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ABSTRACT
As video camera deployments continue to grow, the need to process large volumes of real-time data strains
wide-area network infrastructure. When per-camera bandwidth is limited, it is infeasible for applications such
as traffic monitoring, pedestrian tracking, and more to offload high-quality video streams to a datacenter. This
paper presents FilterForward, a new edge-to-cloud system that enables datacenter-based applications to process
content from thousands of cameras by installing lightweight edge filters that back-haul only relevant video
frames. FilterForward introduces fast and expressive per-application “microclassifiers” that share computation to
simultaneously detect dozens of events using computationally-constrained edge nodes. Only matching events
are transmitted to the datacenter. Evaluation on two real-world camera feed datasets shows that FilterForward
improves computational efficiency and event detection accuracy for challenging video content while drastically

reducing network bandwidth usage.

1 INTRODUCTION

The deployment of video cameras in urban areas is ubiqui-
tous: in malls, offices, and homes, and on streets, cars, and
people. