility with a convex domain while
constructing a self-concordant barrier for a wider class of structured constraints. We generalize this
notion to the fourth order, by which we can easily construct a SSC, SLTSC, and SASC barrier. For a
convex cone K, we use a ≤K b to denote b− a ∈ K.

Definition D.27 (Compatibility) Let β, γ ≥ 0. Let K be a convex cone in Rm and Γ be a closed
convex domain in Rd. A mapping A : int(Γ)→ Rm of class C4 is called (K,β, γ)-compatible with
the domain Γ if
• A is concave with respect to K. That is, tA(x) + (1 − t)A(y) ≤K A(tx + (1 − t) y) for all
t ∈ [0, 1] and x, y ∈ int(Γ). Equivalently, −D2A(x)[h, h] ∈ K for any x ∈ int(Γ) and h ∈ Rm.

• For any x ∈ int(Γ), y ∈ Γ ∩ (2x− Γ), and h = y − x, it holds that

βD2A(x)[h, h] ≤K D3A(x)[h, h, h] ≤K −βD2A(x)[h, h] ,
γD2A(x)[h, h] ≤K D4A(x)[h, h, h, h] ≤K −γD2A(x)[h, h] .

Example 1 An affine mapping is ({0}, 0, 0)-compatible with any closed convex domain. We note
that a function that is (R+, β, γ)-compatible with R+ is a C4-smooth concave real-valued function
f : (0,∞)→ R such that for any t > 0,

|f ′′′(t)| ≤ −β
t
f ′′(t) and |f (4)(t)| ≤ − γ

t2
f ′′(t) .

• Let 0 < p ≤ 1. Then the function of f(t) = tp is (R+, 2− p, (2− p) (3− p))-compatible with R+.
• f(t) = log t is (R+, 2, 6)-compatible with R+.
The following lemma is an extension of Nesterov and Nemirovskii (1994, Lemma 5.1.3) to our
fourth-order compatibility.
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Lemma D.28 Let K,K1,K2 be convex cones in Rm,Rm1 ,Rm2 respectively.
• If A : int(Γ)→ Rm is (K,β, γ)-compatible with Γ and K ⊂ K ′ is a closed convex cone in Rm,

then A is (K ′, β, γ)-compatible with Γ.
• If Ai : int(Γi) → Rmi is (Ki, βi, γi)-compatible with Γi for i = 1, 2, then A : int(Γ1 ×
Γ2)→ Rm1 ×Rm2 mapping (x, y)→ (A1(x),A2(y)) is (K1 ×K2,max(β1, β2),max(γ1, γ2))-
compatible with Γ1 × Γ2.

We now introduce a main result in this section (see §G.3.8). To begin with, we recall that for a
closed convex domain G ⊂ Rd the recessive cone R(G) of G is {h ∈ Rd : x+ th ∈ G for all x ∈
G and t > 0}.
Lemma D.29 Let G be a closed convex domain in Rm, F be a highly θ-self-concordant barrier for
G, Γ be a closed convex domain in Rd, and Π be a highly ν-self-concordant barrier for Γ. Let A be
a (K,β, γ)-compatible with Γ, where K is a ray contained in the recessive cone R(G). Assume that
A(int(Γ)) ∩G ̸= ∅.
• The set G+ = int(Γ) ∩ A−1

(
int(G)

)
is a closed convex domain in Rd.

• For δ = max (β, γ, 2), the function Ψ(x) = F (A(x)) + δ2Π(x) is a (θ + δ2ν)-self-concordant
barrier for G+.

• Ψ is highly self-concordant.

Using this result, we can obtain a useful tool in establishing lower trace self-concordance of a
barrier for the direct product of structured sets.

Lemma D.30 Let f be a C4 concave function on {t > 0} such that |f ′′′(t)| ≤ β
t |f

′′(t)| and
|f (4)(t)| ≤ γ

t2
|f ′′(t)| for t > 0. Then the function

F (t, x) = − log
(
f(t)− x

)
−max(4, β2, γ2) log t

is a highly (1 + max(4, β2, γ2))-self-concordant barrier for the two dimensional convex domain

Gf = {(t, x) ∈ R2 : t > 0, x ≤ f(t)} .

Proof From the discussion in Example 1, the map f(t) : (0,∞) → R is (R+, β, γ)-compatible
with R+. Clearly, the identity map from R to R is ({0}, 0, 0)-compatible with R. Hence by
Lemma D.28-(2) implies that the map A : R+ × R → R2 defined by A(t, x) = (f(t), x) is
({0} × R+, β, γ)-compatible with R+ × R.

Now observe that Gf can be written as A−1
(
{(t, x) : x ≤ t}

)
and that K = {0} × R+ is a ray

contained in the recessive cone R(G) for G := {(t, x) : x ≤ t}. By applying Lemma D.29 to the
highly 1-self-concordant barriers F (t, x) = − log(t− x) for G and Φ(t, x) = − log t for R+ × R,
it follows that F is is a highly (1 + max(4, β2, γ2))-self-concordant barrier for Gf .

We can prove a similar result for a convex f as follows:

Lemma D.31 Let f be a C4 convex function on {x > 0} such that |f ′′′(x)| ≤ β
x f

′′(x) and
|f (4)(x)| ≤ γ

x2
f ′′(x) for x > 0. Then the function

F (t, x) = − log
(
t− f(x)

)
−max(4, β2, γ2) log x

is a highly (1 + max(4, β2, γ2))-self-concordant barrier for the two dimensional convex domain

Gf = {(t, x) ∈ R2 : x > 0, t ≥ f(x)} .

Its proof follows from applying Lemma D.30 to the image ofGf under the map (t, x)→ (−x, t).
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Appendix E. Structured densities and constraint families

In order to obtain a mixing-time bound of the Dikin walk for the reduced problem, a concrete
understanding of properties and parameters of barriers for Ki and Kj is essential. To this end,
we revisit self-concordant barriers for structured convex constraints and level sets, examining the
required scaling factors which ensure those properties.

E.1. Linear constraints

Consider a set of linear constraints: K = {x ∈ Rd : Ax ≥ b} for A ∈ Rm×d and b ∈ Rm, where A
has no all-zero rows. We use sx := Ax− b to denote the slack at x, and Ax := S−1

x A to denote the
constraints normalized by the slack, where Sx := Diag(sx) is the diagonalization of the slack.

We now introduce three barriers (and metrics) for handling the linear constraints.

Logarithmic barrier. The logarithmic barrier ϕlog(x) := −
∑m

i=1 log(a
T
i x− bi) is the simplest

self-concordant barrier for linear constraints. We refer readers to §I.1 for gentle introduction to the
log-barriers. As seen below, we demonstrate that the metric induced by the logarithmic barrier has
ν, ν̄ = m and requires no scaling to achieve SSC, SLTSC, and SASC.

Lemma E.1 (Logarithmic barrier) For a closed convex K = {x ∈ Rd : Ax ≥ b} with A ∈
Rm×d and b ∈ Rm, let ϕlog(x) = −

∑m
i=1 log(a

T
i x− bi) and define g(x) := ∇2ϕlog(x) = AT

xAx.
• ν = m (Nesterov and Nemirovskii, 1994).
• SSC along row(A) and ν̄ = m (Lemma E.5).
• D2g(x)[h, h] ⪰ 0 for any h ∈ Rd (so SLTSC) (Claim I.1).
• SASC (Lemma E.10).

Vaidya metric. In sampling over a polytope K, the number m of constraints is assumed to be
greater than the ambient dimension d. Given that the mixing time of the Dikin walk for uniform
sampling is Õ(dν̄) = Õ(dm), a larger m leads to a worse mixing time. Is there a self-concordant
barrier that has a better dependence on m for its self-concordance and symmetry parameters, without
compromising SSC, SLTSC, and SASC?

Let us recall the leverage score first and move onto such improved self-concordant barriers.
For a full-rank matrix A ∈ Rm×d with m ≥ d, we recall that P (A) = A(ATA)−1AT is the
orthogonal projection matrix onto the column space of A, and the leverage scores of A is σ(A) =
diag(P (A)) ∈ Rm. We let Σ(A) := Diag(σ(A)) = Diag(P (A)) and P (2)(A) = P (A) ◦ P (A),
where P (A) ◦P (A) is the Hadamard product of size d× d defined by (P (A) ◦P (A))ij = [P (A)]2ij .

Vaidya (1996) introduced the volumetric barrier for K defined by

ϕvol =
1

2
log det(∇2ϕlog) =

1

2
log det(AT

xAx) .

Then the Hessian of ϕvol can be written as

∇2ϕvol = AT
x (3Σx − 2P (2)

x )Ax ,

where Σx = Diag(σ(Ax)) is the diagonalized leverage scores, and this Hessian satisfies

AT
xΣxAx ⪯ ∇2ϕvol(x) ⪯ 3AT

xΣxAx .
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We refer readers to §I.2 for details. In other words, the approximate volumetric metric AT
xΣxAx

serves as an O(1)-approximation of the local metric∇2ϕvol (i.e., AT
xΣxAx ≍ ∇2ϕvol(x)). We find

in Lemma E.5 that the local metric 40
√
mAT

xΣxAx is SSC with ν, ν̄ = O(
√
md), but in some

regime of d this parameter leads to worse mixing of the Dikin walk. In the same paper, Vaidya (1996)
introduced a regularized volumetric metric by adding O

(
∇2ϕlog

)
, which we call the Vaidya metric:

g(x) :=

√
m

d
AT
x

(
Σx +

d

m
Im
)
Ax .

Note that g(x) ≍ ∇2
(√

m
d

(
ϕvol +

d
mϕlog

))
. We show that the Vaidya metric is also SSC, SLTSC,

and SASC without additional scaling, while it has a better ν and ν̄ than the logarithmic barrier.

Lemma E.2 (Vaidya metric) For a closed convex K = {x ∈ Rd : Ax ≥ b} with A ∈ Rm×d and
b ∈ Rm, let g(x) =

√
m
d A

T
x

(
Σx +

d
mIm

)
Ax.

• ν = O(
√
md) (Anstreicher, 1997, Theorem 5.2).

• SSC and ν̄ = O(
√
md) (Lemma E.5).

• SLTSC (Lemma E.6) and SASC (Lemma E.11).

Lewis weights metric. Self-concordance and symmetry parameters of O(
√
md) is certainly better

than O(m), but can we even achieve an O(d logO(1)m) bound on those parameters?
Let us recall the ℓp-Lewis weights. The ℓp-Lewis weight of A is denoted by w(A), the solution w

to the equation w(A) = diag
(
W 1/2−1/pA(ATW 1−2/pA)−1ATW 1/2−1/p

)
∈ Rm for W := Diag(w).

For Wx = Diag(w(Ax)) and p ≥ 2, the Lewis weight barrier function is defined by

ϕLw(x) := log det(AT
xW

1−2/p
x Ax) .

Note that the leverage score and volumetric barrier can be recovered as a special case of the Lewis
weight and barrier by setting p = 2. As done for the Vaidya metric, it is natural to consider the Lewis
weight metric with p = Θ(logO(1)m), defined as

g(x) := O(logO(1)m)AT
xWxAx .

In fact, this metric serves as an O(logO(1)m)-approximation of ∇2ϕLw, as demonstrated in the
following relation proven in Lee and Sidford (2019, Lemma 31):

AT
xΣxAx ⪯ ∇2ϕLw ⪯ (1 + p)AT

xΣxAx .

Ignoring the logarithmic factors we have ∇2ϕLw ≍ g. Notably, the Lewis-weight metric needs
an additional

√
d-scaling for SLTSC and SASC, unlike the logarithmic barrier and Vaidya metric.

Hence, when combining this with other metrics, one should use
√
dg, which leads to ν, ν̄ =

O(d3/2 logO(1)m).

Lemma E.3 (Lewis weight metric) For a closed convexK = {x ∈ Rd : Ax ≥ b}withA ∈ Rm×d

and b ∈ Rm, let g(x) = O(logO(1)m)AT
xWxAx.

• ν = O(d log5m) (Lee and Sidford, 2019, Theorem 30).
• SSC and ν̄ = O(d logO(1)m) (Lemma E.5).
•
√
dg is SLTSC (Lemma E.7) and SASC (Lemma E.12).
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E.1.1. ANALYSIS OF SELF-CONCORDANT METRICS FOR LINEAR CONSTRAINTS

Strong self-concordance and symmetry. We defer the proofs of two lemmas below to §G.4.1. We
study SSC and symmetry of the metrics of the form AT

xDxAx in Lemma E.4, where Dx ∈ Rm×m

is a diagonal matrix used to address the constraints of the form Ax ≥ b for A ∈ Rm×d and
b ∈ Rm. Specifically, we relate the notions of SSC and symmetry to well-studied terms in the field
of optimization, namely maxi [σ(

√
DxAx)]i/[Dx]ii and ∥DDx[h]∥2D−1

x
.

Lemma E.4 For a diagonal Dx ∈ Sm+ , let g(x) = AT
xDxAx ∈ Rd×d on int(K).

• For any PSD matrix function g′ such that g′ + g is invertible on the domain,

∥(g′(x) + g(x))−1/2Dg(x)[h] (g′(x) + g(x))−1/2∥2F

≤ 4max
i

[σ(
√
DxAx)]i

[Dx]ii
·
(
∥h∥2g(x) +

m∑
i=1

(DDx[h])
2
ii

[Dx]ii

)
.

• maxh:∥h∥g(x)=1 ∥Axh∥∞ =
(
maxi∈[m]

[σ(
√
DxAx)]i

[Dx]ii

)1/2.

• K ∩ (2x−K) ⊂ D
√

Tr(Dx)
g (x).

Then for each metric we refer to existing bounds on these terms, estimating the smallest possible
scaling required for SSC and symmetry.

Lemma E.5 (Strong self-concordance and symmetry) Let A ∈ Rm×d, Σx = Diag(σ(Ax)) ∈
Rm×m, and Wx = Diag(wx) ∈ Rm×m for the ℓp-Lewis weight wx with p = O(logm).
• Logarithmic metric: g(x) = AT

xAx with Dx = Im is SSC along row(A) with ν̄ = m.
• Approximate volumetric metric: g(x) = 40

√
mAT

xΣxAx with Dx = 40
√
mΣx is SSC with

ν̄ = O(
√
md).

• Vaidya metric: g(x) = 22
√

m
d A

T
x

(
Σx +

d
mIm

)
Ax with Dx = 22

√
m
d

(
Σx +

d
mIm

)
is SSC with

ν̄ = O(
√
md).

• Lewis-weight metric: ∃ positive constants c1 and c2 such that g(x) = c1(logm)c2AT
xWxAx is

SSC and ν̄-symmetric with ν̄ = O∗(d).

Strongly lower trace self-concordance We show SLTSC of the Vaidya and Lewis-weight metric.
Let g2 be either Vaidya or Lewis-weight metric, and g1 be an arbitrary PSD matrix function on K
such that g = g1 + g2 is PD on int(K). Ensuring (S)LTSC of the Vaidya or Lewis-weight metrics is
challenging, as D2g2[h, h] ⪰ 0 is difficult to verify due to complicated expressions for D2Σx[h, h]
and D2Wx[h, h]. As for the Vaidya metric, we compute higher-order derivatives of leverage scores
and other pertinent matrices in Lemma I.4, finding succinct formulas by using algebraic properties of
the Hadamard product. We then show SLTSC of g2 using these results (see §G.4.2 for the proof):

Lemma E.6 (SLTSC of Vaidya) Tr
(
g−1D2g2(x)[h, h]

)
≥ −∥h∥2g2(x)/2 for the Vaidya metric g2.

For the Lewis-weights metric, analysis is more involved due to numerous terms appearing
in D2Wx[h, h]. In order to avoid dealing with each of the terms, we employ existing bounds on
derivatives of Wx and other relevant matrices in §I.3. This approach significantly simplifies the
computation but comes at the cost of an additional scaling of

√
d, which as far as we can tell might

be unavoidable. We refer readers to §G.4.3 for the proof.

Lemma E.7 (SLTSC of Lewis-weight) Tr
(
g(x)−1D2g2(x)[h, h]

)
≥ −∥h∥2g2(x), where g2(x) =

cAT
xWxAx with c = c1(logm)c2

√
d for some constants c1, c2 > 0.
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Strongly average self-concordance. Typically, (S)ASC is the most challenging property to verify,
often requiring involved analysis in order to establish it without additional scalings. Since the three
metrics are HSC (e.g., see Lemma I.10 for Lewis-weight metrics), scaling by d leads to SASC by
Lemma D.15. However, for linear constraints one can still achieve SASC without scaling (or with a
smaller scaling) through more sophisticated concentration techniques.

To sketch this idea, we recall that SASC requires showing that for small enough r

∥z − x∥2g(z) − ∥z − x∥
2
g(x) ≤ 2ε

r2

d
.

Taylor’s expansion of ∥z − x∥2g(z) at z = x up to second-order necessitates bounds on

Dg(x)[(z − x)⊗3] =
r3

d3/2
Dg(x)[h⊗3] and Dg(x′)[(z − x)⊗4] =

r4

d2
D2g(x′)[h⊗4] ,

for some x′ ∈ [x, z] and h ∼ N (0, Id). Observe that the first-order term P (h) := r3

d3/2
Dg(x)[h⊗3] is

a Gaussian polynomial in h, and this is where we can invoke the following concentration phenomenon:

Lemma E.8 (Concentration of Gaussian polynomials) For d ≥ 1, letP : Rd → R be a polynomial
of degree n. For any t ≥ (2e)n/2,

Ph∼N (0,Id)

[
|P (h)| ≥ t

√
E[P (h)2]

]
≤ exp

(
− n

2e
t2/n

)
.

This concentration inequality necessitates bounding E[P (h)2], and this is where Stein’s lemma
comes into play:

Lemma E.9 For h = (h1, . . . , hd) ∼ N (0, Id), it holds that E[hif(h)] = E[∂if(h)].

Unlike the first-order term, the second-order term is not a Gaussian polynomial due to x′

depending on z. To address this issue, we derive an upper bound (in absolute value) of the quadratic
form. Using coordinate-wise closeness of slacks, leverage scores, and Lewis weights at two nearby
points, we replace every value estimated at z by those at x, removing dependence on z in the quadratic
bound. The resulting quadratic bound is now a Gaussian polynomial, so we follow the same proof
approach as with the first-order term.

This approach was used by Sachdeva and Vishnoi (2016) for ASC of log-barriers and by Chen
et al. (2018) for that of Vaidya and Lewis-weight metrics. We further extend this approach to achieve
SASC of those metrics, going beyond ASC.

Lemma E.10 (SASC of logarithmic barrier) g(x) = ∇2ϕlog(x) = AT
xAx is SASC.

See §G.4.4 for the proof.

Lemma E.11 (SASC of Vaidya metric) g(x) = O
(√

m
d

)
AT
x (Σx +

d
mIm)Ax is SASC.

See §G.4.4 for the proof.

Lemma E.12 (SASC of Lewis-weight metric) There exists constants c1 and c2 such that g(x) =
c1
√
d logc2 mAT

xWxAx = O∗(
√
d)AT

xWxAx is SASC.

See §G.4.4 for the proof.
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E.2. Quadratic potentials and constraints

Suppose that in (redLC) we have either fi(x), hj(x) = ∥x−µ∥2Σ or 1
2x

TQx+pTx+ l for µ, p ∈ Rd,
Σ ∈ Sd++, and 0 ̸= Q ∈ Sd+.

Quadratic constraint. Consider a second-order region given by K = {x ∈ Rd : 1
2x

TQx+ pTx+
l ≤ 0}. Nesterov and Nemirovskii (1994) shows that ϕ := − log f is an 1-self-concordant barrier for
K, when f(x) = −1

2∥x− µ∥
2
Σ or −(12x

TQx+ pTx+ l). Since ν̄ = O(ν2) for a self-concordant
barrier due to Lemma D.8, ϕ is O(1)-symmetric. In case we consider ∥x− µ∥2Σ, the trivial scaling
by dimension d implies that dϕ is SSC and O(d)-symmetric.

Moreover, dϕ is SASC by Lemma D.15 by HSC of ϕ. For HSC of ϕ, we develop a handy tool
for checking HSC. See §G.4.5 for the proof.

Lemma E.13 For a real-valued function f on K ⊂ Rd, let ψ = − log f be a ν-self-concordant
barrier for K. Then,

|D4ψ(x)[h⊗4]| ≲ ν2∥h∥2∇2ψ(x) +
∣∣D4f(x)[h⊗4]

f(x)

∣∣ .
Using this tool, we can study properties of the barrier for the quadratic constraints. We provide

the proof in §G.4.5.

Lemma E.14 (Quadratic constraint) For a closed convexK = {x ∈ Rd : 1
2x

TQx+pTx+l ≤ 0}
with p ∈ Rd and 0 ̸= Q ∈ Sd+, let ϕ(x) = − log(−l − pTx− 1

2x
TQx) and g = d∇2ϕ.

• ν, ν̄ = O(d).
• SSC when Q ≻ 0, and SASC.
• D2g(x)[h, h] ⪰ 0 for any x ∈ int(K) and h ∈ Rd (so SLTSC).

Gaussian distribution (f(x) = 1
2∥x − µ∥

2
Σ). Suppose the quadratic term f(x) = 1

2∥x − µ∥
2
Σ

appears in a potential of a target distribution. Then its epigraph is

{(x, t) ∈ Rd+1 :
1

2
∥x− µ∥2Σ − t ≤ 0} ,

and clearly q(x, t) = 1
2∥x− µ∥

2
Σ − t is a quadratic function in (x, t). Hence, this level set admits an

1-self-concordant barrier

ϕ(x, t) = − log(t− 1

2
∥x− µ∥2Σ) .

Our earlier discussion immediately leads to the following result:

Lemma E.15 (Quadratic potential) Consider a closed convex K = {(x, t) : 1
2∥x − µ∥

2
Σ ≤ t}

with µ ∈ Rd and Σ ∈ Sd++, and let ϕ(x) = − log(t− 1
2∥x− µ∥

2
Σ) and g = d∇2ϕ.

• νg, ν̄g = O(d).
• SSC and SASC.
• D2g(x, t)[h, h] ⪰ 0 for any (x, t) ∈ int(K) and h ∈ Rd+1.
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Second-order cone (f(x) = 1
2∥x − µ∥Σ). It is common that a potential includes a non-smooth

term like ∥Ax− b∥2 in many applications, and we can handle such potentials via our framework.
Nesterov and Nemirovskii (1994, Lemma 4.3.3) shows that

ϕ(x, t) = − log(t2 − ∥x∥2)

is a 2-self-concordant for a level set K = {(x, t) ∈ Rd × R : ∥x∥2 ≤ t} (here we may assume that
µ = 0 and Σ = I due to Lemma D.18). This level set is called a second-order cone or Lorentz cone.

Applying Lemma E.13 to f(x, t) = t2 − ∥x∥2 with ν = 2, we immediately show HSC of ϕ.
Thus, dϕ satisfies SLTSC and SASC by Lemma D.13 and Lemma D.15, respectively.

Lemma E.16 (Second-order cone) Consider a closed convex K = {(x, t) : ∥x− µ∥Σ ≤ t} with
µ ∈ Rd and Σ ∈ Sd++, and let ϕ(x, t) = − log(t2 − ∥x− µ∥2Σ) and g = d∇2ϕ.
• νg, ν̄g = O(d).
• SSC, SASC, and SLTSC.

E.3. PSD cone

The function ϕ(X) = − log detX serves as an d-self-concordant barrier for the PSD cone Sd+. While
achieving self-concordance does not require additional scaling, it turns out that SSC requires a scaling
of Θ(d). Notably, this scaling is less than the trivial dimension-based scaling of ds := d(d+ 1)/2.
Also, direct computation leads to D4ϕ(X)[H,H] ⪰ 0 (so SLTSC).

As ϕ is HSC, scaling by ds ensures SASC. However, we can achieve ASC with a smaller scaling
by O(d) via the random matrix theory.

Lemma E.17 (PSD cone) On a closed convex K = Sd+, let ϕ(X) = − log detX and define
g = d∇2ϕ.
• ν = d2 (Nesterov and Nemirovskii, 1994) and ν̄ = d2 (Lemma E.21).
• SSC (Corollary E.24).
• D2g(X)[H,H] ⪰ 0 for any X ∈ int(K) and H ∈ Sd (Lemma E.25).
• ASC (Lemma E.27), and ds∇2ϕ is SASC.

E.3.1. FORMALISM VIA MATRIX-VECTOR TRANSFORMATIONS

In analyzing ϕ, we work in Rds = Rd(d+1)/2 and Sd simultaneously in the sequel, moving back and
forth between them implicitly. We justify this identification as follows.

Measure on Sd. We can define and work with the Lebesgue measure on Sd by identifying it with
the Lebesgue measure on Rds , where each component in the Lebesgue measure on Sd corresponds
to each entry in the upper triangular part. Hence, with the Lebesgue measure dX on Sd it is
straightforward to define a probability distribution on Sd whose probability density function with
respect to dX is proportional to exp(−f) for a function f : Sd → R. For instance, the uniform
distribution over a region corresponds to f being constant in the region and infinity outside of the
region, and an exponential distribution to f(X) = ⟨C,X⟩ = Tr(CTX) for C ∈ Sd.
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Directional derivatives. A function ϕ : Sd → R induces its counterpart ψ : Rds → R defined by
ψ(x) = ϕ(X) for x := svec(X). For symmetric matrices {Hi}i≤k, the k-th directional derivative of
ϕ in directions H1, . . . ,Hk is

Dkϕ(X)[H1, · · · , Hk]
def
=

dk

dtk · · · dt1
ϕ
(
X +

k∑
i=1

tiHi

)∣∣∣∣
t1,...,tk=0

.

For hi := svec(Hi), it follows that ϕ(X +
∑k

i=1 tiHi) = ψ(x+
∑k

i=1 tihi) and thus

Dkϕ(X)[H1, · · · , Hk] = Dkψ(x)[h1, · · · , hk] .

With this identification in hand, since the notion of (symmetric or strong) self-concordance is
formulated in terms of directional derivatives, we can deal with both representations without having
to specify one of them.

Important operators. We introduce three linear operators that enable us to make smooth transitions
between Sd and Rds .

Definition E.18 (Magnus and Neudecker (1980)) Let Eij = eie
T
j ∈ Rd×d be the matrix with a

single 1 in the (i, j) position and zeros elsewhere.
• M : Rds → Rd2 is the linear operator that maps svec(·) to vec(·) (i.e., M ◦ svec = vec). It can

be written as M =
∑

i≥j vec(Tij)u
T
ij , where Tij ∈ Rd×d has all zero entries except for 1 at (i, j)

and (j, i) positions (i.e., Tij = Eij + Eji if i ̸= j and Eij if i = j), and uij = svec(Eij).
• N : Rd2 → Rd2 is the linear operator that maps vec(A) to vec

(
1
2(A + AT)

)
for a matrix

A ∈ Rd×d.
• L : Rds → Rd2 is the linear operator that maps vec(A) to svec(A) for a matrix A ∈ Rd×d. It can

be written as L =
∑

i≥j uij vec(Eij)
T.

Lemma E.19 (Magnus and Neudecker (1980)) Let M,N,L be matrices in Definition E.18.
• (Lemma 2.1) N = NT = N2 and N(A⊗A) = (A⊗A)N for any d× d matrix A.
• (Lemma 3.5) MLN = N .

E.3.2. ANALYSIS OF A SELF-CONCORDANT METRIC FOR THE PSD CONE

We first examine properties of the metric defined by the Hessian of self-concordant barrier ϕ(X) =
− log detX (see Nesterov (2003, Theorem 4.3.3) for self-concordance). In this case, its Hessian and
inverse have clean formulas.

Proposition E.20 Let ∇2
Xϕ(X) = −∇2

x log det(svec
−1(x)) ∈ Rds×ds for X ∈ Sd+. Then,

∇2ϕ(X) =MT(X−1 ⊗X−1)M =MT(X ⊗X)−1M ,(
∇2ϕ(X)

)−1
=M †(X ⊗X)

(
M †)T = LN(X ⊗X)NLT ,

where M † = (MTM)−1MT ∈ Rds×d2 is the Moore-Penrose inverse of M ∈ Rd2×ds .

We defer the proof to Appendix H.2. We remark that as an immediate corollary to this, the local
norm of h ∈ Rds with metric∇2ϕ(X) is

∥h∥2X = svec(H)TMT(X−1 ⊗X−1)M svec(H) =
(i)

Tr(HX−1HX−1) =: ∥H∥2X ,

where (i) follows from vec = M ◦ svec (Definition E.18) and Tr(DBTATC) = vec(A)T(B ⊗
C) vec(D) (Lemma H.1).
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Symmetry.

Lemma E.21 (ν̄-symmetry) For X ∈ K = Sd+, the barrier ϕ(X) = − log detX is d-symmetric.

Proof For X ∈ K, pick any Y ∈ K ∩ (2X −K), and define a symmetric matrix H := Y −X .
Since Y ∈ K and 2X − Y ∈ K, we have X +H ∈ K and X −H ∈ K. Thus,

−I ⪯ X−1/2HX−1/2 ⪯ I ,

and the magnitude of each eigenvalue {λi}di=1 of X−1/2HX−1/2 is bounded by 1. Hence,

∥H∥2X = Tr(X−1HX−1H) = ∥X−1/2HX−1/2∥2F ≤
d∑
i=1

λ2i ≤ d .

Convexity of log-determinant of Hessian and SSC. Next, the convexity of the log-determinant of
∇2ϕ can be checked via properties of Kronecker products. See §G.4.6 for the proof.

Proposition E.22 (Convexity of log-determinant of Hessian) log det(∇2ϕ(·)) is convex.

We move onto SSC of dϕ(X).

Lemma E.23 For ψX := supH∈Sd ∥(∇2ϕ(X))−1/2D3ϕ(X)[H] (∇2ϕ(X))−1/2∥F /∥H∥X , we
have √

2(d+ 1) ≤ ψX ≤ 2
√
d .

We present the proof in §G.4.6. This result informs us of the best possible scaling of ϕ that
ensures SSC. Recall that if g satisfies ∥g−1/2Dg[h]g−1/2∥F ≤ 2α∥h∥g for α > 0, then α2g is SSC.
We remark that the scaling of d is obviously better than the trivial scaling of ds = Θ(d2).

Corollary E.24 (Strong self-concordance) A function dϕ is a strongly self-concordant barrier for
Sd+. Moreover, the scaling factor of d cannot be further improved.

Strongly lower trace self-concordance. SLTSC of ϕ can be easily checked by noting g(X)[H,H] =
Tr(X−1HX−1H) and using the chain rule. See the details in §G.4.7.

Lemma E.25 (SLTSC) D2g(X)[H,H] ⪰ 0 for any X ∈ int(K) and H ∈ Sd.

Average self-concordance. In establishing ASC, we find an interesting connection to a Gaussian
orthogonal ensemble (GOE), one of the main objects studied in the random matrix theory. We prove
the following lemmas and explain challenges when extending our arguments to SASC in §G.4.8.

Lemma E.26 For ds =
d(d+1)

2 and svec(H) ∼ N
(
0, r

2

ds
g(X)−1

)
,
√
dsd
r X−1/2HX−1/2 is a GOE.

Lemma E.27 (ASC) −d log detX is ASC.
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E.4. Logarithm, exponential, entropy, and ℓp-norm (power function)

Logarithm in potentials. Consider Q1 = {(x, t) ∈ R2 : − log x ≤ t, x > 0}. As f(·) = − log(·)
is convex on R+ and satisfies the condition in Lemma D.31 with β = 2 and γ = 6,

F (x, t) = − log(t+ log x)− 36 log x

is a highly 37-self concordant barrier for Q1. Therefore, 2F is SSC and SLTSC with ν̄ = O(1).

Lemma E.28 (Logarithm) Consider the direct product of level sets

K =

d∏
i=1

{(xi, ti) ∈ R2 : − log xi ≤ ti, xi > 0} ,

and let ϕ(x, t) = −
∑d

i=1

(
log(ti + log xi) + 36 log xi

)
and g = 2∇2ϕ.

• ν, ν̄ = O(d).
• SSC and SLTSC.
• d∇2ϕ is SASC.

Proof For i ∈ [d], let Qi = {(xi, ti) ∈ R2 : − log xi ≤ ti, yi > 0} and Fi(xi, ti) be the
self-concordant barrier above. Note that 2Fi is SSC and SLTSC. By Lemma D.25 and D.26, the
Hessian of F (x, t) := 2

∑d
i=1 Fi(xi, ti) is SSC and SLTSC. The last item on SASC follows from

Lemma D.15.

Exponent in potentials. Consider Q2 = {(x, t) ∈ R2 : ex ≤ t} = {(x, t) ∈ R2 : t > 0, x ≤
log t}. As f(t) = log t is concave and satisfies the condition in Lemma D.30 with β = 2 and γ = 6,

F (x, t) = − log(log t− x)− 36 log t

is a highly 37-self concordant barrier for Q2. Therefore, 2F is SSC and SLTSC with ν̄ = O(1).

Lemma E.29 (Exponential) Consider the direct product of level sets

K =
d∏
i=1

{xi, ti) ∈ R2 : exp(xi) ≤ ti} ,

and let ϕ(x, t) = −
∑d

i=1(log(log ti − xi) + 36 log ti) and g = 2∇2ϕ.
• ν, ν̄ = O(d).
• SSC and SLTSC.
• d∇2ϕ is SASC.

Proof For i ∈ [d], let Qi = {(xi, ti) ∈ R2 : exi ≤ ti} and Fi(xi, ti) be the self-concordant
barrier above. Note that 2Fi is SSC and SLTSC. By Lemma D.25 and D.26, the Hessian of
F (x, t) := 2

∑d
i=1 Fi(xi, ti) is SSC and SLTSC. The last item on SASC follows from Lemma D.15.
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Entropy in potentials. Consider Q3 = {(x, t) ∈ R2 : x ≥ 0, t ≥ x log x}. Note that f(x) =
x log x is convex on {x > 0} and satisfies the condition in Lemma D.31 with β = 1 and γ = 2.
Hence,

F (x, t) = − log(t− x log x)− 36 log x

is a highly 5-self concordant barrier for Q3. Therefore, 2F is SSC and SLTSC with ν̄ = O(1).

Lemma E.30 (Entropy) Consider the direct product of level sets

K =

d∏
i=1

{(xi, ti) ∈ R2 : xi ≥ 0, ti ≥ xi log xi} ,

and let ϕ(x, t) = −
∑d

i=1

(
log(ti − xi log xi) + 36 log xi

)
and g = 2∇2ϕ.

• ν, ν̄ = O(d).
• SSC and SLTSC.
• d∇2ϕ is SASC.

Proof For i ∈ [d], let Qi = {(xi, ti) ∈ R2 : xi ≥ 0, ti ≥ xi log xi} and Fi(xi, ti) be the
self-concordant barrier above. Note that 2Fi is SSC and SLTSC. By Lemma D.25 and D.26, the
Hessian of F (x, t) := 2

∑d
i=1 Fi(xi, ti) is SSC and SLTSC. The last item on SASC follows from

Lemma D.15.

ℓp-norm (power function). We start with the power functions. For p ≥ 1, considerQ4 = {(x, t) ∈
R2 : t ≥ max(0, x)p} = {(x, t) ∈ R2 : t ≥ 0, x ≤ t1/p}. Note that f(t) = t1/p is concave on
t > 0 and satisfies the condition in Lemma D.30 with β = 2 and γ = 6. Hence,

F4(x, t) = − log(t1/p − x)− 36 log t

is a highly 37-self-concordant barrier for Q4. Similarly, F5(t, x) = − log(t1/p + x)− 36 log t is a
highly 37-self concordant barrier for the convex set Q5 = {(x, t) ∈ R2 : t ≥ max(0,−x)p}. Since
the convex set Q6 = {(x, t) ∈ R2 : t ≥ |x|p} is equal to Q4 ∩Q5, the sum of F4 + F5, which is

F6(x, t) = − log(t2/p − x2)− 72 log t

is a highly 72-self-concordant barrier for Q6. Hence, 2F is SSC and SLTSC with ν̄ = O(1).

Lemma E.31 (ℓp-norm) Consider the direct product of level sets K =
∏d
i=1{(xi, ti) ∈ R2 :

|xi|p ≤ ti}, and let ϕ(x, t) = −
∑d

i=1

(
log(t

2/p
i − x2i ) + 72 log ti

)
and g = 2∇2ϕ.

• ν, ν̄ = O(d).
• SSC and SLTSC.
• d∇2ϕ is SASC.

Proof Consider a highly 72-self-concordant barrier Fi above for {(xi, ti) : |xi|p ≤ ti} for i ∈
[d]. Note that 2Fi is SSC and SLTSC. By Lemma D.25 and D.26, the Hessian of F (x, t) :=
2
∑d

i=1 Fi(xi, ti) is SSC and SLTSC. The last item on SASC follows from Lemma D.15.
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Appendix F. Examples

For given constraints and epigraphs, combining metrics for them (according to the self-concordance
theory for sampling developed in §D) and employing GCDW with the combined metric lead to a
poly-time mixing sampling algorithm. Compared to the state-of-the-art poly-time mixing algorithm,
the Ball walk, GCDW offers several advantages. First, it does not require any preprocessing (e.g.,
rounding) due to affine invariance. Also, it achieves faster mixing by leveraging inherent geometric
information in sampling problems.

The per-step complexity of Dikin walks, however, is in general higher than that of the Ball walk.
The primary computational bottleneck lies in computing the inverse of a local metric. Nevertheless,
efficient implementation of inverse maintenance can significantly reduce the per-step complexity,
improving the total complexity (# iterations needed for mixing times the per-step complexity).

In this section, we illustrate how our framework recovers theoretical guarantees of previous work
on Dikin walks for uniform sampling and extends beyond uniform sampling. In particular, we show
that GCDW is a poly-time mixing algorithm capable of sampling uniform, exponential, or Gaussian
distributions on second-order cones or truncated PSD cones. Additionally, we illustrate an efficient
per-step implementation that yields a faster total complexity when compared to general-purpose
samplers such as the Ball walk.

F.1. Polytope sampling

Consider a set of linear constraints given by K = {x ∈ Rd : Ax ≥ b} with A ∈ Rm×d and b ∈ Rm.

Uniform sampling. Kannan and Narayanan (2012) first studied the Dikin walk for uniformly
sampling a polytope, where a local metric is set to be the Hessian of the logarithmic barrier, g =
∇2ϕlog = AT

(·)A(·). They showed that the Dikin walk with the log-barrier mixes in O
(
md log M

ε

)
iterations with a warmness parameter M . An immediate consequence of our work is that GCDW
achieves the mixing time of Õ(md) without a warmness assumption, as ν̄, ν = m and g is SSC,
LTSC, and ASC by Lemma E.1.

Chen et al. (2018) introduced the Vaidya walk and the Approximate John walk, which are
essentially Dikin walks with the Vaidya metric ∇2ϕVaidya and a version of the Lewis-weight metric√
d∇2ϕLw. Their work showed that both walks achieves mixing times of O

(√
md3/2 log M

ε

)
and

O
(
d5/2 logO(1)m log M

ε

)
, respectively. Building upon our analysis of the Vaidya metric and Lewis-

weight metric in Lemma E.2 and E.3, we find that GCDW with these metrics achieves the same
mixing but without any warmness assumption.

We note that for the same task the Ball walk without a warm start requires Õ(d3) membership
queries due to Kannan et al. (1997); Jia et al. (2021). Given that a membership query involvesO(md)
arithmetic operations, the total complexity of the Ball walk is Õ(md4). In contrast, the per-step
of the Dikin walk with the log-barrier can be run in O(mdω−1) operations through the fast matrix
multiplication, so the total number of arithmetic operations is Õ(m2dω). Thus, for m close to d
GCDW is provably faster than the Ball walk. When an efficient inverse maintenance proposed in
Laddha et al. (2020) is employed, the per-step complexity can be improved to O(d2 + nnz(A)) =
O(md). In such cases GCDW is faster in a broader range of m. In particular, if A is as sparse
as nnz(A) = O(d2), then GCDW is always faster than the Ball walk. Moreover, GCDW with the
Lewis-weight metric mixes in Õ(d2.5) steps with the per-step complexity of Õ(mdω−1), so it is
always faster than the Ball walk for any m.
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Exponential and Gaussian sampling. The current mixing bound of the Ball walk for general
log-concave sampling is Õ(d4) due to Lovász and Vempala (2007). On the other hand, the Dikin walk
employed with any metric above for exponential sampling converges in the same iterations as the
Dikin walk for uniform sampling. Since only difference between two sapling is the additional term of
exp
(
−(f(z)− f(x))

)
in the Metropolis filter, the fast implementation techniques mentioned earlier

can be applied to the context of exponential sampling. As a result, for the exponential sampling each
of the Dikin walks described above surpasses the Ball walk by a larger margin.

For Gaussian sampling over a polytope, we first reduce it to the exponential sampling as in
(redLC): for y = (x, t) ∈ Rd+1

sample y ∼ π̃ ∝ exp(−t)

s.t. Ax ≥ b, 1

2
∥x− µ∥2Σ ≤ t .

According to our theory, it is natural to use the metric given by

g(x, t) = 2

[
∇2
xϕlog(x)

0

]
+ 2(d+ 1)∇2

(x,t)ϕGauss(x, t) ,

which is
(
O(m+d),O(m+d)

)
-Dikin-amenable due to Lemma E.15. Thus, GCDW needs Õ(d(m+

d)) iterations of the Dikin walk. We note that the log-barrier can be replaced by the Vaidya or Lewis-
weight metrics, and in such cases one can obtain provable guarantees on the mixing time by computing
ν and ν̄, referring to §E or Table 2.

F.2. Second-order cone sampling

We consider a region given by ∥x − µ∥Σ ≤ t and A
[
x t

]T ≤ b for A ∈ Rm×(d+1), b ∈ Rm,
µ ∈ Rd, and Σ ∈ Sd++.

Uniform and exponential sampling. In this case, our self-concordance theory suggests using

∇2(2
√
d+ 1ϕLw + 2(d+ 1)ϕSOC) or ∇2(2ϕ∗ + 2(d+ 1)ϕSOC) for ∗ = log, Vaidya ,

to deal with the truncated SOC constraint. For the log-barrier case, this yields an
(
O(m+ d),O(m+

d)
)
-Dikin-amenable metric due to Lemma E.16, with which GCDW requires Õ(d(m+ d)) iterations

of the Dikin walk.

Gaussian sampling. Following the reduction as in the polytope sampling, we should use

g(x, t, t′) = 3

[
∇2

(x,t)ϕlog(x, t) + (d+ 1)∇2
(x,t)ϕSOC(x, t)

0

]
+3(d+2)∇2

(x,t,t′)ϕGauss(x, t, t
′),

which is
(
O(m+ d),O(m+ d)

)
-Dikin-amenable, and thus GCDW needs Õ(d(m+ d)) iterations

of the Dikin walk.

F.3. PSD cone sampling

For a matrix X ∈ Rd×d, recall that vec(X) ∈ Rd2 denotes the vector obtained by stacking columns
of X vertically. Additionally, we define A ∈ Rm×d2 , SX ∈ Rm×m, and AX ∈ Rm×d2 by

A :=
[
vec(A1) · · · vec(Am)

]T
, SX := Diag(⟨Ai, X⟩ − bi), AX := S−1

X A ,

where we assume A has no all-zero rows and (SX)ii > 0 for i ∈ [m].
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Uniform and exponential sampling. The metric below comes from the Hessian of

−2d2 log detX − 2

m∑
i=1

log(⟨Ai, X⟩ − bi) .

Here the first term, the log-determinant, serves as a barrier for the PSD cone while the second term is
the standard logarithmic barrier for linear constraints. We note that the − log detX is strictly convex
on x ∈ int(K) for K the truncated PSD cone, so all metrics g introduced in our main results are
positive definite. Thus, the Dikin walk with those g is well-defined.

Proposition F.1 Let K be the truncated PSD cone and g be the local metric such that at each
X ∈ int(K), for symmetric matrices H1, H2,

gX(H1, H2) = 2d2Tr(X−1H1X
−1H2) + 2 vec(H1)

TAT
XAX vec(H2) .

Then GCDW needs Õ((d3 +m)d2) steps of the Dikin walk with the local metric g, where each step
runs in O

(
(mdω +m2d2) ∧ (d2ω +md2(ω−1))

)
time4.

Since gX is
(
O(m + d3),O(m + d3)

)
-Dikin-amenable by Lemma E.17, GCDW requires

Õ(d2 (d3 +m)) iterations of the Dikin walk. As mentioned earlier, efficient maintenance of the
inverse of a metric function could lead to a faster per-step complexity. As an example, we provide
such an implementation of Proposition F.1 in §F.3.1. Putting these together, for an interesting regime
of m = O(1), GCDW is faster than the Ball walk by a factor of d in terms of the total complexity.

If we replace the log-barrier by the Vaidya metric, then the dependence on m is improved to
√
m

as in the polytope sampling. See §G.5.1 for the proofs of the two claims below.

Proposition F.2 Let K be the truncated PSD cone and g be the local metric such that at each
X ∈ int(K), for symmetric matrices H1, H2,

gX(H1, H2) = 2d2Tr(X−1H1X
−1H2) + 44

√
m

d
vec(H1)

TAT
X

(
ΣX +

d

m
Im
)
AX vec(H2) .

Then GCDW needs Õ((d2 +
√
m)d3) steps of the Dikin walk with the local metric g, with each step

running in Õ(md2(ω−1)) amortized time.

Lastly, the dependence on m can be made poly-logarithmic by working with the Lewis-weight
metric. We remark that for uniform sampling the total complexity of GCDW is less than that of the
Ball walk by the order of d5−2ω.

Proposition F.3 Let K be the truncated PSD cone and g be the local metric such that at each
X ∈ int(K), for symmetric matrices H1, H2,

gX(H1, H2) = 2d2Tr(X−1H1X
−1H2) + dc1(logm)c2 vec(H1)

TAT
XWXAX vec(H2) ,

where WX is the diagonalized ℓp-Lewis weight of AX with p = O(logm), and c1, c2 > 0 are
universal constants. Then GCDW requires Õ(d5) steps of the Dikin walk, with each step running in
Õ(md2(ω−1)) amortized time.

4. Here ω < 2.373 is the current matrix multiplication complexity exponent (Le Gall, 2014)).
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Algorithm 4: Computation of g(X)−1v

Input: X ∈ Sd+, vector v ∈ Rds , local metric g.
Output: g(X)−1v
Prepare the column vectors ui of U =MTATS−1

X .
For ḡ0 := g1(X), compute ḡ−1

0 v and ḡ−1
0 ui for i ∈ [m].

for i = 1, · · · ,m do
Compute ḡ−1

i v and ḡ−1
i uj for j ∈ [m], according to

ḡ−1
i w = ḡ−1

i−1w −
ḡ−1
i−1ui · uTi ḡ

−1
i−1w

1 + uTi ḡ
−1
i−1ui

.

end
Output ḡ−1

m v.

Gaussian sampling. Just as in polytope or second-order cone sampling, we introduce a new
variable t by replacing a quadratic term in the potential. This reduces the Gaussian sampling problem
to an exponential sampling problem. We then work with a local metric

g(X, t) = 3

(
d

[
∇2
XϕLw(X)

0

]
+ d2

[
∇2
XϕPSD(X)

0

]
+ d2∇2

(X,t)ϕGauss(X, t)

)
,

which is
(
O∗(d3),O∗(d3)

)
-Dikin-amenable. Thus, GCDW needs Õ(d5) iterations of the Dikin walk

with the local metric g, and the per-step complexity remains Õ(md2(ω−1)) in amortized time.

F.3.1. PER-STEP IMPLEMENTATION

Now we design an oracle that implements each iteration of the Dikin walk (Algorithm 1). This can
be implemented as follows: when the current point is x,
• Sample z ∼ N

(
0, r

2

d g(x)
−1
)
.

• Compute y = x+ g(x)−1/2z and propose it.

• Accept y with probability 1 ∧
(√det g(y)

det g(x)
exp f(x)
exp f(y)

)
.

We provide two algorithms with the complexity of O(mdω +m2d2) and O(d2ω +md2(ω−1)). We
can implement each iteration in O

(
(mdω +m2d2) ∧ (d2ω +md2(ω−1))

)
time by using the former

for small m and the latter for large m. This completes the second half of Theorem F.1.

Algorithm for small m. For simplicity here, we ignore the constant factors of g = g1 + g2, where

g1(X) =MT(X ⊗X)−1M =: BBT and g2(X) =MTATS−2
X AM =: UUT .

where B := MT(X ⊗X)−1/2 ∈ Rds×d2 and U := MTATS−1
X ∈ Rds×m. Letting ui be the i-th

column of U for i ∈ [m], we note that g2 =
∑m

i=1 uiu
T
i .

We start with a subroutine for computing g(X)−1v for given v ∈ Rds in O(mdω +m2d2) time.

Proposition F.4 Algorithm 4 computes g(X)−1v in O(mdω +m2d2) time for a query v ∈ Rds .
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Algorithm 5: Implementation of the Dikin walk

Input: current point X ∈ Sd+, local metric g
// Step 1: Sampling from N

(
0, r

2

d g(X)−1
)

Draw w ∼ N (0, Id2+m) and v ← g(X)−1
[
B U

]
w by Algorithm 4.

Propose y ← svec(X) + r√
d
v.

// Step 2: Computation of acceptance probability

Use Algorithm 4 to prepare {ḡ−1
i u1, . . . , ḡ

−1
i um}mi=0 at X and Y := svec−1(y).

det ḡ0(·)← 2d(d−1)/2(det(·))−(d+1) (∵ Lemma H.1-7)
for i = 1, · · · ,m do

det(ḡi+1)← det ḡi · (1 + uTi+1ḡ
−1
i ui+1).

end

Accept Y with probability 1 ∧
(√ det ḡm(Y )

det ḡm(X)
exp f(X)
exp f(Y )

)
.

See §G.5.2 for the proof. With this subroutine in hand, we proceed to an efficient implementation

of two tasks – computation of (1) g(x)−
1
2 z for a given vector z ∈ Rds and (2)

√
det g(y)
det g(x)

exp f(x)
exp f(y) .

Lemma F.5 Algorithm 5 implements the Dikin walk with per-step complexity of O(mdω +m2d2).

Algorithm for large m. The algorithm right above has quadratic dependence on the number m
of constraints, which could become expensive for large m. In this regime, we just fully compute
the whole matrix function of size Rds×ds , which takes O(d2ω +md2(ω−1)) time, and computing its
inverse, square-root, and determinant takes O(d2ω) time.

F.3.2. HANDLING APPROXIMATE LEWIS WEIGHTS

When implementing the Dikin walk with the Lewis-weights metric, we use an approximation
algorithm presented in Lee and Sidford (2019) for computing and updating the Lewis weight,
which ensures

(1− δ)W̃X ⪯WX ⪯ (1 + δ)W̃X

for the approximate Lewis weights W̃X and a target accuracy parameter δ (note that the initialization
and update times of the Lewis weight above hide poly-logarithmic dependence on log(1/δ)). Strictly
speaking, we should check that these approximate Lewis weights do not affect the theoretical
guarantees above.

To see this, let us define g̃ = 2(dg1 + g̃2), where for some constants c1, c2 > 0

g1(X) = d2MT(X ⊗X)−1M and g̃2 = dc1 (logm)c2 MTAT
XW̃XAXM .

First of all, the Dikin walk with g̃ still converges to a target distribution, since the approximation
algorithm in Lee and Sidford (2019) is deterministic and thus the condition of detailed balance still

holds under the acceptance probability of 1∧
(√ det g̃(Y )

det g̃(X)
exp f(X)
exp f(Y )

)
. For P̃X the one-step distribution

of the Dikin walk started at X with g̃, we can show one-step coupling similar to Lemma B.3,
following the overall proof therein and taking δ = 1/poly(d) small enough. See §G.5.3 for the proof.
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Lemma F.6 (One-step coupling) For convex K ⊂ Rd, let g : int(K) → Sd++ be SSC, ASC,
LTSC, and ϕ : int(K) → R be its function counterpart. Suppose that the potential f of the
target distribution π is β-relatively smooth in ϕ. Then there exist constants s1, s2 > 0 such that if
∥x− y∥g(x) ≤ s1r/

√
d with r = s2 (1 ∧ 1/

√
β) for x, y ∈ int(K), then dTV(P̃x, P̃y) ≤ 3

4 + 0.01.

Appendix G. Proofs

We collect deferred proofs in this section.

G.1. Mixing of the Dikin walk (§B)

G.1.1. ONE-STEP COUPLING

We start with the one-step coupling of the Dikin walk under the setting α∇2ϕ ⪯ ∇2f ⪯ β∇2ϕ on
int(K). Roughly speaking, if ∥x− y∥x ≤ r/

√
d with r ≲ 1 ∧ 1/

√
β, then dTV(Px, Py) ≤ 0.99.

Proof of Lemma B.3. For π ∝ exp(−f) · 1K and z ∼ N (x, r
2

d g(x)
−1), let us denote

px = N
(
x,
r2

d
g(x)−1

)
, R(x, z) =

pz(x)

px(z)

π(z)

π(x)
, A(x, z) = min

(
1, R(x, z)1K(z)

)
.

The transition kernel P (x, ·) of the Dikin walk started at x can be written as

P (x, dz) =
(
1− Epx [A(x, ·)]

)︸ ︷︷ ︸
=:rx

δx(dz) +A(x, z) px(dz) .

Thus, for x, y ∈ int(K),

dTV(Px, Py) =
1

2
(rx + ry)︸ ︷︷ ︸

I

+
1

2

∫
|A(x, z) px(z)−A(y, z) py(z)| dz︸ ︷︷ ︸

II

. (TV-decomposition)

Let h ∼ N (0, Id) and denote a bad event B0 = {z ∈ Rd : ∥z − x∥x ≥ cr} with c determined
later. Due to ∥z − x∥x = r√

d
∥h∥ (in law) and concentration of the standard Gaussian in a thin shell

of radius
√
d with annulus O(1)5, we have Pz(B0) = Ph(∥h∥ ≥ c

√
d) ≤ exp

(
−(c − 1)

√
d/2
)
.

Hence, P(B0) ≤ ε for c ≥ 1 +
√

2
d log 1

ε .

Rejection probability rx and ry (Term I). Note that

rx = 1− Epx [A(x, z)] = 1−
∫

min
(
1, 1K(z)

exp f(x)

exp f(z)︸ ︷︷ ︸
=:A

pz(x)

px(z)︸ ︷︷ ︸
=:B

)
px(dz) .

5. A standard Gaussian h ∼ N (0, Id) is concentrated around a thin sell of radius
√
d with annulus O(1): For t > 0,

Ph(∥h∥2 ≥
√
d+ t) ≤ exp(−t2/2) .
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As for A, we let∇2ϕ ⪯ cϕg for some cϕ > 0 and use Taylor’s expansion at x ∈ K ∩Bc
0 to show

that for some x∗ ∈ [x, z],

f(x)− f(z) +∇f(x)T(z − x) = −∥z − x∥2∇2f(x∗) ≥ −cϕβ ∥z − x∥
2
g(x∗)

≥
(i)
−cϕβ ∥z − x∥2x · (1 + 2∥x− z∥x)2 ≥ −cϕβc2r2(1 + 2cr)2 ≥

(ii)
−ε ,

where we used Lemma D.4 in (i) and took r ≤ r1(ε) in (ii), which is defined so that βcϕc2r2(1 +
cr)2 ≤ ε for any r ≤ r1(ε). It follows from D1

g(x) ⊂ K and symmetry of N r
g (x) that there exists a

half-ellipsoid G ⊂ D1
g(x) in which ⟨∇f(x), z − x⟩ ≤ 0. Thus, f(x)− f(z) ≥ −ε holds on z ∈ G.

For a bad event B1 := Gc, it holds that

Pz(B1) ≤
1

2
+ Pz

(
D1
g(x)

c
)
=

1

2
+ Pz(∥z − x∥x ≥ 1) =

1

2
+ Ph

(
∥h∥ ≥

√
d

r

)
≤ 1

2
+ ε ,

where the last inequality follows from concentration of h for any r ≤ r2(ε) :=
(
1 + 2√

d
log 1

ε

)−1.

As for B, for φ(x) := 1
2 log det g(x) we have

logB = − d

2r2
(
∥z − x∥2z − ∥z − x∥2x

)
+
(
φ(z)− φ(x)

)
.

Invoking ASC of ϕ, we can take r3(ε) so that Pz
(
∥z − x∥2z − ∥z − x∥2x ≤ 2εr2/d

)
≥ 1− ε for any

r ≤ r3(ε) and control the first term. Let the complement of this event be our second bad event B2.
For φ(z)− φ(x), Taylor’s expansion of φ at x leads to

φ(z)− φ(x) = ⟨∇φ(x), z − x⟩︸ ︷︷ ︸
=:A’

+
1

2
⟨∇2φ(x∗)(z − x), z − x)⟩︸ ︷︷ ︸

=:B’

for some x∗ ∈ [x, z] .

As for A′, we have ⟨∇φ(x), z − x⟩ = r√
d
⟨g(x)−1/2∇φ(x), h⟩, and a standard tail bound for h leads

to
Pz
(
⟨∇φ(x), z − x⟩ ≤ − r√

d
∥g(x)−1/2∇φ(x)∥2 · 2 log

1

ε

)
≤ ε .

We call this event B3 and bound ∥g(x)−1/2∇φ(x)∥2 via SSC of g as follows: omitting x for
simplicity,

∥g−
1
2∇φ∥2 = sup

v:∥v∥2=1
⟨∇φ, g−

1
2 v⟩ =

(i)
sup
v

Tr(g−1Dg[g−
1
2 v]) = sup

v
Tr(g−

1
2Dg[g−

1
2 v] g−

1
2 )

≤
(ii)

sup
v

√
d ∥g−

1
2Dg[g−

1
2 v] g−

1
2 ∥F ≤

(iii)
sup
v

2
√
d∥g−

1
2 v∥x = 2

√
d ,

where (i) follows from (H.1), (ii) is due to Tr(A) ≤
√
d∥A∥F for A ∈ Rd×d, and (iii) is due to SSC.

Conditioned on Bc
3, taking r ≤ r4(ε) := ε(4 log 1

ε )
−1, we have

A′ = ⟨∇φ(x), z − x⟩ ≥ −4r log
1

ε
≥ −ε .

As for B′, denoting u = z − x for z ∈ Bc
0

D2φ(x∗)[u, u] =
(H.3)

Tr
(
g(x∗)−1D2g(x∗)[u, u]

)
− ∥g(x∗)−

1
2Dg(x∗)[u] g(x∗)−

1
2 ∥2F
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≥
(i)
−∥u∥2x∗ − ∥g(x∗)−

1
2Dg(x∗)[u] g(x∗)−

1
2 ∥2F ≥ −∥u∥2x∗ − 4∥u∥2x∗

≥
(ii)
−5(1− ∥x− x∗∥x)−2∥u∥2x (G.1)

≥ −5(1 + 2cr)2c2r2 ,

where (i) follows from LTSC and (ii) follows from Lemma D.4. Hence, B′ ≥ −ε/2 by taking
r ≤ r5(ε) so that 5(1 + 2cr5)

2c2r25 = ε.
In summary, conditioned on G :=

⋂3
i=0B

c
i with Pz(G) ≥ 1

2 − 4ε due to the union bound, we
have

A :
exp f(x)

exp f(z)
≥ exp(−ε) , (G.2)

B :
pz(x)

px(z)
≥ exp(−3ε) , (G.3)

φ(z)− φ(x) ≥ −2ε . (G.4)

Combining these together,

rx = 1−
∫

min
(
1,1K(z)

exp f(x)

exp f(z)

pz(x)

px(z)

)
px(dz) ≤ 1−

∫
G
(1 ∧ e−εe−3ε)Pz(G) ≤

1

2
+ 5ε .

Bounding ry in the same way, we conclude that I ≤ 1
2 + 5ε in (TV-decomposition).

Overlapping part (Term II). WLOG, assume f(y) ≥ f(x). We denote good events by Gx =
∩i=0,2,3B

c
x,i and Gy = ∩i=0,2,3B

c
y,i such that Ppx(Gcx) ≤ 3ε and Ppy(Gcy) ≤ 3ε, where

Bx,0 = {∥z − x∥x ≥ cr} with c ≥ 1 +
2√
d
log

1

ε
, and Bx,2 =

{
∥z − x∥2z − ∥z − x∥2x >

2εr2

d

}
Bx,3 =

{
∇φ(x)T(z − x) ≤ −

2r log 1
ε√

d
∥g(x)−

1
2∇φ(x)∥2

}
.

Let G := Gx ∪Gy, and define a partition of G by

Gx\y := Gx\Gy, Gx,y := Gx ∩Gy, Gy\x := Gy\Gx .

Now we decompose the term II as follows: for Q := |A(x, z)px(z)−A(y, z)py(z)|,

II =
1

2

∫
K\G

Qdz +
1

2

∫
Gx\y

Qdz︸ ︷︷ ︸
=:A

+
1

2

∫
Gy\x

Qdz︸ ︷︷ ︸
=:B

+
1

2

∫
Gx,y

Qdz︸ ︷︷ ︸
=:C

≤ 1

2

(
Ppx(K\G) + Ppy(K\G)

)
+A+ B + C ≤ 1

2

(
Ppx(Gcx) + Ppy(Gcy)

)
+A+ B + C

≤ 3ε+A+ B + C .

The term A can be further decomposed by

2A ≤
∫
Gx\y

A(x, z) |px(z)− py(z)|dz +
∫
Gx\y

|A(x, z)−A(y, z)| py(dz)
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≤
∫
Gx\y

|px(z)− py(z)|dz + Ppy(Gx\y) ≤
∫
Gx\y

|px(z)− py(z)| dz + Ppy(Gcy)︸ ︷︷ ︸
≤3ε

,

and in a similar way B ≤ 1
2

∫
Gy\x
|px(z)− py(z)| dz + 3ε/2. Combining these together,

A+ B ≤ 3ε+
1

2

∫
Gx\y∪Gy\x

|px(z)− py(z)|dz ≤ 3ε+ dTV(px, py) ≤ 4ε ,

where we used dTV(px, py) ≤ ε; to see this, recall Pinsker’s inequality and a formula for the KL
divergences between two Gaussians:

2[dTV(px, py)]
2 ≤ KL(py ∥px) =

1

2

(
Tr
(
g(y)−1g(x)

)
−d+log det

(
g(y)g(x)−1

)
+
d

r2
∥y−x∥2x

)
.

Let {λi}i∈[d] be the eigenvalues of g(x)−
1
2 g(y)g(x)−

1
2 and ∥x − y∥x ≤ sr√

d
with s > 0 to be

determined. Then, 1
2 ≤ λi ≤ 1 + 8∥x− y∥x by Lemma D.4. Using this and log x ≤ x − 1 for

x > 0,

2KL(py ∥ px) =
d∑
i=1

(
λi − 1 + log

1

λi

)
+

d

r2
∥y − x∥2x ≤

d∑
i=1

(λi − 1)2

λi
+ s2 ≤ s2 (128r2 + 1) ,

Taking s ≤ s1(ε) := ε and r ≤ r6(ε) so that
√
128r26 + 1 ≤ 2, we obtain

dTV(px, py) ≤
√

1

2
KL(py ∥ px) ≤

s

2

√
128r2 + 1 ≤ ε , (G.5)

We now bound C. Recall Bx,1 = {⟨∇f(x), z − x⟩ ≥ 0} and Ppx(Bx,1) ≤ 1
2 +O(ε). Then,

2C =
∫
(Gx∩Gy)\Bc

x,1

Qdz +

∫
Gx∩Gy∩Bc

x,1

Qdz ≤
∫
Bx,1

Q︸︷︷︸
The traingle inequality

dz +

∫
Gx∩Gy∩Bc

x,1

Qdz

≤
∫
Bx,1

|A(x, z)−A(y, z)| px(dz) +
∫
Bx,1

A(y, z) |px(z)− py(z)| dz +
∫
Gx∩Gy∩Bc

x,1

Qdz

≤ Ppz(Bx,1)︸ ︷︷ ︸
≤ 1

2
+ε

+2 dTV(px, py)︸ ︷︷ ︸
≤ε (G.5)

+

∫
Gx∩Gy∩Bc

x,1

|A(x, z) px(z)−A(y, z) py(z)|dz

≤ 1

2
+ 2ε+

∫
Gx∩Gy∩Bc

x,1

|A(x, z) px(z)−A(y, z) py(z)|dz .

One can check that

|A(x, z) px(z)−A(y, z) py(z)| dz =
∣∣∣min

(
1,

exp f(x)

exp f(z)

pz(x)

px(z)︸ ︷︷ ︸
=:U

)
−min

(py(z)
px(z)︸ ︷︷ ︸
=:V

,
exp f(y)

exp f(z)

pz(y)

px(z)︸ ︷︷ ︸
=:W

)∣∣∣ px(dz) .
Here we note that U ≥ e−4ε due to exp f(x)

exp f(z) ≥ e
−ε and pz(x)

px(z)
≥ e−3ε from (G.2) and (G.3).
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We now show that under additional conditioning, | logV| ≲ ε and logW ≳ −ε on z ∈ Gx ∩
Gy ∩Bc

x,1. For φ(·) = 1
2 log det g(·) and L := − d

2r2
(∥z − y∥2y − ∥z − x∥2x),

logV = − d

2r2
(∥z − y∥2y − ∥z − x∥2x) + φ(y)− φ(x)

= L + ⟨∇φ(x), y − x⟩+ 1

2
⟨∇2φ(x∗)(y − x), y − x⟩︸ ︷︷ ︸

Use (G.1)

for some x∗ ∈ [x, y] (G.6)

≥ L− ∥g(x)−1/2∇φ(x)∥2∥y − x∥x − 5 (1 + 2∥x− y∥x)2︸ ︷︷ ︸
≤2

∥y − x∥2x

≥ L− 2
√
d · s r√

d
− 10s2

r2

d
≥ L− ε , (G.7)

where the inequality follows from s ≤ ε
10 and r ≤ r7(ε) := 1.

As for W, due to f(y) ≥ f(x) and exp(f(x)− f(z)) ≥ exp(−ε),

logW ≥ log
(exp f(x)
exp f(z)

pz(y)

px(z)

)
≥ −ε− d

2r2
(∥z − y∥2z − ∥z − x∥2x) + φ(z)− φ(x)

≥
(i)
−ε− d

2r2

(
∥z − y∥2y + 2ε

r2

d
− ∥z − x∥2x

)
− 2ε = L− 4ε , (G.8)

where (i) follows from ∥z − y∥2z − ∥z − y∥2y ≤ 2εr2/d on z ∈ Bc
y,2, and φ(z) − φ(x) ≥ −2ε on

z ∈ Bc
x,3 from (G.4).

Lastly, we show that |L| is bounded by O(ε) with high probability (w.r.t. px). Due to affine
invariance of the algorithm, we may assume that x = 0 and g(x) = Id (so px = N (0, Id)).
Therefore,

∥z − y∥2y − ∥z − x∥2x = ∥z − y∥2y − ∥z∥2 = ∥z∥2g(y)−Id − 2⟨z, y⟩y + ∥y∥2y .

The last term is bounded by 2∥y∥2 due to SC of g. Using a tail bound for Gaussians, we have
Ppx
(
|⟨z, y⟩y| ≥ r√

d
∥g(y)y∥2 · 2 log 1

ε

)
≤ ε and call this event C1. In addition, SC of g leads to

g(y) ⪯ 2Id, so ∥g(y)y∥ ≤ 2∥y∥.
To bound ∥z∥2g(y)−Id , we note that ∥y∥ = ∥y − x∥x ≤ 1/

√
2 and so

∥g(y)− Id∥F ≤ (1 + 2∥y∥)2∥y∥ ≤ 2s
r√
d
, (Lemma D.6)

E[∥z∥2g(y)−Id ] =
r2

d
Tr(g(y)− Id) ≤

r2

d

√
d ∥g(y)− Id∥F ≤

r2

d
· 2rs .

By the Hanson-Wright inequality6, for universal constants K1,K2 > 0 and t ≥ 0 it holds that

Pz∼N (0,Id)

(
|∥z∥2g(y)−Id−E[∥z∥

2
g(y)−Id ]| ≥ t

)
≤ 2 exp

(
−K1

( t2

K4
2
r4

d2
∥g(y)− Id∥2F

∧ t

K2
2
r2

d ∥g(y)∥2

))
.

6.

Lemma (Hanson-Wright; Adapted to Gaussian). Let h ∼ N (0, σ2Id) and M ∈ Rd×d. Then there exists
universal constants c,K > 0 such that for t ≥ 0

P
(
|∥h∥2A − E[∥h∥2A]| > t

)
≤ 2 exp

(
−cmin

( t2

K4σ4∥M∥2F
,

t

K2σ2∥M∥2

))
.
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By taking r ≤ r8(ε) :=
√
K1

2K2
2

and s ≤ s2(ε) := ε(1 +
√
log 2

ε )
−1, it follows that ∥z∥2g(y)−Id ≤

2εr2

d

with probability at least 1− ε. Denote the complement of this event by C2.
Conditioned on z ∈ Cc1 ∩ Cc2, we conclude that

|∥z − y∥2y − ∥z − x∥2x| ≤ ∥z∥2g(y)−Id + 2|⟨z, y⟩y|+ 2∥y∥2 ≤ 2r2ε

d
+

8r∥y∥√
d

log
1

ε
+ 2∥y∥2 ≤ 2r2

d
· 3ε ,

where the last inequality follows from ∥y∥ ≤ sr√
d

when s ≤ s3(ε) := ε (4 log 1
ε )

−1. Hence, |L| ≤ 3ε

on Cc1 ∩ Cc2. Putting this into (G.7) and (G.8),

logV ≥ exp(−4ε) and logW ≥ exp(−7ε) .

We can also show logV ≤ 5ε. Conditioned on z ∈ Cc1 ∩ Cc2,

− logV = −L + φ(x)− φ(y) ≥ −3ε+ φ(x)− φ(y) ≥ −5ε ,

since φ(x)− φ(y) can be lowered bounded by −2ε as in (G.6). Hence, logV ≤ 5ε.
For F := Gx ∩ Gy ∩ Bc

x,1 and C := (C1 ∪ C2)
c, since e−4ε ≤ V ≤ e5ε, e−7ε ≤ W, and

U ≥ e−4ε,∫
F
|A(x, z) px(z)−A(y, z) py(z)| dz ≤

∫
Cc

(·) dz +
∫
F∩C

(·) dz

≤Ppx(Cc)︸ ︷︷ ︸
≤2ε

+2 dTV(px, py)︸ ︷︷ ︸
≤ε

+

∫
F∩C

(·) dz ≤ 4ε+

∫
F∩C
|1 ∧ U− V ∧W| px(dz) ≤ 4ε+ (e5ε − e−4ε)

≤18ε .

Using this, we can bound C by

C ≤ 1

4
+ ε+

1

2

∫
F
|A(x, z) px(z)−A(y, z) py(z)| dz ≤

1

4
+ 10ε .

Therefore, II ≤ 3ε+A+ B + C ≤ 3ε+ 4ε+ 1
4 + 10ε ≤ 1

4 + 17ε. Along with I ≤ 1
2 + 5ε, we can

conclude that if r ≤ mini ri(ε) and s ≤ mini si(ε), then dTV(Px, Py) ≤ 3
4 + 23ε.

G.1.2. ISOPERIMETRIC INEQUALITY

We now prove an isoperimetric inequality arising from the a SC barrier. Recall the cross-ratio
distance dK defined on a convex body K: for x, y ∈ int(K), suppose that the chord passing through
x, y has endpoints p and q in the boundary ∂K (so the order of points is p, x, y, q), then the cross-ratio
distance between x and y is defined by

dK(x, y)
def
=
∥x− y∥2∥p− q∥2
∥p− x∥2∥y − q∥2

.

The first type of isoperimetric inequalities says ψπ ≳ 1/
√
ν̄.

Proof of Lemma B.6. For a ball Br(0) of radius r > 0 centered at the origin, we define a convex
bodyKr := K∩Br(0) and use πr to denote the truncated distribution of π overKr. Let {S1, S2, S3}
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be a partition of K and define Sri := Si ∩Kr for i ∈ [3]. By Lovász and Vempala (2007, Theorem
2.5), we have

πr(S
r
3) ≥ dKr(S

r
1 , S

r
2)πr(S

r
1)πr(S

r
2) ,

where dKr(S
r
1 , S

r
2) = infx∈Sr

1 ,y∈Sr
2
dKr(x, y). Due to dKr(x, y) ≥ ∥x− y∥x/

√
ν̄ for any x, y ∈ Kr

(see Laddha et al. (2020, Lemma 2.3)),

πr(S
r
3) ≥ inf

x∈Sr
1 , y∈Sr

2

∥x− y∥x√
ν̄

πr(S
r
1)πr(S

r
2) ≥

1√
ν̄

inf
x∈S1, y∈S2

∥x− y∥x πr(Sr1)πr(Sr2) .

As r →∞, the bounded convergence theorem implies πr(Sri )→ π(Si) for i ∈ [3], completing the
proof.

We provide the deferred proof for another isoperimetric inequality, ψπ ≳
√
α, originating from

α-relatively strong-convexity of the potential with respect to∇2ϕ.

Proof of Lemma B.7. The proof essentially follows Gopi et al. (2023). Their first proof ingredient is a
modified localization lemma (Gopi et al., 2023, Lemma 8); let f1, f2, f3, f4 be non-negative functions
on Rd such that f1 and f2 are upper semicontinuous, and f3 and f4 are lower semicontinuous, and
ϕ : Rd → R be convex. Then the following are equivalent:
• For any density π : Rd → R which is 1-relatively strongly logconcave in ϕ,∫

f1 dπ ·
∫
f2 dπ ≤

∫
f3 dπ ·

∫
f4 dπ .

• Let
∫
E h :=

∫ 1
0 h((1− t) a+ tb)e−γt dt. Then

∫
E f1e

−ϕ ·
∫
E f2e

−ϕ ≤
∫
E f3e

−ϕ ·
∫
E f4e

−ϕ for
any a, b ∈ Rd and γ ∈ R.

First of all, this can be generalized to an extended convex function f and ϕ, whose values outside of
int(K) are set to∞. Since the density π and a needle exp (γt− ϕ((1− t)a+ tb)) for γ ∈ R and
a, b ∈ Rd (induced by the extended f and ϕ) vanish outside of int(K), integrands above become
zero on int(K)c, and thus the integrals above remain the same.

As in Gopi et al. (2023, Lemma 9), the proof boils down to the case of α = 1, and it suffices to
show that there exists a constant C > 0 such that

C · dϕ(S1, S2)
∫
S1

e−f ·
∫
S2

e−f ≤
∫
e−f

∫
S3

e−f .

We can replace Si ← its closure S̄i for i ∈ [2], which only increases the LHS. Also, we can replace
S3 ← an open set int(K)\S̄1\S̄2, which does not change the RHS since the boundary of a convex
set is a null set (Lang, 1986, Theorem 1). By taking fi = 1Si for i ∈ [3] and f4 = (C dϕ(S1, S2))

−1,
we only need to show that for some 0 ≤ c < d ≤ 1,

C · dϕ(S1, S2)
∫ d

c
eγt−ϕ((1−t) a+tb)1S1((1− t) a+ tb) dt ·

∫ d

c
eγt−ϕ((1−t) a+tb)1S2((1− t) a+ tb) dt

≤
∫ d

c
eγt−ϕ((1−t) a+tb) dt ·

∫ d

c
eγt−ϕ((1−t) a+tb)1S3((1− t) a+ tb) dt ,

where ϕ((1 − t) a + b) < ∞ for t ∈ (c, d). The rest of the proof is similar to Gopi et al. (2023,
Lemma 9).
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G.2. Sampling IPM (§C)

G.2.1. WELL-DEFINEDNESS OF SAMPLING IPM

Proposition G.1 Let p : Rd → R be a log-concave density with finite second moment. Then p is
bounded on Rd.

Proof Let X ∼ p and denote the mean and covariance of the distribution p by µ := E[X] and
Σ := E[(X−µ)(X−µ)T]. Then the pushforward T#p of p via the map T : x 7→ y := Σ−1/2(x−µ)
is an isotropic log-concave, and satisfy (T#p)(y) =

p(x)
| detT | . Since T#p is bounded on Rd (Lovász

and Vempala, 2007, Theorem 5.14 (e)), p is bounded as well.

Next, we show that every measure appearing within the sampling IPM is integrable.

Proof of Proposition C.1. Recall that we may assume ϕ ≥ 0. Hence, all µi’s in Phase 3 and 4 are
well-defined ∫

K
exp
(
−
(
f(x) +

ϕ(x)

σ2i

))
dx ≤

∫
K
exp(−f(x)) dx <∞ .

In particular, exp
(
−(f + ϕ

ν/d)
)

is integrable with finite second moment. By Proposition G.1,

f(x) + ϕ(x)
ν/d achieves a global minimum m in K. As σ2i ≤ σ2i0 = ν/d in Phase 2, we have

∫
K
exp
(
−
σ2i0f + ϕ

σ2i0

)
=

∫
K
exp
(
−
σ2i0f + ϕ−min(σ2i0f + ϕ)

σ2i0
−

min(σ2i0f + ϕ)

σ2i0

)
≥
∫
K
exp
(
−
f̄ + ϕ− σ2i0m

σ2i
−m

)
= exp

(
m
(σ2i0
σ2i
− 1
)) ∫

K
exp
(
− f̄ + ϕ

σ2i

)
,

where the inequality holds due to min(σ2i0f + ϕ) = σ2i0m and f̄ = σ2i0f . Therefore, µi’s in Phase 2
are also well-defined.

G.2.2. CLOSENESS OF DISTRIBUTIONS IN SAMPLING IPM

We begin with closeness betweenN
(
x∗,

σ2
0

1+νβd−1 g(x
∗)−1

)
·1

D3σ0
√
d

g (x∗)
and exp

(
− f̄+ϕ

σ2
0

)
in Phase 1.

Proof of Lemma C.5. Let γ = 9, r = (γσ20d)
1/2 < 0.01, ψ := f̄ + ϕ, and S = {x ∈ K : ψ(x) ≤

ψ(x∗) + r2/4}. For µ̃0 = exp(−ψ/σ20) · 1K ∝ µ0 and x ∈ S, we have µ0(x) ≥ e−γdµ0(x∗). Due
to µ0(Sc) ≤ exp(−γd/3) (Lemma C.3), 1 = µ0(S) + µ0(S

c) ≤ µ0(S) + exp(−γd/3) and

1 ≤
(
1 + 2 exp(−γd/3)

)
µ0(S) =

(
1 + 2 exp(−γd/3)

)
µ̃0(S)/µ̃0(Rd) . (G.9)

We show S ⊂ D = D3σ0
√
d

g (x∗). For x ∈ S, use Taylor’s expansion of ψ at x∗: for some
x̄ ∈ [x∗, x]

ψ(x)− ψ(x∗) = 1

2
(x− x∗)T∇2ψ(x̄)(x− x∗) ≥ 1

2
(x− x∗)T∇2ϕ(x̄)(x− x∗) . (G.10)

63



KOOK VEMPALA

As ψ(x)− ψ(x∗) ≤ r2/4 on x ∈ S, we have ∥x̄− x∗∥2x̄ ≤ ∥x− x∗∥2x̄ ≤ 2(ψ(x)− ψ(x∗)) ≤ r2/2.
Thus, by self-concordance of ϕ

exp(−3r) ∥x− x∗∥2x∗ ≤ ∥x− x∗∥2x̄ ≤ exp(3r) ∥x− x∗∥2x∗ , (G.11)

and it follows that ∥x− x∗∥2x∗ ≤ r2, showing S ⊂ D.
Combining (G.10), (G.11), and (1 + ναd−1)∇2ϕ ⪯ ∇2ψ ⪯ (1 + νβd−1)∇2ϕ, we have

exp(−3r)
2

(
1 +

να

d

)
∥x− x∗∥2x∗ ≤

(∗)
ψ(x)− ψ(x∗) ≤

(#)

exp(3r)

2

(
1 +

νβ

d

)
∥x− x∗∥2x∗ , (G.12)

and thus for a constant c := 1 + νβd−1 and function h(x) := −(2σ20)−1∥x− x∗∥2x∗ ,

∥µ/µ0∥ = Eµ
[ dµ
dµ0

]
=

∫
D exp

(
− c
σ2
0
∥x− x∗∥2x∗ +

ψ
σ2
0

)
· µ̃0(Rd)[∫

D exp
(
− c

2σ2
0
∥x− x∗∥2x∗

)]2
≤

(G.9)

1[∫
D exp(c · h)

]2 ∫
D
exp
(
− c

σ20
∥x− x∗∥2x∗ +

ψ

σ20︸︷︷︸
Use (#) in (G.12)

)(
1 + 2 exp(−γn/3)

)
µ̃0(S)︸ ︷︷ ︸
Use (∗)

≲

∫
D exp

(
− 1

2σ2
0

(
2c− e3r(1 + νβd−1)

)
∥x− x∗∥2x∗

) ∫
D exp

(
− 1

2σ2
0
e−3r(1 + ναd−1) ∥x− x∗∥2x∗

)
[∫
D exp(c · h)

]2
=

∫
D exp

((
2c− c e3r

)
h(x)

)
·
∫
D exp

(
c e3rh(x)

)
[∫
D exp(c · h)

]2
︸ ︷︷ ︸

=:A

∫
D exp

(
e−3r(1 + ναd−1)h(x)

)∫
D exp

(
c e3rh(x)

)︸ ︷︷ ︸
=:B

.

As for A, Lemma C.2 leads to

A ≤
( c2

(2c− c e3r) ce3r
)d

=
( 1

(2− e3r)e3r
)d

= (1 +O(r2))d = O(1) .

As for B, let c1 = e−3r (1 + ναd−1) and c2 = e3r (1 + νβd−1). With the change of variable
y = σ−1

0

√
cig(x

∗)1/2(x− x∗) for i ∈ [2], it follows that for ri := rσ−1
0

√
ci(≥ 3

√
d)

B =
(c2
c1

)d/2 ∫Br1
exp
(
−1

2∥y∥
2
)
dy∫

Br2
exp
(
−1

2∥y∥2
)
dy
≤
(c2
c1

)d/2
≲
(νβ + d

να+ d

)d
e3rd ≲

(νβ + d

να+ d

)d
.

Now we show closeness of two consecutive distributions in Phase 2, i.e., σ2i+1 = σ2i
(
1 + 1√

d

)
.

Proof of Lemma C.6. Observe that for ψ = f̄ + ϕ = ν
df + ϕ on K and F (σ2) =

∫
K exp(−ψ/σ2),

∥µi/µi+1∥ = Eµi
[ dµi
dµi+1

]
=

∫
K exp

(
−2 ψ

σ2
i
+ ψ

σ2
i+1

)
·
∫
K exp

(
− ψ
σ2
i+1

)
(∫

K exp
(
− ψ
σ2
i

))2 =
F
((

2
σ2
i
− 1

σ2
i+1

)−1)
F (σ2i+1)

F (σ2i )
2

.
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By Lemma C.2, the function adF
(
σ2

a

)
is log-concave in a. Using the definition with endpoints

2
σ2
i
− 1

σ2
i+1

and 1
σ2
i+1

, and the middle point 1
σ2
i

, we obtain

F
((

2
σ2
i
− 1

σ2
i+1

)−1)
F (σ2i+1)

F (σ2i )
2

≤

( (
1
σ2
i

)2(
2
σ2
i
− 1

σ2
i+1

)
1

σ2
i+1

)d
=

((
1 + 1√

d

)2
1 + 2√

d

)d
≤
(
1 +

1

d

)d
≤ e .

We now establish closeness in Phase 3, during which we use the update of σ2i+1 = σ2i
(
1 + σi√

ν

)
.

Proof of Lemma C.7. The update is σ2i+1 = σ2i (1 + r) for r = σi√
ν

. For s := r
1+r , σ := σi, and

F (σ2) =
∫
exp(−f − ϕ/σ2), we have

∥µi/µi+1∥ =
F
((

2
σ2
i
− 1

σ2
i+1

)−1)
F (σ2i+1)

F (σ2i )
2

=
F
(
σ2

1+s

)
F
(
σ2

1−s
)

F (σ2)2
.

Let g(t) := logF
(
σ2

t

)
for t > 0. Then,

log ∥µi/µi+1∥ = g(1 + s) + g(1− s)− 2g(1) =

∫ s

0

(
g′(1 + t)− g′(1− t)

)
dt =

∫ s

0

∫ 1+t

1−t
g′′(q) dq dt

(G.13)

and for a probability measure νq ∝ exp
(
−f − qϕ

σ2

)
,

g′′(q) =
d2

dq2

[
log

∫
K
exp
(
−f − qϕ

σ2

)]
= − 1

σ2
d

dq

[∫
K ϕ · exp

(
−f − qϕ

σ2

)
∫
K exp

(
−f − qϕ

σ2

) ]

= − 1

σ2

(
− 1

σ2

∫
K ϕ

2 · exp
(
−f − qϕ

σ2

)
∫
K exp

(
−f − qϕ

σ2

) +
1

σ2

[∫
K ϕ · exp

(
−f − qϕ

σ2

)]2
[∫
K exp

(
−f − qϕ

σ2

)]2
)

=
1

σ4

(
Eνq [ϕ2]− (Eνqϕ)2

)
=

1

σ4
Varνqϕ .

By the Brascamp-Lieb inequality with V (·) := f(·) + qϕ(·)
σ2 ,

Varνqϕ ≤ Eνq
[
(∇ϕ)T

(
∇2V

)−1∇ϕ
]
≤ σ2

q
Eνq∥∇ϕ∥2(∇2ϕ)−1 ≤

σ2ν

q
,

and thus g′′(q) ≤ ν
qσ2 . Putting this back to (G.13), we acquire

log ∥µi/µi+1∥ ≤
ν

σ2

∫ s

0

∫ 1+t

1−t

1

q
dq dt =

ν

σ2

∫ s

0

(
log(1 + t)− log(1− t)

)
dt
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=
ν

σ2
(
(1 + s) log(1 + s) + (1− s) log(1− s)

)
≲
νs2

σ2
. (G.14)

It follows from s = r
1+r and r = σ√

ν
that µi is an O(1)-warm start for µi+1.

For Phase 4, observe that for µ ∝ exp(−f − ϕ/σ2) with σ2 = ν,

∥µ/π∥ =

∫
K exp

(
−f − ϕ

σ2/2

)
·
∫
K exp(−f)[∫

K exp
(
−f − ϕ

σ2

)]2 =
(i)

lim
r→1

F
(
σ2

1+r

)
· F
(
σ2

1−r
)

F (σ2)

≤
(ii)

lim
r→1

exp
(
O(1) ν

σ2
(
(1 + r) log(1 + r) + (1− r) log(1− r)

))
= exp

(
O(1) ν

σ2

)
= exp(O(1)) .

where (i) holds due to the monotone convergence theorem, and (ii) follows from (G.14). Therefore,
µ serves as an O(1)-warm start for π.

G.3. Self-concordance theory (§D)

G.3.1. BASIC PROPERTIES: STRONG SELF-CONCORDANCE

We show that 2(g1 + g2) is SSC if g1 and g2 are SSC.

Proof of Lemma D.5. For fixed x ∈ K1 ∩K2 and h ∈ Rd, let Dgi := Dgi(x)[h] for i = 1, 2. Note
that

∥(g1 + g2)
− 1

2D(g1 + g2) (g1 + g2)
− 1

2 ∥F

≤
2∑
i=1

∥(g1 + g2)
− 1

2Dgi (g1 + g2)
− 1

2 ∥F =
2∑
i=1

√
Tr
(
(g1 + g2)−1Dgi (g1 + g2)−1Dgi

)
=
[
Tr
((
I + g

− 1
2

1 g2g
− 1

2
1︸ ︷︷ ︸

=:E1

)−1
g
− 1

2
1 Dg1 g

− 1
2

1︸ ︷︷ ︸
=:T1

(
I + g

− 1
2

1 g2g
− 1

2
1

)−1
g
− 1

2
1 Dg1 g

− 1
2

1

)]1/2
+
[
Tr
((
I + g

− 1
2

2 g1g
− 1

2
2︸ ︷︷ ︸

=:E2

)−1
g
− 1

2
2 Dg2 g

− 1
2

2︸ ︷︷ ︸
=:T2

(
I + g

− 1
2

2 g1g
− 1

2
2

)−1
g
− 1

2
2 Dg2 g

− 1
2

2

))]1/2

=
2∑
i=1

√
Tr(E−1

i TiE
−1
i Ti) ≤

2∑
i=1

√
Tr(TiE

−2
i Ti) ,

where we used the Cauchy-Schwarz inequality Tr(A2) ≤ Tr(ATA) in the last line. It follows from
I ⪯ Ei that I ⪯ E2

i and I ⪰ E−2
i ≻ 0. Therefore,

2∑
i=1

√
Tr(TiE

−2
i Ti) ≤

2∑
i=1

∥Ti∥F ≤ 2

2∑
i=1

∥h∥2gi(x) ≤ 2
√
2∥h∥(g1+g2)(x) .

Putting these together completes the proof.
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G.3.2. BASIC PROPERTIES: LOWER TRACE SELF-CONCORDANCE

We now show that if g is HSC, then dg is SLTSC.

Proof of Lemma D.13. We first consider when ḡ is positive definite on K. By HSC of ḡ, it holds
that −∥h∥2ḡ ḡ ≲ D2ḡ[h, h], and thus

−1

d
∥h∥2g (g′ + g)−

1
2 g (g′ + g)−

1
2 ≲ (g′ + g)−

1
2D2g[h, h] (g′ + g)−

1
2 .

Hence,

Tr
(
(g′ + g)−1D2g[h, h]

)
≳ −1

d
∥h∥2g Tr

(
(g′ + g)−

1
2 g (g′ + g)−

1
2

)
= −1

d
∥h∥2g Tr

(
g

1
2 (g′ + g)−1g

1
2
)

≥ −1

d
∥h∥2g Tr(g

1
2 g−1g

1
2 ) = −∥h∥2g .

When g is singular, we consider ḡε = ḡ+ ε
dI ∈ Sd++ for ε > 0. Then ḡε is HSC, so for gε = dḡε

Tr
(
(g′ + gε)

−1D2g[h, h]
)
≳ −∥h∥2gε .

From (g′ + gε)
−1 = 1

det(g′+gε)
adj(g′ + gε), the LHS is continuous in ε, and the RHS is too clearly.

Sending ε→ 0 completes the proof.

G.3.3. BASIC PROPERTIES: STRONGLY AVERAGE SELF-CONCORDANCE

To prove Lemma D.15, we first recall a concentration bound.

Lemma G.2 (Narayanan (2016), Lemma 4) Let h be drawn from Sd−1 uniformly at random. For
any odd k, Ck-smooth F : Rd → R, and ε > 0,

Ph
(
|DkF (x)[h⊗k]| > kε · sup

∥v∥≤1
DkF (x)[v⊗k]

)
≤ exp

(
−dε

2

2

)
.

We show that if g is HSC, then dg is SASC, using this lemma and following Narayanan (2016).

Proof of Lemma D.15. Let g = d∇2ϕ and consider g′ : int(K)→ Sd+ such that ḡ = g + g′ is PD.
For fixed w ∈ Rd, apply Taylor’s expansion to φ(z) := ∥w∥2g(z) at z = x, so there exists pw ∈ [x, z]

such that wTg(z)w = wTg(x)w +Dg(x)[z, w,w] + 1
2 D

2g(pw)[z, z, w,w]. Putting z = w here,

|∥z∥2g(z) − ∥z∥
2
g(x)| ≤ |D

3g(x)[z⊗3]|+ 1

2
|D2g(pz)[z

⊗4]| .

Going forward, we can assume that x = 0 and ḡ(x) = I due to affine invariance, and then z
equals rh/

√
d for h ∼ N (0, Id) in law. Using a standard tail bound on the standard Gaussian, we

have Ph(∥h∥ ≥ −
√
d · 2 log ε) ≤ ε. Call this event B1. In addition, Lemma G.2 implies that

P
(∣∣∣D3ϕ(x)

[ h⊗3

∥h∥3
]∣∣∣ ≥ 3

ε√
d
· sup
∥v∥≤1

D3ϕ(x)[v⊗3]
)
≤ ε ,
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and call this event B2. Conditioned on Bc
2,∣∣∣D3ϕ(x)

[ h⊗3

∥h∥3
]∣∣∣ ≤ 3ε√

d
sup
∥v∥≤1

D3ϕ(x)[v⊗3] ≤ 6ε√
d

sup
∥v∥≤1

∥v∥3g(x)/d ≤
6ε

d2
sup
∥v∥≤1

∥v∥3g(x) ≤︸︷︷︸
g(x)⪯Id

6ε

d2
.

Hence, conditioned on z ∈ Bc
1 ∩Bc

2

|D3g(x)[z⊗3]| = r3√
d
D3ϕ(x)[h⊗3] ≤ r3√

d

6ε

d2
∥h∥3 ≤ r2

d
· 48rε

(
log

1

ε

)3
.

By taking r1(ε) so that −48r1ε (log ε)3 ≤ ε, we can ensure |D3g(x)[z⊗3]| ≤ εr2/d for any
r ≤ r1(ε).

As for |D2g(pz)[z
⊗4]|, HSC of ϕ and Lemma D.4 lead to

1

2
|D2g(pz)[z

⊗4]| ≤ 3d ∥z∥4∇2ϕ(pz)
≤ 3

d
∥z∥4∇2ϕ(x) (1 + 2 ∥z∥2∇2ϕ(x))

2 =
3

d
∥z∥4g(x)

(
1 +

2

d
∥z∥2g(x)

)2
≤
g⪯Id

3

d
∥z∥4

(
1 +

2

d
∥z∥2

)2
=

3

d

r4

d2
∥h∥4

(
1 +

2r2

d2
∥h∥2

)2
≤ r2

d
· 3r2

(
2 log

1

ε

)4(
1 + 2r2

(
2 log

1

ε

)4)2
.

By taking r2(ε) and r3(ε) so that
(
1+ 2r22

(
2 log 1

ε

)4)2 ≤ 2 and 22 · 3r23
(
2 log 1

ε

)4 ≤ ε respectively,
it holds that on Bc

1 ∩Bc
2

1

2
|D2g(pz)[z

⊗4]| ≤ εr
2

d
for any r ≤ min ri(ε).

Putting all these together, it follows that |∥z∥2g(z) − ∥z∥
2
g(x)| ≤ 2εr2/d with probability at least

1− 2ε. By replacing 2ε← ε, the claim follows.

G.3.4. COLLAPSE AND EMBEDDING: WELL-DEFINEDNESS

We start with well-definedness of the notions of collapse and embedding (Definition D.16).

Proof of Proposition D.17. Let k := dim(W ), and U and V be matrices in Rd×k, where the columns
of each matrix form an orthonormal basis of W . Let us denote by g1 := UTgU and g2 := V TgV
matrices represented with respect to U and V , and define the invertible matrix M = V −1U ∈ Rk×k.
Since U and V are full-column rank, if g1 is PD, so is g2.

Suppose g is SSC along W . Then,

4∥h∥2g ≥ Tr(g−1
1 Dg1[h] g

−1
1 Dg1) = Tr

(
(UTgU)−1 · UTDg[h]U · (UTgU)−1 · UTDg[h]U

)
= Tr

(
(MTV TgVM)−1 ·MTV TDg[h]VM · (MTV TgVM)−1 ·MTV TDg[h]VM

)
= Tr

(
(V TgV )−1V TDg[h]V (V TgV )−1V TDg[h]V

)
= ∥g−

1
2

2 Dg2[h] g
− 1

2
2 ∥

2

F ,

and thus g2 also satisfies the definition.
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G.3.5. COLLAPSE AND EMBEDDING: AFFINE TRANSFORMATION

We begin with a barrier version.

Proof of Lemma D.18. For the first part, ψ is a ν-self-concordant barrier for K̄ by Nesterov
(2003, Theorem 4.2.3), so D1

ḡ(x) ⊂ K̄ ∩ (2x − K̄) for ḡ(·) := ∇2ψ(·) by Lemma D.7. Now let
z ∈ K̄ ∩ (2x− K̄). Then Tz ∈ K and T (2x− z) ∈ K, and the latter implies 2y − Tz ∈ K. Thus
Tz ∈ K ∩ (2y −K) and Tz ∈ D

√
ν̄

g (y). Due to

D2ψ(x)[(z − x)⊗2] = D2ϕ(y)[
(
A(z − x)

)⊗2
] = D2ϕ(y)[(Tz − y)⊗2] ≤ ν̄ ,

it follows that ψ is also ν̄-symmetric.
For the second part, observe that D4ψ(x)[v, v, h, h] = D4ϕ(y)[Av,Av,Ah,Ah] ≥ 0 for any

v, h ∈ Rd. The third part can be proven similarly.

Next is a matrix version.

Proof of Lemma D.19. Let ϕ be a ν-self-concordant function counterpart of g. Then ψ(x) := ϕ(Tx)
defined on int(K̄) is ν-self-concordant by Lemma D.18. For any h ∈ Rd and y := Tx, we have

Dḡ(x)[h] = ATDg(y)[Ah]A ⪯ 2∥Ah∥g(y)A
Tg(y)A = 2∥h∥ḡ(x) ḡ(x) .

Consider a sequence {xn} ⊂ K̄ converging to a boundary point x ∈ ∂K̄. If Tx /∈ ∂K,
then Tx ∈ int(K), and the continuity of T implies x is also in int(K̄). Thus, Tx ∈ ∂K and
ψ(xn) = ϕ(Txn)→ ϕ(Tx) =∞. Lastly,∇2ϕ ≍ g leads to∇2ψ = AT∇2ϕA ≍ ATgA = ḡ, and
ḡ is ν-self-concordant for K̄.

As for symmetry, since ḡ is self-concordant, D1
ḡ(x) ⊂ K̄ ∩ (2x − K̄) for x ∈ int(K̄) by

Lemma D.3. For z ∈ K̄ ∩ (2x− K̄), as Tz ∈ K ∩ (2Tx−K) holds, it follows that

ν̄ ≥ ∥Tz − Tx∥2g(y) = ∥z − y∥
2
ATg(y)A = ∥z − y∥2ḡ(x) ,

and thus ḡ is ν̄-symmetric.
As for the second item, we first show that ḡ is collapsed onto W = row(A) (i.e., ḡ = PW ḡPW

for the orthogonal projection PW onto W ). To see this, observe that

PW ḡPW = PWA
TgAPW = AT(AAT)†A ·ATgA ·AT(AAT)†A ,

and due to AAT(AAT)†A = AAT(AT)†A†A = AA†A = A, we have PW ḡPW = ATgA = ḡ.
We now show that ḡ is SSC along W . For k := dim(W ), take U ∈ Rd×k whose columns

form an orthonormal basis of W . It suffices to show that gW := UTḡU = UTATgAU =MTgM
for M := AU ∈ Rm×k is SSC. First of all, we can check PDness of gW as follows: Suppose
gW v = 0 for some v ∈ Rk. Then 0 = ∥v∥gW = ∥g1/2Mv∥2 and AUv = Mv = 0. Since
Uv ∈ row(A) ∩ ker(A) and U is full-rank, we have v = 0. Next, for h ∈ Rk and x ∈ int(K̄)

Tr
(
gW (x)−1DgW (x)[h] gW (x)−1DgW (x)[h]

)
= Tr

((
g

1
2M(MTgM)−1MTg

1
2 · g−

1
2Dg(Tx)[Ah] g−

1
2
)2)

≤
(i)
Tr
((
g−

1
2Dg(Tx)[Ah] g−

1
2
)2) ≤ ∥g− 1

2Dg(Tx)[Ah] g−
1
2 ∥

2

F ≤ 4∥Ah∥2g(Tx) = 4∥h∥2ḡ(x) ,
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where in (i) we used P (g
1
2M) = g

1
2M(MTgM)−1MTg

1
2 ⪯ I . Thus, ḡ is SSC alongW = row(A).

The third item immediately follows from D2ḡ(x)[h, h] = ATD2g(y)[Ah,Ah]A ⪰ 0 for any
h ∈ Rd.

As for the fourth item, for any PSD matrix function g′ on K̄ we have

Tr
(
(g′ + ḡ)−1D2ḡ[h, h]

)
= Tr

(
(g′ +ATgA)−1ATD2g[Ah,Ah]A

)
=Tr

(
(A−Tg′A−1 + g)−1D2g[Ah,Ah]

)
≥ −∥Ah∥2g = −∥h∥

2
ḡ .

The last item is straightforward to check by the change of variable.

G.3.6. COLLAPSE AND EMBEDDING: LIFTING UP SSC, SLTSC, AND SASC

In passing SSC to an augmented space, the Woodbury matrix identity is a main technical tool used:
for matrices with compatible sizes

(I + UV )−1 = I − U (I + V U)−1V .

Using this, we show that if g ∈ Sd++ is SSC, then ḡ + εIm is SSC.

Proof of Lemma D.21. Fix ε > 0, y ∈ int(K ′), and h ∈ Rm. Take a projection matrix P ∈
{0, 1}d×m such that PPT = Id and ḡ(y) = PTg(Py)P for x = Py ∈ int(K). Also for k :=
dim(W ), take a matrix U ∈ Rd×k whose columns form an orthonormal basis of W . Then ḡ(y) =
PTg(Py)P and g(x) = UgW (x)U , so for M := UTP ∈ Rk×m,

ḡ(y) = PTUgW (Py)UTP =MTgW (Py)M .

Note that MMT = Ik. Thus,

∥(ḡ(y) + εI)−
1
2D(ḡ + εI)(y)[h] (ḡ(y) + εI)−

1
2 ∥

2

F = Tr
((

(ḡ(y) + εI)−1Dḡ(y)[h]
)2)

=Tr
((
M(MTgW (x)M + εI)−1MT ·DgW (x)[Ph]

)2)
=
(i)

Tr
((

(gW (x) + εIk)
−1DgW (x)[Ph]

)2)
≤∥gW (x)−

1
2DgW (x)[Ph] gW (x)−

1
2 ∥

2

F ≤ 4∥Ph∥2g(x) = 4∥h∥2ḡ(y) ,

where in (i) we used the identity M
(
MTgW (x)M + εI

)−1
MT = (gW (x) + εIk)

−1. To see this,
we use the Woodbury matrix identity to get

(εIm +MTgWM)−1 =
1

ε
Im −

1

ε2
MTg

1
2
W

(
Ik +

1

ε
gW
)−1

g
1
2
WM ,

and thus conjugating both sides by M results in

M
(
MTgWM + εIm

)−1
MT =

1

ε
Ik −

1

ε
g

1
2
W (gW + εIk)

−1g
1
2
W =

1

ε
Ik −

1

ε
(gW + εIk)

−1gW .

Then, the identity follows from

(gW + εIk) ·
(1
ε
Ik −

1

ε
(gW + εIk)

−1gW
)
=

1

ε
(gW + εIk)−

1

ε
gW = Ik .

In extending SLTSC and SASC, we need two technical lemmas: the inverse of a block matrix
and connection between P(S)Dness and Schur complements.

70



THE INTERIOR-POINT METHOD FOR LOGCONCAVE SAMPLING

Lemma G.3 If D and its Schur complement A−BD−1C are invertible, then[
A B
C D

]−1

=

[
(A−BD−1C)−1 ∗

∗ ∗

]
.

Lemma G.4 (Schur complement) Let A ∈ Rd×d, B ∈ Rd×m, C ∈ Rm×m and define a matrix
M ∈ R(m+d)×(m+d) by

M =

[
A B
BT D

]
.

Then M ≻ 0 if and only if A ≻ 0 and C−BA−1BT ≻ 0 if and only C ≻ 0 and A−BTC−1B ≻ 0.

Using these, we show that if g is SLTSC and SASC, then ḡ is SLTSC and SASC.

Proof of Lemma D.22. Take a full row-rank projection matrix P ∈ {0, 1}d×m such that ḡ(y) =
PTg(Py)P , where the rows of P forms a subset of the canonical basis {e1, . . . , em}. We can
augment the rows of P with the rest of the canonical basis so that the augmented matrix P̄ ∈ Rm×m

is an orthonormal matrix. Then we can represent ḡ by

ḡ(y) = P̄T

[
g(Py) 0

0 0

]
P̄ .

Consider a PSD matrix function g′ : int(K ′)→ Sm+ such that g′ + ḡ is PD on K ′. Representing
them in the block form with gA ∈ Rd×d, gB ∈ Rd×(m−d), and gC ∈ R(m−d)×(m−d)

ḡ + g′ = P̄T

([
g 0
0 0

]
+

[
gA gB
gTB gC

])
P̄ = P̄T

[
g + gA gB
gTB gC

]
︸ ︷︷ ︸

=:g∗

P̄ .

Since g∗ is PD, gC and its Schur complement (g + gA)− gBg−1
C gTB are PD. Thus by Lemma G.3,[

g + gA gB
gTB gC

]−1

=

[
(g + gA − gBg−1

C gTB)
−1 ∗

∗ ∗

]
.

Hence,

Tr
(
(ḡ + g′)−1D2ḡ(y)[h, h]

)
= Tr

(
P̄T

[
g + gA gB
gTB gC

]−1

P̄ P̄T

[
D2g(Py)[Ph, Ph] 0

0 0

]
P̄

)

=Tr

([
g + gA gB
gTB gC

]−1 [
D2g(Py)[Ph, Ph] 0

0 0

])
= Tr

(
(g + gA − gBg−1

C gTB︸ ︷︷ ︸
⪰0

)−1D2g(Py)[Ph, Ph]
)

≥− ∥Ph∥2g(Py) = −∥h∥
2
ḡ(y) ,

where in the last inequality we used STLSC of g, since g′ ⪰ 0 ensures that its Schur complement
satisfies gA − gBg−1

C gTB ⪰ 0 by Lemma G.4.
For SASC, consider any PSD matrix function g′ : int(K ′)→ Sm+ . For x = Py and zx = Pzy ∈

Rd with zy ∼ N
(
y, r

2

m (ḡ + g)(y)−1
)
, we have

∥zy − y∥2ḡ(zy) − ∥zy − y∥
2
ḡ(y) = ∥zx − x∥

2
g(zx)

− ∥zx − x∥2g(x) .
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Also, zx − x = P (zy − y) is a Gaussian with zero mean and covariance

r2

m
P (ḡ + g′)(y)−1PT =

r2

m
PP̄T

([
g 0
0 0

]
+

[
gA gB
gTB gC

])−1

P̄ P̄T

=
r2

m

[
Id 0d×(m−d)

]([ g 0
0 0

]
+

[
gA gB
gTB gC

])−1 [
Id

0d×(m−d)

]
=
r2

m
(g + gA − gBg−1

C gTB)
−1 .

Since gA − gBg−1
C gTB ⪰ 0 due to g′ ⪰ 0, it holds that g0 := m−d

d g + m
d (gA − gBg

−1
C gTB) on int(K)

is PSD. Now, it suffices to check that the covariance matrix above is equal to r2

d (g + g0)
−1:

d

r2
(g + g0) =

d

r2

(
g +

m− d
d

g +
m

d
(gA − gBg−1

C gTB)
)m
r2

(g + gA − gBg−1
C gTB) .

G.3.7. DIRECT PRODUCT: SSC AND SLTSC

We show that if gi ∈ Sdi++ is SC, then g =
∑
diḡi is SSC.

Proof of Lemma D.25. Note that digi is SSC for i = 1, . . . ,m. For x ∈
∏
Ei and h =

(h1, . . . , hm) ∈ Rl with hi ∈ Rdi , we have

∥g(x)−
1
2Dg(x)[h] g(x)−

1
2 ∥

2

F

=

∥∥∥∥∥∥∥
 g1(x1)

− 1
2Dg1(x1)[h1] g1(x1)

− 1
2

. . .

gm(xm)
− 1

2Dgm(xm)[hm] gm(xm)
− 1

2


∥∥∥∥∥∥∥
2

F

=
∑
i

∥gi(xi)−
1
2Dgi(xi)[hi] gi(xi)

− 1
2 ∥

2

F ≤ 4
∑
i

∥hi∥2digi(xi) = 4∥h∥2g(x) .

Next, we show that if gi ∈ Sdi++ is HSC, then g =
∑
diḡi is SLTSC.

Proof of Lemma D.26. For h = (h1, . . . , hm) and any PSD matrix function g′, we have

Tr
(
(g′ + g)−1D2g[h⊗2]

)
=
∑
i

Tr
(
(g′ + (g − diḡi) + diḡi)

−1D2(diḡi)[h
⊗2]
)

≳ −
∑
i

∥h∥2diḡi = −∥h∥
2
g ,

where we used Lemma D.13 in the inequality.
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G.3.8. INVERSE IMAGES UNDER NON-LINEAR MAPPINGS

Proof of Lemma D.29. SinceA is (R(G), β), γ)-compatible with Γ, the first two claims immediately
follow from Nesterov and Nemirovskii (1994, Proposition 5.1.7). Let x ∈ G+ and h ∈ Rd. Define
the following notations:

u = DA(x)[h], v = D2A(x)[h⊗2], w = D3A(x)[h⊗3], z = D4A(x)[h⊗4],

s =
√
DF (y)[v], ρ =

√
D2Π(x)[h⊗2], r =

√
D2F (y)[u⊗2] .

From direct computations, we have

D2Ψ(x)[h⊗2] = DF (y)[v] + D2F (y)[u⊗2] + δ2D2Π(x)[h⊗2] = s2 + r2 + δ2ρ2 ,

D3Ψ(x)[h⊗3] = DF (y)[w] + 3D2F (y)[u, v] + D3F (y)[u⊗3] + δ2D3Π(x)[h⊗3] ,

D4Ψ(x)[h⊗4] = D2F (y)[w, u] + DF (y)[z] + 3D3F (y)[u, u, v] + 3D2F (y)[v⊗2]

+ 3D2F (y)[u,w] + D4F (y)[u⊗4] + 3D3F (y)[u, u, v] + δ2D4Π(x)[h⊗4]

= DF (y)[z] + 3D2F (y)[v⊗2] + 4D2F (y)[u,w]

+ 6D3F (y)[u, u, v] + D4F (y)[u⊗4] + δ2D4Π(x)[h⊗4] .

HSC of F and Π implies that

|D4Π(x)[h⊗4]| ≤ 6ρ4 , and |D4F (y)[u⊗4]| ≤ 6r4 .

Since A is (K,β, γ)-compatible and K ⊂ R(G), Lemma D.28-1 implies concavity of A with
respect to R(G), which means −v ≥R(G) 0. Then, Nesterov and Nemirovskii (1994, Corollary
2.3.1) ensures √

D2F (y)[v⊗2] ≤ DF (y)[v] = s2 .

Hence, |3D2F (y)[v, v]| ≤ 3(DF (y)[v])2 = 3s4, and self-concordance of F results in

|6D3F (y)[u, u, v]| ≤ 12r2
√
D2F (y)[v, v] ≤ 12r2s2 .

Since {h : hTΠ(x)h ≤ 1} is contained in Γ ∩ (2x− Γ), compatibility of A leads to

βD2A(x)
[( h

∥h∥Π(x)

)⊗2]
≤K D3A(x)

[( h

∥h∥Π(x)

)⊗3]
≤K −βD2A(x)

[( h

∥h∥Π(x)

)⊗2]
,

and thus βρv ≤K w ≤K −βρv. As K is a ray, D2F (y)[w,w] ≤ β2ρ2D2F (y)[v, v] ≤ β2ρ2s4.
Thus,

|4D2F (y)[u,w]| ≤ 4
√

D2F (y)[u, u]
√

D2F (y)[w,w] ≤ 4rβρs2 .

Lastly, since γvρ2 ≤K z ≤K −γvρ2 and K is a ray, we have

|DF (y)[z]| ≤ 3γρ2|DF (y)[v]| = 3γρ2s2 .

Putting these together,

|D4Ψ(x)[h⊗4]| ≤ 3γρ2s2 + 4rβρs2 + 12r2s2 + 3s4 + 6δ2ρ4 + 6r4

≤ 6(δ2ρ4 + r4 + s4 + r2s2 + δρ2s2 + δrρs2)

≤ 6
(
(δρ)4 + r4 + s4 + r2s2 + (δρ)2s2 + r2s2 + (δρ)2s2

)
≤ 6
(
(δρ)2 + r2 + s2

)2
= 6
(
D2Ψ(x)[h, h]

)2
.
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G.4. Main constraints and epigraphs (§E)

G.4.1. LINEAR CONSTRAINTS: STRONG SELF-CONCORDANCE AND SYMMETRY

We relate SSC and symmetry to well-studied terms in the field of optimization, such as maxi
[σ(

√
DxAx)]i

[Dx]ii

and ∥D′
x,h∥

2

D−1
x

.

Proof of Lemma E.4. Let us write g(x) = AT
xDxAx = ATVxA for Vx := S−1

x DxS
−1
x . By

Claim I.1,

Dg(x)[h] = AT(−2S−1
x Sx,hS

−1
x Dx + S−1

x DDx[h]S
−1
x )A = ATV 1/2

x DxV
1/2
x A , (G.15)

where Dx := −2Sx,h +D−1
x DDx[h]. Using this,

∥(g′ + g)−
1
2Dg[h] (g′ + g)−

1
2 ∥

2

F = Tr
(
(g′ + g)−1ATV 1/2

x Dx V
1/2
x A(g′ + g)−1ATV 1/2

x︸ ︷︷ ︸
=:P ′

x

DxV
1/2
x A

)
= Tr(P ′

xDxP
′
xDx) .

By Lemma J.1, we have P ′
x ⪯ Px = P (V

1/2
x A) = P (D

1/2
x Ax), and thus

Tr(P ′
xDxP

′
xDx) ≤ Tr(PxDxPxDx) =

(i)
diag(Dx)

TP (2)
x diag(Dx) ≤

(ii)
diag(Dx)

TΣx diag(Dx)

≤
(iii)

4
m∑
i=1

[σ(D1/2
x Ax)]i

(
(Axh)

2
i + (D−1

x DDx[h])
2
i

)
≤ 4max

i

[σ(D
1/2
x Ax)]i

[Dx]ii
·
m∑
i=1

[Dx]ii
(
(Axh)

2
i + (D−1

x DDx[h])
2
i

)
=
(iv)

4max
i

[σ(D
1/2
x Ax)]i

[Dx]ii
·
(
∥h∥2g(x) +

m∑
i=1

[D−1
x ]ii(DDx[h])

2
i

)
,

where (i) holds due to xT(A ◦B)y = Tr
(
Diag(x)ADiag(y)BT

)
(Lemma H.2), (ii) follows from

P
(2)
x ⪯ Σx (Claim I.3)7, (iii) uses (a + b)2 ≤ 2

(
a2 + b2

)
for a, b ∈ R and Σx = Diag(Px) =

σ(D
1/2
x Ax), and (iv) holds due to

∑m
i=1[Dx]ii (Axh)

2
i = hTAT

xDxAxh = hTg(x)h.
As for the second claim,

max
h:∥h∥g(x)=1

∥Axh∥∞ = max
h

max
i∈[m]

∣∣∣∣aTi hsi
∣∣∣∣ = max

i∈[m]
max

u:∥u∥2=1

∣∣∣∣∣aTi g(x)−1/2u

si

∣∣∣∣∣
=max
i∈[m]

∥∥∥∥g(x)−1/2ai
si

∥∥∥∥
2

= max
i∈[m]

√
1

s2i
aTi g(x)

−1ai =
√

max
i∈[m]

eTi Axg(x)
−1AT

xei =

√
max
i∈[m]

[σ(D
1/2
x Ax)]i

[Dx]ii
.

As for the last claim, for h ∈ Rd such that ∥Axh∥∞ ≤ 1 (i.e., h ∈ K ∩ (2x − K) for
K = {Ax ≥ b} due to Lemma D.9) we have

hTg(x)h = hTAT
xDxAxh =

m∑
i=1

(Dx)ii(Axh)
2
i ≤ ∥Axh∥

2
∞

m∑
i=1

(Dx)ii ≤ Tr(Dx) .

7. Even though this lemma is proven for leverage scores, the proof there can be extended to any orthogonal projection
matrices.
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Now we establish SSC and compute the symmetry parameters of metrics of the form AT
xDxAx:

Proof of Lemma E.5. Logarithmic barrier: To show that g is SSC along row(A), consider a
self-concordant matrix g(y) = S−2

y = −∇2
y(
∑m

i=1 log yi) defined on {y ∈ Rm : y ≥ 0}. By putting
Dx = Im and Ax = S−1

x into Lemma E.4-1, since σ(Ax) ≤ 1

∥g(x)−
1
2Dg(x)[h] g(x)−

1
2 ∥F ≤ 2

(
max
i∈[m]

σ(Ax)i

)1/2
∥h∥g(x) ≤ 2∥h∥g(x) .

Through the linear map Tx = Ax − b = y, we recover g(x) = ∇2ϕlog(x) = ATS−2
y A = AT

xAx,
which is SSC along row(A) by Lemma D.19. For the ν̄-symmetry, the first part (i.e., D1

g(x) ⊂
K ∩ (2x −K)) follows from Lemma D.7. The second part is immediate from ν̄ = Tr(Im) = m
and Lemma E.4-3.

Approximate volumetric barrier: For Dx = Σx = Σ(Ax), by Lemma I.5-1 and 3 with p = 2,

max
i

[σ(D
1/2
x Ax)]i

[Dx]ii
≤ 2
√
m, and

m∑
i=1

[D−1
x ]ii (DDx[h])

2
i = ∥Σ−1

x diag(DΣx[h])∥
2
Σx
≤ 4∥h∥2g(x) .

Using Lemma E.4-1,

∥g(x)−
1
2Dg(x)[h] g(x)−

1
2 ∥

2

F ≤ 4max
i

[σ(D
1/2
x Ax)]i

[Dx]ii

(
∥h∥2g(x) +

m∑
i=1

[D−1
x ]ii(DDx[h])

2
i

)
≤ 40

√
m∥h∥2g(x) .

For the ν̄-symmetry, ∥Ax(y − x)∥2∞ ≤ maxi∈[m]
[σ(D

1/2
x Ax)]i

[Dx]ii
≤ 2m1/2 for y ∈ D1

g(x) by Lemma E.4-

2. Also, Lemma E.4-3 implies that y with ∥Ax(y − x)∥∞ ≤ 1 is contained in D
√

Tr(Dx)
g (x), where

Tr(Dx) = Tr(Px) ≤ d. Therefore, g̃(x) := 40
√
mg(x) = 40

√
mAT

xΣxAx is SSC with the
symmetry parameter ν̄ = O(

√
md).

Vaidya metric: Consider the metric without scaling: g(x) := AT
xDxAx with Dx = Σx +

d
mIm.

Then, using Anstreicher (1997, (4.5)) in (i) below

max
i

[σ(D
1/2
x Ax)]i

[Dx]ii
=

Lemma E.4-2

(
max
h∈Rd

∥Axh∥∞
∥h∥g(x)

)2
≤
(i)

√
m

d
, (G.16)

m∑
i=1

[D−1
x ]ii (DDx[h])

2
i ≤

(ii)

m∑
i=1

[Σ−1
x ]ii(DΣx[h])

2
i ≤

Lemma I.5-3
4hTAT

xΣxAxh ≤ 4∥h∥2g(x) .

Putting these back to Lemma E.4-1,

∥g(x)−
1
2Dg(x)[h] g(x)−

1
2 ∥

2

F ≤ 4max
i

[σ(D
1/2
x Ax)]i

[Dx]ii

(
∥h∥2g(x) +

m∑
i=1

[D−1
x ]ii(DDx[h])

2
i

)
≤ 20

√
m

d
∥h∥2g(x) .

Thus, g̃(x) := 22
√

m
d g(x) = 22

√
m
d A

T
x

(
Σx+

d
mIm

)
Ax is SSC. For the ν̄-symmetry, Lemma E.4-2

implies that for y ∈ D1
g(x),

∥Ax(y − x)∥2∞ ≤ max
i

[σ(D
1/2
x Ax)]i

[Dx]ii
≤

(G.16)

√
m

d
.
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Also, Lemma E.4-3 implies that y with ∥Ax(y − x)∥∞ ≤ 1 is contained in D
√

Tr(Dx)
g (x), where

Tr(Dx) = Tr
(
Σx +

d

m
Im
)
= Tr(Σx) + d ≤ 2d .

Therefore, g̃(x) satisfies D1
g̃(x) ⊂ K ∩ (2x−K) ⊂ D

√
44(md)1/2

g̃ (x), so g̃ is O(
√
md)-symmetric.

Lewis-weight metric: Consider the unscaled version first: g(x) = AT
xWxAx. By Lemma E.4-1

∥g(x)−
1
2Dg(x)[h] g(x)−

1
2 ∥

2

F ≤ 4max
i

[σ(W
1/2
x Ax)]i

[Wx]ii

(
∥h∥2g(x) +

m∑
i=1

[W−1
x ]ii(DWx[h])

2
i

)
≤
(i)

8m
2

p+2
(
∥h∥2g(x) + p2 ∥h∥2g(x)

)
≤
(
8m

2
p+2 (1 + p2)

)
∥h∥2g(x) ,

where in (i) we used Lemma I.5-1 and 3.
For the first part of the ν̄-symmetry, Lemma E.4-2 implies that

max
h:∥h∥g(x)=1

∥Axh∥∞ =

√
max
i

[σ(W
1/2
x Ax)]i

[Wx]ii
≤
√
2m

2
p+2 ,

and Lemma E.4-3 leads to K ∩ (2x−K) ⊂ D
√
d

g (x) due to

Tr(Wx) = Tr
(
W

1
2
− 1

p
x Ax(A

T
xW

1− 2
p

x Ax)
−1AT

xW
1
2
− 1

p
x

)
= Tr

(
AT
xW

1− 2
p

x Ax(A
T
xW

1− 2
p

x Ax)
−1
)
= d .

Therefore, 16p2m
2

p+2AT
xWxAx is SSC with O

(
dm

2
p+2
)
-symmetry by Lemma D.9. By setting

p = O(logm), the claim follows.

G.4.2. LINEAR CONSTRAINTS: STRONGLY LOWER TRACE SELF-CONCORDANCE OF VAIDYA

Let θ1(x) := AT
xΣxAx, θ2(x) := AT

xAx, and Γx := Diag
(
Axg(x)

−1AT
x

)
. Recall g = g1 + g2 for a

PSD matrix function g1 and the Vaidya metric g2.

Lemma G.5 ∥Γx∥∞ ≤
1
44 .

Proof For g2 := θ1 +
d
mθ2 =

1
44

√
d
mg2, it follows from g−1 ⪯ g−1

2 = 1
44

√
d
mg

−1
2 that

44∥Γx∥∞ ≤ 4

√
d

m
∥Diag(Axg

−1
2 AT

x )∥∞ =

√
d

m
max
i∈[m]

[
σ
(√

Σx +
d
mImAx

)]
i[

Σx +
d
mIm

]
ii

≤
(G.16)

1 .

Now we show SLTSC of the Vaidya metric:

Proof of Lemma E.6. As D2θ2(x)[h, h] ⪰ 0 by Claim I.1, we have

Tr
(
g−1D2θ2(x)[h, h]

)
= Tr

(
g−

1
2D2θ2(x)[h, h]g

− 1
2
)
≥ 0 .
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As for θ1, by Lemma I.4-6, D2θ1[h, h] ⪰ −16AT
x Diag(Sx,hPxSx,hPx)Ax−6AT

x Diag(PxS
2
x,hPx)Ax,

so
Tr
(
g−1D2θ1(x)[h, h]

)
≥ −16Tr(ΓxSx,hPxSx,hPx)− 6Tr(ΓxPxS

2
x,hPx) .

We first note that Tr(Sx,hPxSx,h) = sTx,h(Px ◦ I)sx,h = sTx,hΣxsx,h = ∥h∥2θ1 . Using this,

Tr(ΓxSx,hPxSx,hPx) = Tr(Γ1/2
x Sx,hPx · Sx,hPxΓ1/2

x ) ≤
√
Tr(Γ

1
2
xSx,hP 2

xSx,hΓ
1
2
x ) Tr(Γ

1
2
xPxS2

x,hPxΓ
1
2
x )

=
√
Tr(PxSx,hΓxSx,hPx)

√
Tr(Sx,hPxΓxPxSx,h) = ∥Γx∥∞∥h∥

2
θ1
,

Tr(ΓxPxS
2
x,hPx) = Tr(Sx,hPxΓxPxSx,h) ≤ ∥Γx∥∞Tr(Sx,hPxSx,h) =

(i)
∥Γx∥∞∥h∥

2
θ1
.

Putting these together and using Lemma G.5,

Tr
(
g−1D2θ1(x)[h, h]

)
≥ −22∥Γx∥∞∥h∥

2
θ1
≥ −1

2
∥h∥2θ1 ,

and it follows from g2 = 44
√

m
d

(
θ1 +

d
mθ2

)
that Tr

(
g−1D2g2(x)[h, h]

)
≥ −1

2 ∥h∥
2
g2

.

G.4.3. LINEAR CONSTRAINTS: STRONGLY LOWER TRACE SELF-CONCORDANCE OF

LEWIS-WEIGHT

For θ(x) := AT
xWxAx (i.e., the unscaled version of g2), we write g2 = c · θ for a constant c, which

will be set to c1(logm)c2
√
d for some constants c1, c2 > 0 later. Going forward, Px indicates the

projection matrix of W
1/2−1/p
x Ax (i.e., Px = P (W

1/2−1/p
x Ax)).

Lemma G.6 ∥Γx∥∞ ≤ 2c−1m
2

p+2 .

Proof Note that 0 ⪯ Γx = Diag(Axg
−1AT

x ) ⪯ c−1Diag(Axθ
−1AT

x ). By Lemma I.5-1,

∥Diag(Axθ
−1AT

x )∥∞ = max
i∈[m]

[
σ
(
W

1/2
x Ax

)]
i[

Wx

]
ii

≤ 2m
2

p+2 .

Now we show SLTSC of the Lewis-weight metric:

Proof of Lemma E.7. From (I.5), D2θ[h, h] ⪰ −4AT
xW

′
x,hSx,hAx +AT

xW
′′
x,hAx. Thus,

Tr(g−1D2θ[h, h]) ≥ Tr
(
Γx(W

′′
x,h − 4W ′

x,hSx,h)
)
= −4Tr(ΓxW ′

x,hSx,h) + Tr(ΓxW
′′
x,h) .

As for the first term, Tr(ΓxW ′
x,hSx,h) ≤ p ∥Γx∥∞∥h∥

2
θ follows from (I.7) with Γx replacing s2x,h.

As for the second term Tr(ΓxW
′′
x,h) (i.e., (I.4) with Γ = Γx), each term there is of the form

Tr(ΓxDiag(v)) for v ∈ Rm, which can be bounded as follows:

∣∣Tr(ΓxDiag(v)
)∣∣ = |Tr(ΓxW 1

2
x W

− 1
2

x Diag(v))| ≤
√

Tr(W
1
2
x Γ2

xW
1
2
x )
√
Tr
(
Diag(v)W−1

x Diag(v)
)

≤ ∥Γx∥∞
√
Tr(Wx)∥v∥W−1

x
=
√
d∥Γx∥∞∥v∥W−1

x
.
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Then, we obtain |Tr(ΓxW ′′
x,h)| ≲

√
d∥Γx∥∞∥h∥

2
θ for p = O(logm) by using this inequality

together with the norm bounds in Lemma I.7.
Putting things together, we conclude that

Tr(g−1D2θ[h, h]) ≳ −p∥Γx∥∞∥h∥
2
θ −
√
d∥Γx∥∞∥h∥

2
θ ≳ −c

−1
√
d∥h∥2θ ,

where the last line follows from Lemma G.6. Therefore, there exists positive constants d1 and d2
such that Tr(g−1D2θ[h, h]) ≥ −c−1d1(logm)d2

√
d∥h∥2θ, which implies

Tr(g−1D2g2[h, h]) ≥ −c−1d1(logm)d2
√
d∥h∥2g2 .

By taking c = d1(logm)d2
√
d, the metric g2 = cθ = d1(logm)d2

√
dAT

xWxAx is SLTSC.

G.4.4. LINEAR CONSTRAINTS: STRONGLY AVERAGE SELF-CONCORDANCE

We proceed with a general form of the metric g(x) = AT
xDxAx with a diagonal matrix 0 ≺ Dx ∈

Rm. Then we provide computational lemmas used when proving SASC of barriers for the linear
constraints.

We pick any g′ : int(K)→ Sd+ such that ḡ := g + g′ ≻ 0. By affine invariance, we may assume
ḡ(x) = I and x = 0. Note that g(x) ⪯ Id, and z equals rh/

√
d for h ∼ N (0, Id) in law. Applying

Taylor’s expansion to ∥z − x∥2g(z) at z = x (as in the proof of Lemma D.15), for some pz ∈ [x, z]

∣∣∥z − x∥2g(z) − ∥z − x∥2g(x)∣∣ ≤ r2

d

( r√
d
|Dg(x)[h⊗3]|︸ ︷︷ ︸

=:A

+
r2

2d
|D2g(pz)[h

⊗4]|︸ ︷︷ ︸
=:B

)
.

It suffices to show that |Dg(x)[h⊗3]| = O(d1/2) and |D2g(pz)[h
⊗4]| = O(d) with high probability.

Term A. By (G.15), we have Dg(x)[h⊗3] = −2sTx,hDxSx,hsx,h + sTx,hD
′
x,hsx,h. Let ai denote the

i-th row of Ax for i ∈ [m], and define two polynomials in h as follows:

P1(h) := sTx,hDxSx,hsx,h = Tr(DxS
3
x,h) =

m∑
i=1

di (a
T
i h)

3 , and P2(h) := sTx,hD
′
x,hsx,h .

(G.17)
By Lemma J.1, D1/2

x AxA
T
xD

1/2
x ⪯ P (D1/2

x Ax) and thus

max
i∈[m]

∥ai∥2 = ∥Diag(AxA
T
x )∥∞ ≤ max

i

[σ(D
1/2
x Ax)]i

[Dx]ii
. (G.18)

By Lemma J.3,

E[P1(h)
2] = E

[{ m∑
i=1

di(ai · h)3
}2]

= 9
m∑

i,j=1

∥d1/3i ai∥
2
∥d1/3j aj∥

2
⟨d1/3i ai, d

1/3
j aj⟩+ 6

∑
i,j

⟨d1/3i ai, d
1/3
j aj⟩3

= 9 · 1TDiag(AxA
T
x )D

1/2
x D1/2

x AxA
T
xD

1/2
x︸ ︷︷ ︸

⪯P (D
1/2
x Ax)⪯Im

D1/2
x Diag(AxA

T
x ) 1 + 6

∑
i,j

didj(ai · aj)3
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≲ ∥Diag(AxA
T
x )∥∞ Tr

(
Diag(AxA

T
x )Dx

)
+max

i
∥ai∥2 ·

∑
i,j

didj(ai · aj)2

= max
i
∥ai∥2 Tr(AT

xDxAx) + max
i
∥ai∥2 ·

∑
j

Tr(dja
T
j A

T
xDxAxaj)

≤
(i)

2max
i
∥ai∥2 Tr(AT

xDxAx) ≤ 2d max
i
∥ai∥2 , (G.19)

where (i) follows fromAT
xDxAx ⪯ Id and

∑
j Tr(dja

T
j A

T
xDxAxaj) ≤

∑
j Tr(dja

T
j aj) = Tr(AT

xDxAx).
Another polynomial P2(h) requires a different strategy for bounding E[P2(h)

2] for each barrier.
This polynomial vanishes for the log-barrier, while the Vaidya and Lewis-weight metrics requires
rather involved tasks for bounding E[P2(h)

2].

Term B. Due to (I.6) (with Wx replaced by Dx), |D2g(pz)[h
⊗4]| consists of three polynomials:

P̄3(h) := Tr(DpzS
4
pz ,h) , P̄4(h) = Tr(D′

pz ,hS
2
pz ,h) , P̄5(h) = Tr(D′′

pz ,hS
2
pz ,h) . (G.20)

For each i = 3, 4, 5, we define Pi(h) by P̄i(h) with pz replaced by x. For the log-barrier, P̄3(h) only
matters since D(·) = Im. For the Vaidya metric, P̄4(h) and P̄5(h) can be bounded by multiples of
P̄3(h). For the Lewis-weight metric, each P̄i requires a different procedure for bounding E[P̄i(h)2].
Moreover, we can show P̄i(h) ≲ Pi(h) and

E[P3(h)
2] =

∑
i,j∈[m]

E[didj (ai · h)4(aj · h)4] ≤
CS

∑
i,j

didj
√

E[(ai · h)8]
√
E[(aj · h)8]

≲
(i)

(∑
i

di∥ai∥4
)2
≤ max

i
∥ai∥4

(∑
i

di∥ai∥2
)2
≤
(ii)
d2max

i
∥ai∥4 , (G.21)

where we used ai · h ∼ N (0, ∥ai∥2) in (i), and
∑

i di∥ai∥
2 = Tr(AT

xDxAx) ≤ Tr(Id) in (ii).
We now show SASC of the three barriers for linear constraints, using this proof outline.

SASC of log-barriers (Lemma E.10). Set g(x) = AT
xAx (with Dx = Im). By (G.18),

max
i∈[m]

∥ai∥2 ≤ max[σ(A1/2
x )]i ≤ 1 .

As for the term A, it suffices to bound P1(h) = Tr(S3
x,h). Since E[P1(h)

2] ≲ d by (G.19),

by Lemma E.8 with t = (2e)3/2 ∨
(
2e
3 log 2

ε

)3/2 and r1(ε) := ε(2
√
60t)−1, we have that for any

r ≤ r1(ε),
Event B1 : Ph

( r√
d
|P1(h)| ≥ ε

)
≤ ε .

As for the term B, recall Pz
(
∥z∥ ≥ −r · 2 log ε

)
≤ ε and call this event B2. We take r2(ε) so

that 1− 2r2 log ε ≤ 1.1, which ensures ∥z∥ ≤ 2r conditioned on Bc
2 for r ≤ r2. Next, we establish

coordinate-wise closeness of sx at close-by points. Let xt = x + tr√
d
h, and st = Axt − b. For

t ∈ [0, 1], ∥∥∥∥S−1
0

dst
dt

∥∥∥∥
∞

=
r√
d
∥Axh∥∞ ≤

r√
d
∥h∥g(x) ≤

r√
d
∥h∥ = ∥z∥ ,
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and conditioned on z ∈ Bc
2 we know ∥z∥ ≤ 2r log 1

ε ≤ 0.1 for r ≤ r2. Hence,

max
i∈[m]

∣∣∣sp,i − sx,i
sx,i

∣∣∣ ≤ ∫ 1

0

∥∥∥∥S−1
0

dst
dt

∥∥∥∥
∞

dt ≤ 0.1 ,

and thus 1.2 ≥ sx,i/sp,i ≥ 0.9 for all i ∈ [m] (i.e., S−1
p ⪯ 1.2S−1

x ).
Using this, we bound P̄3(h) = Tr(S4

p,h) by a multiple of P3(h) = Tr(S4
x,h) as follows:

Tr(S4
p,h) = Tr(hTATSp,hS

−2
p Sp,hAh) ≤ 2Tr(hTATSp,hS

−2
x Sp,hAh) = 2Tr(S2

x,hS
2
p,h) ≤ 4Tr(S4

x,h) .

Hence, E[P̄3(h)
2] ≲ E[P3(h)

2] ≲ d2 by (G.21). Using Lemma E.8 with t = (2e)2 ∨
(
2e
4 log 2

ε

)3/2
and taking r3(ε) := (ε/c1t)1/2, we obtain

Event B3 : P
( r2
2d
· 16P̄3(h) ≥ ε

)
≥ ε ,

Combining bounds on A and B conditioned on ∩iBc
i , we have with probability at least 1− 3ε

∣∣∥z − x∥2g(z) − ∥z − x∥2g(x)∣∣ ≤ 2ε
r2

d
for any r ≤ min

i
ri(ε) .

By replacing 3ε← ε, the claim follows.

SASC of Vaidya metric (Lemma E.11). Set g(x) = AT
xDxAx with Dx =

√
m
d (Σx +

d
mIm). By

(G.18) and (G.16),

max
i∈[m]

∥ai∥2 ≤ max
i

[σ(D
1/2
x Ax)]i

[Dx]ii
≤ 1 .

Term A. As A consists of P1 and P2 (see (G.17)), we show E[Pi(h)2] ≲ d for i ∈ [2], which by
Lemma E.8 implies |A| ≤

√
d w.h.p. As for P1(h) = Tr(DxS

3
x,h), we have E[P1(h)]

2 ≲ d from
(G.19).

As for P2(h) = Tr(D′
x,hS

2
x,h), our approach is similar to Chen et al. (2018). By Lemma I.4,

|P2(h)| =
∣∣∣√m

d
Tr
(
Diag

(
(Σx − P (2)

x ) sx,h
)
S2
x,h

)∣∣∣
≤ |P1(h)|+ |Tr(S3

x,h)|+
√
m

d

∣∣Tr(Diag(P (2)
x sx,h)S

2
x,h

)∣∣ .
Since we already established a high-probability bound for both |P1(h)| and |Tr(S3

x,h)| (which is
P1(h) for the log-barrier), we focus on the third term in the RHS.

For σx := diag (Px) and σx,i,j := (Px)ij , it follows from P 2
x = Px that σx,i =

∑
j σ

2
x,i,j .

Hence,

Tr(ΣxS
3
x,h) = 1TΣxs

3
x,h =

∑
i

(sx,h)
3
iσx,i =

m∑
i,j=1

σ2x,i,j(sx,h)
3
i ,

Tr
(
Diag(P (2)

x sx,h)S
2
x,h

)
=

m∑
i,j=1

σ2x,i,j(sx,h)
2
i (sx,h)j =

symmetry

m∑
i,j=1

σ2x,i,j(sx,h)
2
j (sx,h)i .
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Combining these leads to

2 Tr(ΣxS
3
x,h) + 6 Tr

(
Diag(P (2)

x sx,h)S
2
x,h

)
=

m∑
i,j=1

σ2x,i,j
(
(sx,h)

3
i + 3(sx,h)

2
i (sx,h)j + 3(sx,h)i(sx,h)

2
j + (sx,h)

3
j

)
=

m∑
i,j=1

σ2x,i,j
(
(sx,h)i + (sx,h)j

)3
,

so we handle
∑

i,j σ
2
x,i,j

(
(sx,h)i + (sx,h)j

)3 instead of Tr
(
Diag(P

(2)
x sx,h)S

2
x,h

)
, as we already

bounded
√

m
d Tr(ΣxS

3
x,h) = P1(h)−

√
d
m Tr(S3

x,h). Due to (sx,h)i + (sx,h)j = (ai + aj)
Th, for

cij := ai + aj

E
[{ ∑

i,j∈[m]

σ2x,i,j
(
(sx,h)i + (sx,h)j

)3}2]
=
∑
i,j,k,l

σ2x,i,jσ
2
x,k,lE[(cij · h)3(ckl · h)3]

=
Lemma J.3

9
∑
i,j,k,l

σ2x,i,jσ
2
x,k,l∥cij∥

2∥ckl∥2(cij · ckl) + 6
∑
i,j,k,l

σ2x,i,jσ
2
x,k,l(cij · ckl)3 . (G.22)

As for the first term in (G.22), we denote zi :=
∑

j σ
2
x,i,j∥cij∥2 and Z := Diag

(
(zi)i∈[m]

)
.

Then,∑
i,j,k,l

σ2x,i,jσ
2
x,k,l∥cij∥

2∥ckl∥2(cij · ckl) =
∥∥∥∑
ij

σ2x,i,j∥cij∥
2cij

∥∥∥2
≤ 2
∥∥∥∑
ij

σ2x,i,j∥cij∥
2ai

∥∥∥2 + 2
∥∥∥∑
ij

σ2x,i,j∥cij∥
2aj

∥∥∥2 = 4
∥∥∥∑
ij

σ2x,i,j∥cij∥
2ai

∥∥∥2 = ∥∥∥∑
i

ziai

∥∥∥2
= 1TZAxA

T
xZ 1 ≤ 1TZD−1/2

x P (D1/2
x Ax)D

−1/2
x Z 1 ≤ 1TZD−1

x Z 1 ≲

√
d

m
Tr(Z) , (G.23)

where the last inequality follows from Z ≾ Σx ⪯
√

d
mDx due to

zi ≤ 2
∑
j

σ2x,i,j(∥ai∥2 + ∥aj∥2) ≲ σx,i∥ai∥2 +
∑
j

σ2x,i,j∥aj∥2︸ ︷︷ ︸
=:Ki

≤ σx,i∥ai∥2 + σx,i ≲ σx,i .

Moreover, using the bound in Ki and
∑

i,j σ
2
x,i,j∥aj∥2 =

∑
j σx,i∥ai∥

2

Tr(Z) ≲
∑
i

(σx,i∥ai∥2 +
∑
j

σ2x,i,j∥aj∥2) = 2Tr(AT
xΣxAx) ≲

√
d

m
Tr(AT

xDxAx) ≤ d
√
d

m
.

Putting this into (G.23), we obtain
∑

i,j,k,l σ
2
x,i,jσ

2
x,k,l∥cij∥

2∥ckl∥2(cij · ckl) ≲ d2/m.
As for the second term in (G.22),∑

i,j,k,l

σ2x,i,jσ
2
x,k,l (cij · ckl)3 ≲

∑
i,j,k,l

σ2x,i,jσ
2
x,k,l |cij · ckl|2

≤
∑
i,j,k,l

σ2x,i,jσ
2
x,k,l (ai · ak + ai · al + aj · ak + aj · al)2 ≲

∑
i,j,k,l

σ2x,i,jσ
2
x,k,l (ai · ak)2
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=
∑
ik

σiσk (ai · ak)2 =
∑
k

Tr(σka
T
kA

T
xΣxAxak) ≤

√
d

m

∑
k

Tr(σka
T
k ak)

=

√
d

m
Tr(AT

xΣxAx) ≤
d2

m
.

This establish a high-probability bound ofO(d2/m) on (G.22), implying anO(
√
d)-high-probability

bound on
√

m
d

∣∣Tr(Diag(P
(2)
x sx,h)S

2
x,h

)∣∣.
Term B. We show that sx and spz are close, and the same holds for σx and σpz . For sx, following
the argument for the log-barrier, we let xt := x+ th r√

d
and st := Axt − b. For 0 ≤ t ≤ 1,

∥∥∥S−1
0

dst
dt

∥∥∥
∞

=
r√
d
∥Axh∥∞ ≤

(G.16)

r√
d
∥h∥AT

xDxAx
≤ r√

d
∥h∥ = ∥z∥ .

Conditioned on the high-probability bound of ∥z∥ ≤ 2r log 1
ε ≤ 0.1 for any r less than some r(ε),

max
i∈[m]

∣∣∣sp,i − sx,i
sx,i

∣∣∣ ≤ ∫ 1

0

∥∥∥S−1
0

dst
dt

∥∥∥
∞
dt ≤ 0.1 ,

and thus 1.2 ≥ sx,i/sp,i ≥ 0.9 for all i ∈ [m] (i.e., S−1
p ⪯ 1.2S−1

x ). For σx, as we have Σx =

Diag(Ax(A
T
xAx)

−1AT
x ), we have the same closeness between σx,i and σp,i for each i ∈ [m].

Using the formulas in Lemma I.4,

|D2g(p)[h⊗4]| ≲
√
m

d

(
Tr
(
(Σp +

d

m
Im)S

4
p,h

)
+Tr(S2

p,hPpSp,hPpSp,h)︸ ︷︷ ︸
(∗)

+Tr(S2
p,hPpS

2
p,hPp) + Tr(Sp,hPpSp,hPpSp,hPpSp,h)︸ ︷︷ ︸

≤Tr(S2
p,hPpS2

p,hPp)

)

≲
(i)

√
m

d

(
Tr
(
(Σp +

d

m
Im)S

4
p,h

)
+Tr(S2

p,hΣpS
2
p,h) + Tr(S2

p,hPpS
2
p,hPp)︸ ︷︷ ︸

Use Lemma H.1

)

≲
(ii)

√
m

d
Tr
(
(Σp +

d

m
Im)S

4
p,h

)
≲
(iii)

√
m

d
Tr
(
(Σx +

d

m
Im)S

4
x,h

)
= P3(h) ,

where in (i) we used the Cauchy-Schwarz inequality on (∗):

Tr(S2
p,hPpSp,hPpSp,h) ≤

√
Tr(S2

p,hP
2
pS

2
p,h)
√
Tr(Sp,hPpS

2
p,hPpSp,h)

≤
AM-GM

1

2

(
Tr(S2

p,hP
2
pS

2
p,h) + Tr(Sp,hPpS

2
p,hPpSp,h)

)
≤ 1

2

(
Tr(S2

p,hΣpS
2
p,h) + Tr(S2

p,hPpS
2
p,hPp)

)
,

(ii) follows from Tr(S2
p,hPpS

2
p,hPp) = s2p,h · P

(2)
p s2p,h ⪯ s2p,h ·Σps2p,h ⪯ s2p,h · (Σp +

d
mIm)s

2
p,h, and

in (iii) we used coordinate-wise closeness of sx ↔ sp and σx ↔ σp. By (G.21), E[P3(h)
2] ≲ d2,

and an O(d)-high-probability bound on |P3(h)| (so on B) follows from Lemma E.8.
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SASC of Lewis-weight (Lemma E.12). Set g(x) =
√
dAT

xWxAx (with Dx =
√
dWx). By

(G.18) and Lemma I.5-1,

max
i∈[m]

∥ai∥2 ≤ max
i

[σ(D
1/2
x Ax)]i

[Dx]ii
≤ 2m

2
p+2

√
d

≲
1√
d
.

Term A. As done for the Vaidya metric, a high-probability bound on A requires E[Pi(h)2] ≲ d for
i = 1, 2 (see (G.17)). Note that E[P1(h)

2] ≲
√
d by (G.19).

As forP2(h) =
√
d sTx,hW

′
x,hsx,h, we show E[P2(h)

2] ≲
√
d. Due toW ′

x,h = −Diag(W
1
2
x NxW

1
2
x sx,h)

(Lemma I.6), P2(h) = −
√
dsTx,hDiag(W

1
2
x NxW

1
2
x sx,h)sx,h = −

√
dTr

(
Diag(W

1
2
x NxW

1
2
x sx,h)S

2
x,h

)
.

Thus,

P2(h) =
√
d Tr

(
Diag(NxW

1
2
x sx,h)W

1
2
x S

2
x,h

)
=
√
d

m∑
i=1

w
1/2
i (ai · h)2(bi · h) ,

where bi is the i-th row of B := NxW
1
2
x Ax for i = 1, . . . ,m. By Lemma J.4,

E
[{ m∑

i=1

w
1/2
i (ai · h)2(bi · h)

}2]
=
∑

i,j∈[m]

w
1/2
i w

1/2
j ∥ai∥

2∥aj∥2(bi · bj)

+ 4
∑
i,j

w
1/2
i w

1/2
j (ai · aj)(ai · bi)(aj · bj) + 4

∑
i,j

w
1/2
i w

1/2
j ∥ai∥

2(bi · aj)(aj · bj)

+ 2
∑
i,j

w
1/2
i w

1/2
j (ai · aj)2(bi · bj)︸ ︷︷ ︸

=:T1

+4
∑
i,j

w
1/2
i w

1/2
j (ai · aj)(ai · bj)(aj · bi)︸ ︷︷ ︸

=:T2

= 1TDiag(AxA
T
x )W

1
2BBTW

1
2 Diag(AxA

T
x ) 1︸ ︷︷ ︸

=:N1

+4 · 1TDiag(AxB
T)W

1
2AxA

T
xW

1
2 Diag(AxB

T) 1︸ ︷︷ ︸
=:N2

+ 4 · [1TDiag(AxA
T
x )W

1
2B] · [AT

xW
1
2 Diag(AxB

T) 1]︸ ︷︷ ︸
≤N1+N2 by Young’s inequality

+2T1 + 4T2 .

As for N1, since BTB = AT
xW

1
2
x N2

xW
1
2
x Ax ≤ p2AT

xWxAx by Lemma I.8-1 and thus BTB ≾
(d)−1/2Id, Lemma J.1 ensures BBT ≾ 1√

d
P (B) ⪯ 1√

d
Im. Hence,

N1 ≲
1√
d
Tr
(
Diag(AxA

T
x )W Diag(AxA

T
x )
)
≤ 1√

d
Tr(AT

xWAx) ∥Diag(AxA
T
x )∥∞ ≲

1√
d
.

As for N2, due to AT
xWxAx ⪯ 1√

d
Id we have W

1
2AxA

T
xW

1
2 ⪯ 1√

d
Im by Lemma J.1. Thus,

N2 ≲
1√
d
Tr
(
{Diag(AxB

T)}2
)
=

1√
d

∑
i∈[m]

(ai · bi)2 ≤
1√
d

∑
i

∥ai∥2∥bi∥2
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≤ 1

d
Tr(BBT) ≲

1

d3/2
Tr
(
P (B)

)
≤ 1√

d
.

As for T1, by Young’s inequality (i.e., 2(a · b) ≤ ∥a∥2 + ∥b∥2)

T1 =
∑

i,j∈[m]

(ai · aj)2
(
(w

1/2
j bi) · (w1/2

i bj)
)
≲
∑
i,j

(ai · aj)2 (wj∥bi∥2 + wi∥bj∥2)

= 2
∑
i,j

wj(ai · aj)2∥bi∥2 =
∑
i

∥bi∥2 · Tr
(
aTi

(∑
j

ajwja
T
j

)
ai

)
=
∑
i

∥bi∥2Tr(aTi AT
xWAxai) ≤

1√
d

∑
i

∥bi∥2∥ai∥2 ≤
1

d
Tr(BBT) ≤ 1√

d
.

As for T2, using (ai · aj) ≤ ∥ai∥∥aj∥ ≲ 1√
d

T2 =
∑

i,j∈[m]

w
1/2
i w

1/2
j (ai · aj)(ai · bj)(aj · bi) ≲

1√
d

∑
i,j∈[m]

w
1/2
i w

1/2
j (ai · bj)(aj · bi)

=
1√
d

∑
i

w
1/2
i bTi

∑
j

ajw
1/2
j bTj ai =

1√
d

∑
i

Tr(aiw
1/2
i bTi A

T
xW

1/2B)

=
1√
d
Tr
(
(AT

xW
1/2B)2

)
≤
CS

1√
d
Tr(BTW 1/2AxA

T
xW

1/2B) ≤ 1

d
Tr(BTB) ≤ 1√

d
.

Putting all the bounds together, we have E[P2(h)
2] ≲ d · 1√

d
=
√
d.

Term B. We show that for any given α = Θ(1), each coordinate of wx/sαx and wpz/s
α
pz is close.

For 0 ≤ t ≤ 1, we define xt := x+ r√
d
th, and st, wt in the same fashion. Then for p = O(logm),

max
i∈[m]

∣∣∣ log (wpz ,i)
α

spz ,i
− log

(wx,i)
α

sx,i

∣∣∣ ≤ ∫ 1

0

∣∣∣ d
dt

log
[wt,i]

α

st,i

∣∣∣dt ≲ r√
d
∥h∥AT

xWxAx
≤ 1

d1/4
∥z∥ .

Just as in showing SASC of the Vaidya metric, we can make this bound arbitrarily small (say δ ≈ 0)
by conditioning on the high-probability region where ∥z∥ ≤ r log 1

ε ≤ 0.01. Hence,

e−δ
(wx,i)

α

sx,i
≤ (wpz ,i)

α

spz ,i
≤ eδ (wx,i)

α

sx,i
. (G.24)

We remark that this Θ(1)-multiplicative closeness is still valid without the
√
d-scaling of AT

xWxAx.
Using the formula for D2(AT

xWxAx)[h
⊗4] in (I.6),

|D2g(p)[h⊗4]| ≲
(
P̄3(h) + |P̄4(h)|+ |P̄5(h)|

)
= P̄3(h) +

√
d
(
|Tr(W ′

p,hS
3
p,h)|+ |Tr(W ′′

p,hS
2
p,h)|

)
= P̄3(h) +

√
d
∣∣Tr(S3

p,hDiag(W
1
2
p NpW

1
2
p sp,h)

)∣∣︸ ︷︷ ︸
=:T1

+
√
d |Tr(S2

p,hW
′′
p,h)|︸ ︷︷ ︸

=:T2

,

where in the last line we used the formula for W ′
p,h (Lemma I.6).

Now we show E[P̄3(h)
2] ≲ d2 and Ti ≲

√
d w.h.p. for i = 4, 5. As for P̄3, we have

P̄3(h) ≲ P3(h) from the closeness (G.24) of wi/s4i for each i ∈ [m], so E[P3(h)
2] ≲ d2 · d−1 = d

from (G.21).
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As for T1, using the Cauchy-Schwarz

T1 =
∣∣Tr(S3

p,hW
1
2
p Diag(NpW

1
2
p sp,h)

)∣∣ ≤√Tr(S3
p,hWpS3

p,h)

√
sTp,hW

1/2
p N2

pW
1/2
p sp,h

≲
(i)

√
s3p,hWps3p,h

√
sTp,hWpsp,h ≲

(ii)

√
s3x,hWxs3x,h

√
sTx,hWxsx,h =

√
s3x,hWxs3x,h · d

−1/4∥h∥g(x) ,

where in (i) we used Nx ⪯ p2I (Lemma I.8), and in (ii) the closeness of wi/s6i and wi/s2i established
in (G.24). As for the first term in the RHS,

E[(s3x,hWxs
3
x,h)

2] ≲
CS

∑
i,j∈[m]

wiwj
√
E[(ai · h)12]

√
E[(aj · h)12] =

(∑
i

wi
(
E[(ai · h)12]

)2)2
≲
(∑

i

wi∥ai∥6
)2
≤
( 1

d3/2

∑
i

wi

)2
=

1

d
.

As for the second term, the concentration of the standard Gaussian guarantees ∥h∥g(x) ≤ ∥h∥ ≲
√
d

w.h.p. Therefore, T1 ≲
√
d w.h.p.

As for T2, (I.4) with Γp = S2
p,h equals T2. Following (I.8) with I, II, III, IV defined in (I.5),

T2 ≲
∑

v=I,II,III,IV

√
Tr(WpS4

p,h)∥v∥W−1
p

≲
(i)

√
Tr(WpS4

p,h)
(
Tr(S2

p,hWp) + Tr(S4
p,hWp)

)
≲
(ii)

√
Tr(WxS4

x,h)
(
Tr(S2

x,hWx) + Tr(S4
x,hWx)

)
,

where (i) follows from Lemma I.7 (i.e., ∥v∥W−1
p

≲ ∥h∥2AT
pWpAp

= Tr(S2
p,hWp) for v = I, II, III,

and ∥IV∥W−1
p

≲ Tr(S4
p,hWp)), and (ii) follows from the conditioned event where the closeness of

wi/s
2
i at x and z holds. Since we already established the high-probability bounds of d−1/2P3(h) =

Tr(S4
x,hWx) ≲ 1 and Tr(S2

x,hWx) ≲
√
d, combining these yield T2 ≲

√
d w.h.p.

G.4.5. QUADRATIC CONSTRAINTS

We show that a ν-SC barrier ψ(·) = − log f(·) satisfies

|D4ψ(x)[h⊗4]| ≲ ν2∥h∥2∇2ψ(x) +
∣∣∣D4f(x)[h⊗4]

f(x)

∣∣∣ .
Proof of Lemma E.13. Fix h ∈ Rd and x ∈ int(K), define ϕ(t) := ψ(x+ th). Then,

ϕ′ = −f
′

f
,

ϕ′′ =

(
f ′

f

)2

− f ′′

f
= (ϕ′)2 − f ′′

f
,

ϕ′′′ = 2ϕ′ϕ′′ − f ′′′f − f ′′f ′

f2
= 2ϕ′ϕ′′ − f ′′′

f
+
f ′′f ′

f2
= 2ϕ′ϕ′′ + ϕ′(ϕ′′ − (ϕ′)2)− f ′′′

f

= 3ϕ′ϕ′′ − (ϕ′)3 − f ′′′

f
,
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ϕ(4) = 3(ϕ′′)2 + 3ϕ′ϕ′′′ − 3(ϕ′)2ϕ′′ − f (4)f − f ′′′f ′

f2

= 3(ϕ′′)2 + 3ϕ′ϕ′′′ − 3(ϕ′)2ϕ′′ + ϕ′
(
ϕ′′′ − 3ϕ′ϕ′′ + (ϕ′)3

)
− f (4)

f

= 3(ϕ′′)2 + 4ϕ′ϕ′′′ − 6(ϕ′)2ϕ′′ + (ϕ′)4 − f (4)

f
.

Since |ϕ′′′| ≤ 2(ϕ′′)3/2 (SC of ϕ) and ϕ′′ ≥ 1
ν (ϕ

′)2 (the definition of the barrier parameter), which is
equivalent to |ϕ′| ≤

√
ν(ϕ′′)1/2, we can directly compute as follows:

|ϕ(4)| ≤ 4 |ϕ′ϕ′′′|+ 3 |(ϕ′′)2|+ 6| (ϕ′)2ϕ′′|+ |(ϕ′)4|+
∣∣∣f (4)
f

∣∣∣
≤ 8
√
ν |ϕ′′|2 + 3 |ϕ′′|2 + 6ν |ϕ′′|2 + ν2 |ϕ′′|2 +

∣∣∣f (4)
f
| ≲ ν2|ϕ′′|2 +

∣∣∣f (4)
f

∣∣∣ .

Using this tool, we study Dikin-amenability of barriers for quadratic constraints.

Proof of Lemma E.14. Let us check the last claim first. By Lemma D.18, we may assume that

ϕ(x, y) = − log(l + qTy − 1

2
∥x∥2) ,

and let f(x, y) = l + qTy − 1
2 ∥x∥

2. For z = (x, y) ∈ int(K) and u = (ux, uy) ∈ Rd, we have

Dϕ(z)[u] = − 1

f
(q · uy − x · ux) =

x · ux − q · uy
f

,

D2ϕ(z)[u, u] =
1

f2
(x · ux − q · uy)2 +

1

f
∥ux∥2 . (G.25)

As for the first term in the RHS of (G.25), it holds that for v = (vx, vy) ∈ Rd

D
((x · ux − q · uy)2

f2

)
[v] =

2 (x · ux − q · uy)(vx · ux)
f2

+ 2 (x · ux − q · uy)2 ·
x · vx − q · vy

f3
,

D2
((x · ux − q · uy)2

f2

)
[v, v] =

2 (vx · ux)2

f2
+ 4

(x · ux − q · uy)(vx · ux)(x · vx − q · vy)
f3

+
4 (x · ux − q · uy)(vx · ux)(x · vx − q · vy) + 2 (x · ux − q · uy)2∥vx∥2

f3

+
6 (x · ux − q · uy)2(x · vx − q · vy)2

f4

=
2 (vx · ux)2

f2
+

4 (xq · u)(vx · ux)(xq · v)
f3

+
4 (xq · u)(vx · ux)(xq · v) + 2(xq · u)2∥vx∥2

f3
+

6 (xq · u)2(xq · v)2

f4
,

where xq := (x,−q) ∈ Rd.
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As for the second term, direct computations lead to

D
(∥ux∥2

f

)
[v] =

1

f2
∥ux∥2(x · vx − q · vy) ,

D2
(∥ux∥2

f

)
[v, v] =

2

f3
∥ux∥2(x · vx − q · vy)2 +

1

f2
∥ux∥2∥vx∥2

=
2

f3
∥ux∥2(xq · v)2 +

1

f2
∥ux∥2∥vx∥2 .

Putting these together, for u, v ∈ Rd

D4ϕ[u, u, v, v]

=
1

f2
∥ux∥2∥vx∥2 +

2

f2
(vx · ux)2︸ ︷︷ ︸

≥0

+
4

f3

(1
2
∥ux∥2(xq · v)2 + 2 (xq · u)(vx · ux)(xq · v) +

(xq · u)2

2
∥vx∥2

)

+
6

f4
(xq · u)2(xq · v)2

≥ 4

f3

(
1

2
∥ux∥2(xq · v)2 +

1

2
∥vx∥2(xq · u)2︸ ︷︷ ︸

Use AM-GM

+2(xq · u)(vx · ux)(xq · v)
)

+
1

f2
∥ux∥2∥vx∥2 +

6

f4
(xq · u)2(xq · v)2︸ ︷︷ ︸

Use AM-GM

≥ 4

f3
(
∥ux∥ ∥vx∥ |xq · v| |xq · u| − 2|xq · u| |xq · v| ∥ux∥ ∥vx∥

)
+

2
√
6

f3
|xq · u| |xq · v| ∥ux∥ ∥vx∥

=
4

f3
∥ux∥ ∥vx∥ |xq · v| |xq · u|

(√6
2
− 1
)
≥ 0 .

G.4.6. PSD: CONVEXITY AND STRONGLY SELF-CONCORDANCE

We start with convexity of log det(∇2ϕ) for ϕ(X) = − log detX .

Proof of Proposition E.22. Using Lemma E.20 and det
(
MT(A⊗A)M

)
= 2d(d−1)/2 (detA)d+1

(Lemma H.1) in the first and second equality below,

log det
(
∇2ϕ(X)

)
= log det

(
MT(X−1 ⊗X−1)M

)
=
d(d− 1)

2
log 2− (d+ 1) log detX .

Since − log detX is convex in X (H.4), the convexity of log det
(
∇2ϕ(X)

)
also follows.

Observe from the proof that log det
(
∇2ϕ(X)

)
= const. + (d+ 1)ϕ(X). Differentiating both

sides in direction H , by (H.1) Tr
(
[∇2ϕ(X)]−1D3ϕ(X)[H]

)
= (d+ 1)Dϕ(X)[H]. Hence,

Tr
(
[∇2ϕ(X)]−

1
2D3ϕ(X)[H] [∇2ϕ(X)]−

1
2
)
= −(d+ 1) Tr(X−1H) . (G.26)
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We are ready to show SSC of ϕ.

Proof of Lemma E.23. ForH ∈ Sd and t ∈ R, denoteXt := X+tH and gt :=MT(Xt⊗Xt)
−1M .

Note that ∥∥[∇2ϕ(X)]−
1
2D3ϕ(X)[H] [∇2ϕ(X)]−

1
2

∥∥2
F
= Tr(g−1∂tgt|t=0 g

−1∂tgt|t=0) ,

and

∂tgt|t=0 =
(i)
∂t
(
MT(Xt ⊗Xt)

−1M
)∣∣∣
t=0

=
(ii)
−MT(X ⊗X)−1 ∂t(Xt ⊗Xt)|t=0 (X ⊗X)−1M

= −MT(X−1 ⊗X−1)(H ⊗X +X ⊗H)(X−1 ⊗X−1)M

=
(iii)
−MT(X−1HX−1 ⊗X−1 +X−1 ⊗X−1HX−1)M , (G.27)

where (i) follows from Lemma E.20, (ii) is due to (H.2), and (iii) follows from (A⊗B)(C ⊗D) =
(AC)⊗ (BD) (Lemma H.1-3).

Recall that positive semidefinite matrices have unique positive semidefinite square roots, so
(X ⊗ X)

1
2 = X

1
2 ⊗ X

1
2 (due to (X1/2 ⊗ X1/2) · (X1/2 ⊗ X1/2) = X ⊗ X). Since gt =

MT(Xt ⊗Xt)
−1/2(Xt ⊗Xt)

−1/2M , the corresponding orthogonal projection is

Pt := P
(
(Xt ⊗Xt)

− 1
2M
)
= (Xt ⊗Xt)

− 1
2Mg−1

t MT(Xt ⊗Xt)
− 1

2 .

By substituting ∂tgt
∣∣
t=0

with (G.27),

Tr(g−1∂tgt|t=0 g
−1∂tgt|t=0)

= Tr
(
g−1MT(X−1HX−1 ⊗X−1 +X−1 ⊗X−1HX−1)M

· g−1MT(X−1HX−1 ⊗X−1 +X−1 ⊗X−1HX−1)M
)

= Tr
(
Mg−1MT(X−1HX−1 ⊗X−1 +X−1 ⊗X−1HX−1)M

· g−1MT(X−1HX−1 ⊗X−1 +X−1 ⊗X−1HX−1)
)

= Tr
([
Mg−1MT(X−1HX−1 ⊗X−1 +X−1 ⊗X−1HX−1)

]2)
= Tr

([
(X ⊗X)

1
2P (X ⊗X)

1
2 (X−1HX−1 ⊗X−1 +X−1 ⊗X−1HX−1)

]2)
= Tr

([
P (X ⊗X)

1
2 (X−1HX−1 ⊗X−1 +X−1 ⊗X−1HX−1)(X ⊗X)

1
2︸ ︷︷ ︸

=:S

]2)
= Tr(PSPS) .

Using Lemma H.1-3,

S = X− 1
2HX− 1

2 ⊗ Id︸ ︷︷ ︸
=:A

+ Id ⊗X− 1
2HX− 1

2︸ ︷︷ ︸
=:B

.

By the Cauchy-Schwarz inequality along with PTP = P 2 = P and P ⪯ Id,

Tr(PSPS) ≤ Tr((PS)TPS) ≤ Tr(STS) = ∥S∥2F ≤ (∥A∥F + ∥B∥F )
2 .
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Using Lemma H.1-3,

∥A∥2F = Tr
(
(X− 1

2HX− 1
2 ⊗ Id) · (X− 1

2HX− 1
2 ⊗ Id)

)
= Tr(X− 1

2HX−1HX− 1
2 ⊗ Id) = Tr(X− 1

2HX−1HX− 1
2 ) Tr(Id) = d ∥H∥2X ,

and similarly ∥B∥2F = d ∥H∥2X . Therefore, ψX ≤ 2
√
d follows from∥∥[∇2ϕ(X)]−

1
2D3ϕ(X)[H] [∇2ϕ(X)]−

1
2

∥∥
F
≤
√
Tr(PSPS) ≤ 2

√
d ∥H∥X .

To see the optimality of O(d1/2), we recall (G.26):

Tr
(
[∇2ϕ(X)]−

1
2D3ϕ(X)[H] [∇2ϕ(X)]−

1
2
)
= −(d+ 1) Tr(X−1H) .

Taking supremum on both sides,

sup
H:∥H∥X=1

Tr
(
[∇2ϕ(X)]−

1
2D3ϕ(X)[H] [∇2ϕ(X)]−

1
2
)

= sup
H∈Sd:∥X−1/2HX−1/2∥F=1

−(d+ 1) Tr(X− 1
2HX− 1

2 ) = sup
S∈Sd:∥S∥F=1

(d+ 1) Tr(S) ,

and this objective achieves the maximum at H = −d−1/2X , with the supremum being (d+ 1)
√
d.

On the other hand, due to Tr(A) ≤ d1/2 ∥A∥F for A ∈ Rd×d,

Tr
(
[∇2ϕ(X)]−

1
2D3ϕ(X)[H] [∇2ϕ(X)]−

1
2
)

≤
√
d(d+ 1)

2
·
∥∥[∇2ϕ(X)]−

1
2D3ϕ(X)[H] [∇2ϕ(X)]−

1
2

∥∥
F
≤
√
d(d+ 1)

2
· ψX∥H∥X ,

and thus by taking supremum on both sides over a symmetric matrix H with ∥H∥X = 1, it follows

that (d+ 1)
√
d ≤

√
d(d+1)

2 ψX and thus
√
2(d+ 1) ≤ ψX .

G.4.7. PSD: STRONGLY LOWER TRACE SELF-CONCORDANCE

Direct computation leads to D2g(X)[H,H] ⪰ 0 (so SLTSC).

Proof of Lemma E.25. For g(X) = −∇2 log detX , recall that g(X)[H,H] = Tr(X−1HX−1H).
Thus for any V ∈ Sd,

Dg(X)[H,H, V ] = −Tr(X−1V X−1 ·HX−1H)− Tr(X−1H ·X−1V X−1 ·H)

= −2 Tr(X−1V X−1HX−1H) ,

and differentiating again,

D2g(X)[H,H, V, V ]

= 4 Tr(X−1V X−1V X−1HX−1H) + 2 Tr(X−1V X−1HX−1V X−1H)

= 4 Tr(X− 1
2HX−1V X−1V X−1HX− 1

2 ) + 2 Tr(X− 1
2V X−1HX− 1

2 ·X− 1
2V X−1HX− 1

2 )

≥
(i)

4 Tr(X− 1
2HX−1V X−1V X−1HX− 1

2 )− 2 Tr(X− 1
2HX−1V X− 1

2 ·X− 1
2V X−1HX− 1

2 )

= 2 Tr(X− 1
2HX−1V X−1V X−1HX− 1

2 ) ≥ 0 , (G.28)

where in (i) we used the Cauchy-Schwarz inequality. Therefore, D2g(X)[H,H] ⪰ 0.
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G.4.8. PSD: AVERAGE SELF-CONCORDANCE

We establish a connection to the Gaussian orthogonal ensemble (GOE): for ds = d(d+ 1)/2 and
svec(H) ∼ N

(
0, r

2

ds
g(X)−1

)
, we have

√
dsd
r X− 1

2HX− 1
2 is the GOE.

Proof of Lemma E.26. Let hX := svec(X−1/2HX−1/2) and h := svec(H). It holds that

hX = L(X ⊗X)−
1
2Mh

due to hX = svec(X− 1
2HX− 1

2 ) = L vec(X− 1
2HX− 1

2 ) = L(X ⊗ X)−
1
2 vec(H) = L(X ⊗

X)−
1
2Mh. As h ∼ N

(
0, r

2

ds
g(X)−1

)
, hX is a Gaussian with zero mean and covariance

r2

ds
L(X ⊗X)−

1
2Mg(X)−1MT(X ⊗X)−

1
2LT

=
(i)

r2

dsd
L(X ⊗X)−

1
2MLN(X ⊗X)NTLTMT(X ⊗X)−

1
2LT

=
(∗)

r2

dsd
L(X ⊗X)−

1
2N(X ⊗X)NT(X ⊗X)−

1
2LT

=
(∗)

r2

dsd
L(X ⊗X)−

1
2 (X ⊗X)N(X ⊗X)−

1
2LT =

(*)

r2

dsd
LNLT

=
(ii)

r2

dsd

[
Id

1
2Id(d−1)/2

]
,

where (i) follows from Proposition E.20, (∗) follows from Lemma E.19, and (ii) follows from
Magnus and Neudecker (1980, Page 427) that LNLT is a ds × ds diagonal matrix with d times
1 and 1

2d(d − 1) times 1/2. Precisely, the entries of hX ∈ Rds corresponding to the diagonals
of X−1/2HX−1/2 are 1, and its entries corresponding to off-diagonals is 1/2. This is exactly the
covariance matrix of a ds-dimensional GOE, so X− 1

2HX− 1
2 ∼ r√

dsd
G for the GOE G.

Now we show ASC of dϕ.

Proof of Lemma E.27. Expand ∥Z −X∥2Z := ∥Z −X∥2g(Z) at X for Z = X +H:

∥Z −X∥2Z − ∥Z −X∥
2
X =

∞∑
k=1

1

k!
Dkg(X)[H⊗k+2] .

It follows from induction that for HX := X− 1
2HX− 1

2

Dg(X)[H⊗3] = −2d Tr(X−1HX−1HX−1H) = −2Tr(H3
X) ,

D2g(X)[H⊗4] = 3! d Tr(H4
X) ,

Dkg(X)[H⊗(k+2)] = (−1)k(k + 1)! d Tr(Hk+2
X ) .

Putting these back into the series expansion, for H the GOE (see Lemma E.26)

∥Z −X∥2Z − ∥Z −X∥
2
X =

∞∑
k=1

(−1)k(k + 1)d Tr(Hk+2
X )
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=

∞∑
k=1

(−1)k(k + 1)d ·
( r√

dsd

)k+2
Tr(Hk+2) =

r2

ds

∞∑
k=1

(−1)k(k + 1)
( r√

dsd

)k
Tr(Hk+2) .

As for ASC, it suffices to show that
∑∞

k=1(−1)k(k + 1)
(

r√
dsd

)k
Tr(Hk+2) can be made

arbitrarily small. We first control
∑

k≥2:∣∣∣∑
k≥2

(−1)k(k + 1)
( r√

dsd

)k
Tr(Hk+2)

∣∣∣ ≤∑
k≥2

(k + 1)
( r√

dsd

)k
d · ∥H∥k+2

op .

By Vershynin (2018, Corollary 4.4.8), ∥H∥op ≲
√
d holds with high probability, and thus∑

k≥2

(k + 1)
( r√

dsd

)k
d · ∥H∥k+2

op ≤
∑
k≥2

(k + 1)rk
1

d3k/2
d · d

k+2
2 ≤

∑
k≥2

(k + 1)rkd2−k .

By taking r = Ω(1) small enough, we can make this series arbitrarily small.
Now we bound r

d3/2
Tr(H3) (k = 1 case). This is a Gaussian polynomial in svec(H), so it

suffices to show E[(Tr(H3))2] = O(d3); we then use Lemma E.8 to obtain a high-probability bound
on the Gaussian polynomial r

d3/2
Tr(H3). For H = (Hab) ∈ Sd,(

Tr(H3)
)2

=
∑
ipq

HipHpqHqi ·
∑
jrs

HjrHrsHsj =
∑
ipqjrs

HipHpqHqiHjrHrsHsj ,

where each H∗∗ in the summand is an independent Gaussian with zero mean and variance 1 or 1/2
(as H is the GOE). We can classify the indices {i, p, q, j, r, s} into the following types:

6 distinct indices {a, b, c, d, e, f} ,
5 distinct indices {a, b, c, d, (e, e)} ,
4 distinct indices {a, b, c, (d, d, d)}, {a, b, (c, c), (d, d)} ,

Others . . . ,

where for example {a, b, c, d, e, f} means all indices are different, and {a, b, c, d, (e, e)} means that
there appear 5 different indices {a, b, c, d, e} but exists one pair (e, e) of the same index. Note that
EHipHpqHqiHjrHrsHsj = O(1) is at most the sixth moment of a standard Gaussian. It implies that
toward our goal of showing O(d3)-bound on

(
Tr(H3)

)2, it suffices to look into only three types of
indices above. This is because the terms from other types contribute at most O(d3) to

(
Tr(H3)

)2.
For any term with 6 distinct indices, we can always find an ‘uncoupled’ H∗∗ (for example Hab)

in the summand that is independent of all the others, so its expectation of the summand is 0.
For the terms with 5-distinct indices {a, b, c, d, (e, e)}, due to symmetry (see Figure G.1) we can

further classify the index (i, p, q, j, r, s) into either (a, b, c, d, e, e) or (a, b, e, c, d, e). In both cases ,
Hab has no coupled Gaussian, so the expectations of the summand are also 0.

For 4-distinct indices, let us first consider {a, b, c, (d, d, d)}-type indices. In this case (i, p, q, j, r, s)
is of the form either (a, a, a, b, c, d) or (a, a, b, a, c, d) due to symmetry. In both cases, Hcd has no
coupled Gaussian. Now consider {a, b, (c, c), (d, d)}-type indices. Then (i, p, q, j, r, s) is of the
form either (a, b, c, c, d, d) or (a, c, c, b, d, d) or (a, c, d, b, c, d). For each case, Hab, Hcc, Hac are
uncoupled ones. Therefore, E[HipHpqHqiHjrHrsHsj ] = 0 whenever there are at least 4 distinct
indices.
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i

p q

j

sr

Figure G.1: A structure of indices of HipHpqHqi ·HjrHrsHsj

Remark G.7 It seems challenging to show that dϕ is SASC using the same technique. When g is

g = d∇2(− log detX) + g′

for other PSD matrix function g′, we know that svec(HX) = svec(X− 1
2HX− 1

2 ) follows a Gaussian
distribution with zero mean and covariance matrix M satisfying

M ⪯
[
Id

1
2Id(d−1)/2

]
.

A main difference in the SASC setting is that the entries of h = svec(HX) might exhibit dependencies,
making the previous approach infeasible. This arises because many fundamental results in the
random matrix theory often presume independence of the entries of a random matrix. Moreover, our
combinatorial argument for the k = 1 case is not feasible in the presence of such dependencies.

G.5. Examples (§F)

G.5.1. ALGORITHMS FOR PSD SAMPLING

Proof of Proposition F.2. We define gX = g = 2(d2g1 + g2), where

g1(X) =MT(X ⊗X)−1M and g2(X) = 22

√
m

d
MTAT

X

(
ΣX +

d

m
Im
)
AXM .

Since d2g1 and g2 are SSC, g is also SSC due to Lemma D.5 and O(d3 +
√
md2)-symmetric8 due

to Lemma D.11. As d2g1 and g2 is SLTSC and SASC, g is LTSC and ASC. Putting these together,
it follows that g is

(
O(d3 +

√
md2),O(d3 +

√
md2)

)
-Dikin-amenable. Therefore, Theorem 3.2

implies that GCDW incurs Õ(d2(d3+
√
md2)) = Õ(d3(d2+

√
m)) total iterations of the Dikin walk

with g.
Now we bound the per-step complexity of the Dikin walk (Algorithm 1). Recall that it requires

(1) the update of the leverage scores, (2) computation of the matrix function induced by the local
metric g, (3) the inverse of the matrix function and (4) its determinant. By Lee and Sidford (2019,
Theorem 46) (with p = 2 and d ← ds therein), the initialization of the leverage scores at the
beginning takes Õ(md2ω) and their updates takes Õ(md2(ω−1)) time. Since (1) takes Õ(md2(ω−1)),
(2) takes Õ(d4+md2(ω−1)), and (3) and (4) takeO

(
d2ω
)
, each iteration runs in Õ(d2ω+md2(ω−1))

8. Since the dimension is ds in the PSD setting, we should replace d by ds = O(d2) when applying Lemma E.5.
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time. Even though the initialization of leverage scores takes Õ(md2ω) time, the amortized per-
step time complexity becomes Õ(d2ω + md2(ω−1)) = Õ(md2(ω−1)) time, as the mixing rate is
Õ(d3(d2 +

√
m)).

Proof of Proposition F.3. We define gX = g = 2(d2g1 + g2), where for some constants c1, c2 > 0,

g1(X) =MT(X ⊗X)−1M and g2(X) = dc1(logm)c2MTAT
XWXAXM .

Since d2g1 and g2 are SSC, g is also SSC due to Lemma D.5 and O∗(d3)-symmetric due to
Lemma D.11. As d2g1 and g2 is SLTSC and SASC, g is LTSC and ASC. Putting these together, it
follows that g is

(
O∗(d3),O∗(d3)

)
-Dikin-amenable. Therefore, Theorem 3.2 implies that GCDW

requires Õ(d5) iterations of the Dikin walk with g. Since the initialization and update of the Lewis
weight takes Õ(md2ω) and Õ(md2(ω−1)) time (Lee and Sidford, 2019, Theorem 46), the same
implementation with Theorem F.2 also has the time complexity of Õ(md2(ω−1)).

G.5.2. EFFICIENT IMPLEMENTATION

Proof of Proposition F.4. Let v ∈ Rds be a given vector, and denote ḡ0 := g1 and ḡi := ḡi−1+uiu
T
i

for i ∈ [m]. We first prepare the column vectors ui’s of U = MTATS−1
X in O(md2) time and

then initialize ḡ−1
0 v and ḡ−1

0 ui for i ∈ [m] in O(mdω) time. For ui’s, note that SX can be prepared
in O(md2) time, and thus ATS−1

X takes O(md2) time due to A ∈ Rd2×m. Since each row of
MT ∈ Rds×d2 has at most two non-zero entries, we can obtain ui’s in O(md2) time.

For ḡ−1
0 v and ḡ−1

0 ui, we recall from Lemma E.20 that for a vector z ∈ Rds

g−1
1 z =M †(X ⊗X)(M †)Tz = LN(X ⊗X)NLTz .

Since each row of LT ∈ Rd2×ds has at most two non-zero entries, w := LTz ∈ Rd2 can be
computed in O(d2) time. From the definition of N , it follows that Nw = vec

(
1
2(W +WT)

)
for

W := vec−1(w) ∈ Rd×d, which also can be computed in O(d2) time. For W := 1
2(W +WT), it

follows that
(X ⊗X)Nw = (X ⊗X) vec(W ) =

Lemma H.1-1
vec(XWX) ,

which can be computed in O(dω) time by the fast matrix multiplication, and in a similar way we
can compute LN vec(XWX) in O(d2) time. Putting all these together, ḡ−1

0 v can be computed in
O(dω) time, and repeating this for uj’s yields {ḡ−1

0 v, ḡ−1
0 u1, . . . , ḡ

−1
0 um} in O(mdω) time.

Starting with these initializations, we recursively use the Sherman–Morrison formula: for
z ∈ Rds ,

ḡ−1
i z = ḡ−1

i−1z −
ḡ−1
i−1uiu

T
i ḡ

−1
i−1z

1 + uTi ḡ
−1
i−1ui

. (G.29)

Using ḡ−1
i−1uj and ḡ−1

i−1v from a previous iteration, we can compute each of ḡ−1
i uj and ḡ−1

i v in the
current iteration in O(d2) time, and thus each round for update takes O(md2) time in total. Since
we iterate for m rounds, Algorithm 4 outputs ḡ−1

m v = g(X)−1v in O(mdω +m2d2) time.

Proof of Lemma F.5. Here we provide details of Algorithm 5 in two stages – (1) sampling from
N
(
0, r

2

d g(x)
−1
)

and (2) computation of acceptance probability.
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(1) Gaussian sampling: For simplicity, we ignore r2/d and illustrate how to draw v ∼ N (0, g(X)−1)
without full computation of g(X)−1 in O(mdω +m2d2) time.

Our approach is to compute v := g(X)−1
[
B U

]
w for w ∼ N (0, Id2+m), which follows

the Gaussian distribution with covariance

g(X)−1
[
B U

] (
g(X)−1

[
B U

])T
= g(X)−1(BBT + CCT)g(X)−1g(X)−1 ,

since v is a linear transformation of the Gaussian random variable w, and BBT + CCT = g(X).
Denotingw = (wb, wu) forwb ∼ N (0, Id2) andwu ∼ N (0, Im), we can show that

[
B U

]
w

can be computed in O(dω +md2) time as follows:[
B U

]
w = Bwb + Uwc =MT (X ⊗X)−1/2wb︸ ︷︷ ︸

Use Lemma G.29

+MTATS−1
X wc

=MT
(
vec
(
X−1/2 vec−1(wb)X

−1/2
)
+ATS−1

X wc

)
,

where vec
(
X−1/2 vec−1(wb)X

−1/2
)

and ATS−1
X wu can be computed in O(dω) and O(md2) time,

respectively. Since each row of MT ∈ Rds×d2 has at most two non-zero entries,
[
B U

]
w can

be computed in O(dω +md2) time. Using Algorithm 4, we obtain v = g(X)−1
[
B U

]
w in

O(mdω +m2d2) time.

(2) Computation of acceptance probability. We show that this step also takes O(mdω +m2d2)
time. To compute det g(X), we use Algorithm 4 to prepare {ḡ−1

i u1, . . . , ḡ
−1
i um}mi=0 at X and

Y = svec−1(y) in O(mdω +m2d2) time. Recall the matrix determinant lemma:

det(A+ uuT) = (1 + uTA−1u) detA .

Using the following recursive formula

det(ḡi+1) = det(ḡi + ui+1u
T
i+1) = (1 + uTi+1ḡ

−1
i ui+1) det ḡi ,

we start with det ḡ0 = det g1 = 2d(d−1)/2(detX)−(d+1) (see Lemma H.1-7), which can be computed
in O(dω) time, and compute det g(X) (and det g(Y ) in the same way) in O(mdω +m2d2) time.

G.5.3. HANDLING APPROXIMATE LEWIS WEIGHTS

Proof of Lemma F.6. We just reproduce the proof of Lemma B.3. For π ∝ exp(−f) ·1K , we denote

px = N
(
x,
r2

d
g(x)−1

)
, Rx(z) =

pz(x)

px(z)

π(z)

π(x)
, Ax(z) = min

(
1, Rx(z)1K(z)

)
.

Then the transition kernel of the Dikin walk started at x can be written as

P̃ (x, dz) = (1− Epx [Ax(·)])︸ ︷︷ ︸
=:rx

δx(dz) +Ax(z) px(z) dz .
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Thus, for x, y ∈ int(K)

dTV(Px, Py) =
rx + ry

2︸ ︷︷ ︸
I

+
1

2

∫
|Ax(z) px(z)−Ay(z) py(z)|dz︸ ︷︷ ︸

II

.

We note that (1− δ) g̃2 ⪯ g2 ⪯ (1 + δ) g̃2 and thus

(1− δ) g̃ ⪯ g ⪯ (1 + δ) g̃ , (G.30)

and this implies (1− δ) I ⪯ g̃−1/2gg̃−1/2 ⪯ (1 + δ) I . Hence, (1− δ)d2/2 ≤
√

det g
det g̃ ≤ (1 + δ)d

2/2

and

(1− δ)d2
√

det g̃(z)

det g̃(x)
≤

√
det g(z)

det g(x)
≤ (1 + δ)d

2

√
det g̃(z)

det g̃(x)
. (G.31)

With this in mind, recall that

rx = 1− Epx [Ax(·)] = 1−
∫

min
(
1, 1K(z)

exp(−f(z))
exp(−f(x))︸ ︷︷ ︸
=:A

pz(x)

px(z)︸ ︷︷ ︸
=:B

)
px(z) dz.

We can bound A in a similar way by using (G.30). As for B,

logB = − d

2r2
(∥z − x∥2z − ∥z − x∥2x) +

1

2
(log det g̃(z)− log det g̃(x)) .

As in Lemma B.3, the second term can be bounded lower by exp (−3ε) using (G.31). The first term
can be lower-bounded by invoking ASC of g. To see this, ignoring the normalization constant of gx

(∗) =
∫

1
(
∥z − x∥2g̃(z) − ∥z − x∥

2
g̃(x) ≤ 2ε

r2

d

)√
|g̃(x)| exp

(
−1

2
∥z − x∥2g̃(x)

)
dz

=

∫
1
(
∥z − x∥2g̃(z) − ∥z − x∥

2
g̃(x) ≤ 2ε

r2

d

)√
|g(x)| exp

(
−1

2
∥z − x∥2g(x)

)
·

√∣∣∣∣ g̃(x)g(x)

∣∣∣∣ exp(−1

2
(∥z − x∥2g̃(x) − ∥z − x∥

2
g(x))

)
dz

≤
∫

1
(
∥z − x∥2g̃(z) − ∥z − x∥

2
g̃(x) ≤ 2ε

r2

d

)√
|g(x)| exp

(
−1

2
∥z − x∥2g(x)

)
· (1 + δ)d

2/2 exp
(δ
2
∥z − x∥2g(x)

)
dz .

Due to ∥z − x∥2g(x) ≲ r2 w.h.p., taking δ = ε/d10 leads to

(∗) ≤ 2

∫
1
(
∥z − x∥2g̃(z) − ∥z − x∥

2
g̃(x) ≤ 2ε

r2

d

)√
|g(x)| exp

(
−1

2
∥z − x∥2g(x)

)
dz.

Also, due to

∥z − x∥2g̃(z) − ∥z − x∥
2
g̃(x) ≥ (1− δ) ∥z − x∥2g(z) − (1 + δ) ∥z − x∥2g(x)
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= (1− δ) (∥z − x∥2g(z) − ∥z − x∥
2
g(x))− 2δ ∥z − x∥2g(x) ,

we have

(∗) ≤ 2

∫
1
(
∥z − x∥2g(z) − ∥z − x∥

2
g(x) ≤ (2ε(1− δ)−1 + ε)

r2

d

)√
|g(x)|e−

1
2
∥z−x∥2

g(x) dz ≤ 6ε

by invoking ASC of g in the last inequality. Putting these together, I ≤ 1
2 + O(ε). For II, we can

follow the proof of Lemma B.3 to show II ≤ 1
4 +O(ε), and every technical issue can be resolved by

repeating the same techniques above.

Appendix H. Backgrounds on matrix algebra

H.1. Matrix identities

We collect algebraic identities related to trace, vectorization, Kronecker and Hadamard product.

Lemma H.1 (Kronecker product) For A,B,C,D ∈ Rd×d and M in Definition E.18,

1. (A⊗B) vec(C) = Tr(BCAT).

2. vec(A)T(B⊗C) vec(D) = Tr(DBTATC).

3. (A⊗B)(C ⊗D) = AC ⊗BD.

4. (A⊗B)−1 = A−1 ⊗B−1.

5. (A⊗B)T = AT ⊗BT.

6. Tr(A⊗B) = Tr(A) Tr(B).

7. det
(
MT(A⊗A)M

)
= 2d(d−1)/2(detA)d+1.

Lemma H.2 (Hadamard product) Let A,B,C,D ∈ Rd×d, x, y ∈ Rd, and D1, D2 ∈ Rd×d be
diagonal matrices.

1. (A ◦B)y = diag(A Diag(y)BT).

2. xT(A◦B)y = Tr(Diag(x)A Diag(y)BT).

3. D1(A ◦B) = (D1A) ◦B = A ◦ (D1B).

4. (A ◦B)D2 = (AD2) ◦B = A ◦ (BD2).

5. (A⊗B) ◦ (C ⊗D) = (A ◦C)⊗ (B ◦D).

H.2. Matrix calculus

Let g(x) : Rd → Rd×d be a matrix function. Its gradient at x, denoted by Dg(x), is the third-order
tensor defined by (Dg(x))ijk =

∂gij(x)
∂xk

. Unless specified otherwise, the multiplication between
higher-order tensors and a matrix of size d × d is running over (i, j)-entries. For instance, for a
matrix M ∈ Rd×d the product Dg(x) ·M indicates the third-order tensor defined by

(Dg(x)M)·,·,k = (Dg(x))·,·,kM for each k ∈ [d] .

In the same way, the trace is applied to a matrix spanned by (i, j)-entries, i.e.,(
Tr(Dg(x))

)
k
= Tr

((
Dg(x)

)
·,·,k

)
.
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For φ : Rd → R with φ(·) := log det g(·), its gradient and the directional derivative in h ∈ Rd
are

∇φ(x) = Tr
(
g(x)−1Dg(x)

)
, and ∇φ(x) · h = Tr

(
g(x)−1Dg(x)[h]

)
. (H.1)

For the Hessian of φ, using the product rule and

D(g−1)(x) = −g(x)−1Dg(x) g(x)−1 , (H.2)

we obtain

∇2φ(x) = DTr
(
g(x)−1Dg(x)

)
= −Tr

(
g(x)−1Dg(x) g(x)−1Dg(x)

)
+Tr

(
g(x)−1D2g(x)

)
= Tr

(
g(x)−1D2g(x)

)
− ∥g(x)−

1
2Dg(x) g(x)−

1
2 ∥2F , (H.3)

where D2g(x) is the fourth-order tensor defined by (D2g(x))ijkl =
∂(g(x))ij
∂xk∂xl

.
We now present formulas for the Hessian and its inverse of ϕ(·) = − log det(·) on Sd++.

Proof of Proof of Proposition E.20. By setting g(X) = X and ϕ(X) = −φ(X) above, (H.3)
implies that for a symmetric matrix H ∈ Sd

∇2ϕ(X)[H,H] = ∥X− 1
2HX− 1

2 ∥2F = Tr
(
X−1HX−1H

)
(H.4)

= vec(H)T(X−1 ⊗X−1) vec(H) = vec(H)T(X ⊗X)−1 vec(H) ,

where the last equality follows from Lemma H.1. When representing X and H in Rds space with
notations x := svec(X) and h := svec(H), the definition of M (see Definition E.18) turns (H.4)
into

∇2ϕ(x)[h, h] = hTMT(X ⊗X)−1Mh ,

so gX := ∇2
xϕ(x) = ∇2

Xϕ(X) equals MT(X ⊗ X)−1M . The formula for the inverse, g−1
X =

M †(X ⊗X)(M †)T, is immediate from Magnus and Neudecker (1980), and another part follows
from M † = LN and NT = N (Magnus and Neudecker, 1980, Lemma 3.6 and Lemma 2.1).

Appendix I. Self-concordant barriers for linear constraints

We collect details on self-concordant barriers for linear constraints, P = {x ∈ Rd : Ax ≥ b} with
A ∈ Rm×d and b ∈ Rm: the logarithmic, volumetric, and Lewis-weight barrier/metric. Recall
the notations used in the paper: sx = diag(Ax − b) ∈ Rm, Sx = Diag(sx) ∈ Rm×m, and
Ax = S−1

x A ∈ Rm×d. Also, sx,h = Axh ∈ Rm and Sx,h = Diag(sx,h) ∈ Rm×m. Let h ∈ Rd.

I.1. Logarithmic barriers

For x ∈ P , the logarithmic barrier (or log-barrier) and the Hessian metric are given by

ϕlog(x) := −
m∑
i=1

log(aTi x− b) , and g(x) = ∇2ϕ(x) = ATxAx .

Claim I.1 DSx[h] = Diag(Ah) and DS−1
x [h] = −S−1

x Sx,h. Also, Dg(x)[h] = −2AT
xSx,hAx and

D2g(x)[h, h] = 6AT
xS

2
x,hAx ⪰ 0.
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Proof The first is obvious from differentiation of Sx = Diag(Ax− b) w.r.t. x. As for the second,

DS−1
x [h] = −S−1

x DSx[h]S
−1
x = −S−1

x Diag(Ah)S−1
x = −S−1

x Diag(Axh) = −S−1
x Sx,h .

As for the third and fourth, as g(x) = ATS−2
x A,

Dg(x)[h] = ATDS−2
x [h]A = −2ATS−3

x DSx[h]A = −2AT
xS

−1
x Diag(Ah)Ax = −2AT

xSx,hAx .

D2g(x)[h, h] = −2ATDS−3
x [h] Diag(Ah)A = 6ATS−4

x DSx[h] Diag(Ah)A = 6AT
xS

2
x,hAx .

I.2. Volumetric barriers

Vaidya (1996) introduced the volumetric barrier for P , defined by

ϕvol(x) =
1

2
log det

(
∇2ϕlog(x)

)
=

1

2
log det(AT

xAx) .

Claim I.2 ∇ϕvol(x) = −AT
xσx and ∇2ϕvol(x) = AT

x (3Σx − 2P
(2)
x )Ax.

Proof For Px := P (Ax), using (H.1) with Claim I.1 and apply Lemma H.2 in (i),

∇ϕvol(x)[h] = −Tr
(
(AT

xAx)
−1AT

xSx,hAx
)
= −Tr(PxSx,h) =

(i)
−1T(Px ◦ Im)sx,h = −hTAT

xσx ,

For the Hessian of ϕvol, let g(x) = AT
xAx and then by (H.3),

∇2ϕvol(x)[h, h] =
1

2

(
Tr(g−1D2g[h, h])− Tr(g−1Dg[h] g−1Dg[h])

)
.

As for the first term, Claim I.1 leads to

Tr(g−1D2g[h, h]) = 6Tr(g−1AT
xS

2
x,hAx) = 6Tr(PxSx,hISx,h) = 6hTAT

x (Px ◦ I)Axh = 6hTAT
xΣxAxh .

As for the second term,

Tr(g−1Dg[h] g−1Dg[h]) = 4Tr(PxSx,hPxSx,h) = 4(Axh)
T(Px ◦ Px)(Axh) = 4hTAT

xP
(2)
x Axh .

Hence, D2ϕvol(x)[h, h] = hTAT
x (3Σx − 2P

(2)
x )Axh, which completes the proof.

Claim I.3 P
(2)
x ⪯ Σx, so AT

xΣxAx ⪯ ∇2ϕvol(x) ⪯ 3AT
xΣxAx.

Proof Due to Σx = Px ◦ I , it suffices to show hTPx ◦ (I − Px)h ≥ 0 for any h ∈ Rd. Since Px and
I − Px are orthogonal projections, for H = Diag(h) and C := PxH(I − Px) ,

hTPx ◦ (I − Px)h = Tr
(
HPxH(I − Px)

)
= Tr

(
(I − Px)HPxPxH(I − Px)

)
= Tr(CTC) ≥ 0 .
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I.2.1. DERIVATIVES OF LEVERAGE SCORES AND PROJECTION MATRICES

We derive formulas for derivatives of leverage scores, orthogonal projections, and so on.

Lemma I.4 For x, h ∈ Rd, let Px = Ax(A
T
xAx)

−1AT
x , Σx = Diag(Px), and Λx = Σx − P (2)

x .
Denote θ(x) := AT

xΣxAx.
• (Lee and Sidford, 2019, Lemma 24) Σ′

x,h = −2Diag(Λxsx,h) = 2
(
Diag(PxSx,hPx)− ΣxSx,h

)
.

• (Lee and Sidford, 2019, Lemma 49) P ′
x,h = −PxSx,h − Sx,hPx + 2PxSx,hPx.

• Λ′
x,h = −2Diag(Λxsx,h)+2Px◦PxSx,h+2Sx,hPx◦Px−2(PxSx,hPx)◦Px−2Px◦(PxSx,hPx).

• Σ′′
x,h = 6Sx,hΣxSx,h+8Diag(PxSx,hPxSx,hPx)−6Diag(PxS

2
x,hPx)−8Diag(Sx,hPxSx,hPx).

• Dθ(x)[h] = −2AT
xΣxSx,hAx +AT

xΣ
′
x,hAx.

• D2θ(x)[h, h] = 6AT
xSx,hΣxSx,hAx − 4AT

xΣ
′
x,hSx,hAx +AT

xΣ
′′
x,hAx. Equivalently,

D2θ(x)[h, h] = 20AT
xSx,hΣxSx,hAx − 16AT

x Diag(Sx,hPxSx,hPx)Ax

− 6AT
x Diag(PxS

2
x,hPx)Ax + 8AT

x Diag(PxSx,hPxSx,hPx)Ax.

Proof As for the third item,

Λ′
x,h = Σ′

x,h − P ′
x,h ◦ Px − Px ◦ P ′

x,h

= −2Diag(Λxsx,h)− (−PxSx,h − Sx,hPx + 2PxSx,hPx) ◦ Px − Px ◦ (−PxSx,h − Sx,hPx + 2PxSx,hPx)

=
(i)
−2Diag(Λxsx,h) + 2Px ◦ PxSx,h + 2Sx,hPx ◦ Px − 2(PxSx,hPx) ◦ Px − 2Px ◦ (PxSx,hPx) ,

where in (i) we used D(A◦B) = (DA)◦B = A◦ (DB) and (A◦B)D = (AD)◦B = A◦ (BD)9

for a diagonal matrix D ∈ Rd×d (Lemma H.2).
As for the fourth item,

Σ′′
x,h = −2D

(
Diag(Λxsx,h)

)
[h] = −2Diag(Λ′

x,hsx,h) + 2Diag(ΛxSx,hsx,h)

= −2Diag
([
−2Diag(Λxsx,h) + 2Px ◦ PxSx,h + 2Sx,hPx ◦ Px − 2(PxSx,hPx) ◦ Px − 2Px ◦ (PxSx,hPx)

]
sx,h

)
+ 2Diag(ΛxSx,hsx,h)

= 4Diag(Λxsx,h)Sx,h − 4Diag(Px ◦ PxSx,hsx,h)− 4Diag(Sx,hPx ◦ Pxsx,h)
+ 4Diag

(
(PxSx,hPx) ◦ Pxsx,h

)
+ 4Diag

(
Px ◦ (PxSx,hPx)sx,h

)
+ 2Diag(ΛxSx,hsx,h)

= 4Diag
(
Sx,h(Σx − Px ◦ Px)sx,h

)
− 4Diag(Px ◦ PxSx,hsx,h)− 4Diag(Sx,hPx ◦ Pxsx,h)

+ 4Diag
(
(PxSx,hPx) ◦ Pxsx,h

)
+ 4Diag

(
Px ◦ (PxSx,hPx)sx,h

)
+ 2Diag

(
(Σx − Px ◦ Px)Sx,hsx,h

)
= 4Diag(Sx,hΣxsx,h)− 6Diag(Px ◦ PxSx,hsx,h)− 8Diag(Sx,hPx ◦ Pxsx,h)

+ 4Diag
(
(PxSx,hPx) ◦ Pxsx,h

)
+ 4Diag

(
Px ◦ (PxSx,hPx)sx,h

)
+ 2Diag(ΣxSx,hsx,h)

= 6Diag(Sx,hΣxsx,h)− 6Diag(Px ◦ PxSx,hsx,h)− 8Diag(Sx,hPx ◦ Pxsx,h)
+ 4Diag

(
(PxSx,hPx) ◦ Pxsx,h

)
+ 4Diag

(
Px ◦ (PxSx,hPx)sx,h

)
=
(i)

6Sx,hΣxDiag(sx,h)− 6Diag
(
diag

(
PxSx,h(PxSx,h)

T
))
− 8Diag

(
diag(Sx,hPxSx,hP

T
x )
)

+ 4Diag(PxSx,hPxSx,hPx) + 4Diag
(
PxSx,h(PxSx,hPx)

T
)

= 6Sx,hΣxSx,h − 6Diag(PxS
2
x,hPx)− 8Diag(Sx,hPxSx,hPx) + 8Diag(PxSx,hPxSx,hPx) ,

9. This property allows us to write DA ◦B without parenthesis.
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where in (i) we applied Lemma H.2-1 to the terms with blue.
Applying the product rule to θ(x) = AT

xΣxAx = ATS−2
x ΣxA,

Dθ[h] = −2ATS−3
x ΣxDiag(Ah)A+ATS−2

x Σ′
x,hA = −2AT

xΣxSx,hAx +AT
xΣ

′
x,hAx ,

D2θ[h, h] = 6AT
xSx,hΣxSx,hAx − 2AT

xΣ
′
x,hSx,hAx − 2AT

xSx,hΣ
′
x,hAx +AT

xΣ
′′
x,hAx

= 6AT
xSx,hΣxSx,hAx − 4AT

xΣ
′
x,hSx,hAx +AT

xΣ
′′
x,hAx .

By substituting Σ′
x,h and Σ′′

x,h with our formulas above,

D2θ[h, h] = 6AT
xSx,hΣxSx,hAx − 4AT

xΣ
′
x,hSx,hAx +AT

xΣ
′′
x,hAx

= 6AT
xSx,hΣxSx,hAx + 8AT

x

(
ΣxSx,h −Diag(PxSx,hPx)

)
Sx,hAx

+AT
x

(
6Sx,hΣxSx,h − 6Diag(PxS

2
x,hPx)− 8Diag(Sx,hPxSx,hPx) + 8Diag(PxSx,hPxSx,hPx)

)
Ax

= 20AT
xSx,hΣxSx,hAx − 16AT

x Diag(Sx,hPxSx,hPx)Ax − 6AT
x Diag(PxS

2
x,hPx)Ax

+ 8AT
x Diag(PxSx,hPxSx,hPx)Ax .

I.3. Lewis-weight metric

We recall preliminaries on the Lewis weights. Particularly, the leverage scores are simply the
ℓ2-Lewis weights.

Lemma I.5 (Lee and Sidford (2019)) Let Wx = Diag(wx(Ax)) ∈ Sd++ be the ℓp-Lewis weights
and g(x) = AT

xWxAx the Lewis-weights metric, and h ∈ Rd.

• (Lemma 26) maxi∈[m]
[σ(W

1/2
x Ax)]i
(wx)i

≤ 2m
2

p+2 .

• (Lemma 33) ∥Axh∥Wx
= ∥h∥g(x) and ∥Axh∥∞ ≤

√
2m

1
p+2 ∥h∥g(x).

• (Lemma 34) ∥W−1
x w′

x,h∥Wx
≤ p ∥h∥g(x).

Next is a directional derivative of the ℓp-Lewis weight of Ax.

Lemma I.6 (Lee and Sidford (2019), Lemma 24) The directional derivative of the ℓp-Lewis weight
Wx in direction h ∈ Rd is

W ′
x,h := DWx[h] = −2 Diag(ΛxG

−1
x Wxsx,h) = −Diag(W

1
2
x NxW

1
2
x sx,h) ,

where Λx
def
= Wx−P (2)

x , Λ̄x
def
= W

− 1
2

x ΛxW
− 1

2
x ,Gx

def
= Wx−

(
1− 2

p

)
Λx, andNx

def
= 2Λ̄x(I−cpΛ̄x)−1.

It is known that these matrices satisfy

P (2)
x ⪯Wx ⪯ I , (I.1)

Λx ⪯Wx , (I.2)
2

p
Wx ⪯ Gx ⪯Wx , which implies W−1

x ⪯ G−1
x ⪯

p

2
W−1
x and I ⪯W

1
2
x G

−1
x W

1
2
x ⪯

p

2
I . (I.3)

We can also compute the second-order directional derivative of Wx in direction h ∈ Rd.
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Lemma I.7 (Second-order derivative of Wx) Let wx ∈ Rm be the ℓp-Lewis weight, Γ ∈ Rm×m
≥0

a diagonal matrix, and h ∈ Rd. Then,

W ′′
x,h = −Diag

(1
2
W

− 1
2

x W ′
x,hNxW

1
2
x sx,h +W

1
2
x N

′
x,hW

1
2
x sx,h +

1

2
W

1
2
x NxW

− 1
2

x W ′
x,hsx,h + 2ΛxG

−1
x Wxs

2
x,h

)
,

Tr(ΓW ′′
x,h) = −

1

2
Tr
(
Γ Diag(W

− 1
2

x W ′
x,hNxW

1
2
x sx,h︸ ︷︷ ︸

I

)
)
− Tr

(
Γ Diag(W

1
2
x N

′
x,hW

1
2
x sx,h︸ ︷︷ ︸

II

)
)

− 1

2
Tr
(
Γ Diag(W

1
2
x NxW

− 1
2

x W ′
x,hsx,h︸ ︷︷ ︸

III

)
)
− 2Tr

(
Γ Diag(ΛxG

−1
x WxSx,hsx,h︸ ︷︷ ︸

IV

)
)
,

(I.4)

D2(AT
xWxAx)[h, h] = 6AT

xSx,hWxSx,hAx − 4AT
xW

′
x,hSx,hAx +AT

xW
′′
x,hAx (I.5)

where ∥I∥W−1
x

≲ p3m
1

p+2 ∥h∥2θ, ∥II∥W−1
x

≲ p3.5∥h∥2θ, ∥III∥W−1
x

≲ p3m
1

p+2 ∥h∥2θ, and ∥IV∥W−1
x

≲

pm
1

p+2 ∥h∥2θ. Here, ≲ hides universal constants and poly-logarithmic factors in m.

Proof The formula for W ′′
x,h follows from differentiating the formula for W ′

x,h (Lemma I.6). The
dual local norms of I˜IV can be bounded as follows:

∥I∥W−1
x

= ∥W−1
x W ′

x,hNxW
1
2
x sx,h∥2 ≤ ∥W

−1
x W ′

x,h∥2︸ ︷︷ ︸
Lemma I.8-2

∥Nx∥2︸ ︷︷ ︸
Lemma I.8-1

∥W
1
2
x sx,h∥2 ≲ p3m

1
p+2 ∥h∥2θ ,

∥II∥W−1
x

= ∥N ′
x,hW

1
2
x sx,h∥2 ≤ ∥I +Nx∥2︸ ︷︷ ︸

Lemma I.8-1

∥(I +Nx)
− 1

2N ′
x,h(I +Nx)

− 1
2 ∥

2︸ ︷︷ ︸
Lemma I.8-3

∥W
1
2
x sx,h∥2 ≲ p3.5∥h∥2θ ,

∥III∥W−1
x

= ∥NxW
− 1

2
x W ′

x,hsx,h∥2 ≤ ∥Nx∥2︸ ︷︷ ︸
Lemma I.8-1

∥W−1
x W ′

x,h∥2︸ ︷︷ ︸
Lemma I.8-2

∥Wxsx,h∥2 ≲ p3m
1

p+2 ∥h∥2θ ,

∥IV∥2
W−1

x
= sTx,hSx,hWxG

−1
x ΛxW

−1
x Λx︸ ︷︷ ︸

⪯Wx (I.2)

G−1
x WxSx,hsx,h ≤ sTx,hSx,hWxG

−1
x WxG

−1
x︸ ︷︷ ︸

⪯ p2

4
W−1

x (I.3)

WxSx,hsx,h

≤ p2sTx,hW
1
2
x S

2
x,hW

1
2
x sx,h ≤ p2∥sx,h∥2∞∥h∥

2
θ ≤ p

2m
2

p+2 ∥h∥4θ ,

where we used Lemma I.5-2 in the last inequality.

Next, we recall bounds on the derivatives of matrices relevant to Lewis weights.

Lemma I.8 (Lee and Sidford (2019)) Let Ax ≥ b and h ∈ Rd. For cp = 1− 2/p with p > 2, let

Λ̄x :=W
− 1

2
x ΛxW

− 1
2

x = I −W− 1
2

x P
(2)
x W

− 1
2

x , Nx
def
= 2Λ̄x(I − cpΛ̄x)−1 and θx = AT

xWxAx.
• (Lemma 31) Nx is symmetric and 0 ⪯ Nx ⪯ pI .

• (Lemma 34) ∥W−1
x wx,h∥∞ ≤ p(

√
2m

1
p+2 + p/2) ∥h∥θx .

• (Lemma 37) ∥(I +Nx)
− 1

2DNx[h] (I +Nx)
− 1

2 ∥2 ≤ 4p5/2∥h∥θx .

Lastly, we remind a result about closeness of the Lewis weights at close-by points.
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Lemma I.9 (Lee and Sidford (2019)) In the same setting above, let xt = x + th, st = sxt ,
wt = wxt , and zt,α ∈ Rm be a vector defined by [zt,α]i :=

d
dt log

(
[wt,i]

α

st,i

)
. Then,

∥zt∥∞ ≤
(√

2(1 + |α|p)m
1

p+2 + p |α| max(1, p/2)
)
∥h∥AT

tWtAt
.

Now we present an auxiliary result showing HSC of the Lewis-weight metric.

Lemma I.10 The metric g(x) = cAT
xWxAx is HSC for c = c1(logm)c2d1/2 with some constants

c1, c2 > 0,

Proof Let θ(x) = AT
xWxAx and h ∈ Rd. From (I.5),

D2θ[h, h, h, h] = 6sTx,hSx,hWxSx,hsx,h − 4sTx,hW
′
x,hSx,hsx,h + sTx,hW

′′
x,hsx,h

= Tr(6S4
x,hWx − 4S3

x,hW
′
x,h + S2

x,hW
′′
x,h) . (I.6)

As for the first term, |Tr(S4
x,hWx)| ≤ ∥sx,h∥2∞∥h∥

2
θ. As for the second term,

|Tr(S3
x,hW

′
x,h)| ≤ ∥sx,h∥

2
∞Tr

(√
Sx,hW

′2
x,hSx,h

)
= ∥sx,h∥2∞Tr

(√
W ′
x,hW

−1
x W ′

x,h

√
Sx,hWxSx,h

)
≤
(i)
∥sx,h∥2∞

√
Tr(W ′

x,hW
−1
x W ′

x,h)
√
Tr(Sx,hWxSx,h) = ∥sx,h∥2∞∥W

−1
x w′

x,h∥Wx
∥h∥θ

≤
(ii)
p∥sx,h∥2∞∥h∥

2
θ (I.7)

where we used the Cauchy-Schwarz in (i) and Lemma I.5-3 in (ii).
As for the last term, we first use the formula for Tr(S2

x,hW
′′
x,h) with Γ = S2

x,h in Lemma I.7.
Each term there is of the form Tr(S2

x,hDiag(v)) for v = I ˜ IV, which can be bounded as follows:

∣∣Tr(S2
x,hDiag(v)

)∣∣ = ∣∣Tr(S2
x,hW

1
2
x W

− 1
2

x Diag(v)
)∣∣ ≤√Tr(W

1
2
x S4

x,hW
1
2
x )
√

Tr
(
Diag(v)W−1

x Diag(v)
)

(I.8)

≤ ∥sx,h∥∞ ∥h∥θ ∥v∥W−1
x
.

Using the norm bounds in Lemma I.7, it follows that |Tr(S2
x,hW

′′
x,h)| ≲ ∥h∥

4
θ for p = O(logm).

Putting everything together with ∥sx,h∥∞ ≤
√
2m

1
p+2 ∥h∥θ ≲ ∥h∥θ (Lemma I.5-2),

|D2θ[h, h, h, h]| ≲ ∥sx,h∥2∞∥h∥
2
θ + ∥sx,h∥∞∥h∥

3
θ ≲ ∥h∥

4
θ .

Appendix J. Technical lemmas

Lemma J.1 For a matrix M ∈ Rm×d and E ∈ Rd×d such that E +MTM ≻ 0, it holds that

M(E +MTM)−1MT ⪯ P (M) =M(MTM)†MT .

102



THE INTERIOR-POINT METHOD FOR LOGCONCAVE SAMPLING

Proof Let us denote the LHS by P ′ and the RHS by P . We show I − P ′ ⪰ I − P instead. First,
(P ′)2 ⪯ P ′ and (I − P ′)2 ⪯ I − P ′ follow from

P ′P ′ =M(E +MTM)−1 MTM︸ ︷︷ ︸
⪯E+MTM

(E +MTM)−1MT ⪯M(E +MTM)−1MT = P ′ ,

(I − P ′)2 = I + P ′P ′ − 2P ′ ⪯ I − P ′ .

It follows from (I − P ′)2 ⪯ I − P ′ that for any v ∈ Rm

vT(I − P ′)v ≥ ∥(I − P ′)v∥2 ≥ ∥(I − P )v∥22 = vT(I − P )v ,

where the inequality holds due to P ′v, Pv ∈ range(M) and Pv = argminw∈ range(M) ∥v − w∥22.

Proposition J.2 Let v, w, p, q, r, s ∈ Rd and h ∼ N (0, Id).
• E[(v · h)(w · h)3] = 3∥w∥2(v · w).
• E[(v · h)2(w · h)2] = ∥v∥2∥w∥2 + 2(v · w)2.
• E[(p · h)2(r · h)(s · h)] = ∥p∥2(r · s) + 2(p · s)(p · r).

Proof Using Stein’s lemma (Lemma E.9),

E[(v · h)(w · h)3] =
Stein

∑
i

wiE[hi(v · h)(w · h)2] =
∑
i

wi
(
viE[(w · h)2] + 2wiE[(v · h)(w · h)]

)
= (v · w)∥w∥2 + 2∥w∥2(v · w) = 3∥w∥2(v · w) ,

E[(v · h)2(w · h)2] =
∑
i

viE[hi(v · h)(w · h)2] =
Stein

∑
i

vi
(
viE[(w · h)2] + 2wiE[(v · h)(w · h)]

)
= ∥v∥2∥w∥2 + 2(v · w)2 ,

E[(p · h)2(r · h)(s · h)] =
∑
i

piE[hi(p · h)(r · h)(s · h)]

=
Stein

∑
pi (piE[(r · h)(s · h)] + riE[(p · h)(s · h)] + siE[(p · h)(r · h)])

= ∥p∥2(r · s) + (p · r)(p · s) + (p · s)(p · r) = ∥p∥2(r · s) + 2(p · s)(p · r) .

These estimations result in a useful lemma for establishing SASC of barriers for linear constraints.

Lemma J.3 For v, w ∈ Rd and h ∼ N (0, Id), E[(v ·h)3(w ·h)3] = 9∥v∥2∥w∥2(v ·w)+6(v ·w)3.

Proof Using Stein’s lemma,

E[(v · h)3(w · h)3] =
∑
i

viE[hi(v · h)2(w · h)3] =
∑

vi
(
2viE[(v · h)(w · h)3] + 3wiE[(v · h)2(w · h)2]

)
=
(i)

2∥v∥2 · 3∥w∥2(v · w) + 3(v · w)
(
∥v∥2∥w∥2 + 2(v · w)2

)
= 9∥v∥2∥w∥2 + 6(v · w)3 ,

where in (i) we used Proposition J.2-1 and 2.
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Lemma J.4 For p, q, r, s ∈ Rd and h ∼ N (0, Id),

E[(p · h)2(q · h)(r · h)2(s · h)] = (q · s)∥p∥2∥r∥2 + 4(p · r)(p · q)(r · s)
+2∥p∥2(r · q)(r · s) + 2∥r∥2(p · q)(p · s) + 2(p · r)2(q · s) + 4(p · s)(p · r)(r · q) .

Proof Using Stein’s lemma,

E[(p · h)2(q · h)(r · h)2(s · h)] =
∑
i

qiE[hi(p · h)2(r · h)2(s · h)]

=
∑

qi
(
2piE[(p · h)(r · h)2(s · h)] + 2riE[(p · h)2(r · h)(s · h)] + 2siE[(p · h)2(r · h)2]

)
=
(i)

2(p · q)
(
∥r∥2(p · s) + 2(p · r)(r · s)

)
+ 2(r · q)

(
∥p∥2(r · s) + 2(p · s)(p · r)

)
+ (q · s)

(
∥p∥2∥r∥2 + 2(p · r)2

)
= (q · s)∥p∥2∥r∥2 + 4(p · r)(p · q)(r · s) + 2∥p∥2(r · q)(r · s) + 2∥r∥2(p · q)(p · s)

+ 2(p · r)2(q · s) + 4(p · s)(p · r)(r · q) .

In (i), we used Proposition J.2-3 to the first two terms and Proposition J.2-2 to the third term.

104


	Introduction
	Warm-up: Dikin walk and self-concordance
	Main results and technical overview
	Result 1 - Mixing of Dikin walk for general well-conditioned distributions
	Result 2 - Sampling IPM: Gaussian cooling with the Dikin walk (GCDW)
	Result 3 - Self-concordance theory for combining barriers
	Result 4 - Metrics for well-known structured instances
	Examples
	Discussion

	Background and related work
	Missing notation
	Mixing of the Dikin walk 
	Gaussian cooling on manifolds revisited: IPM framework for sampling 
	Self-concordance theory for sampling IPM 
	Structured densities and constraint families 
	Examples 
	Proofs 
	Backgrounds on matrix algebra
	Self-concordant barriers for linear constraints
	Technical lemmas

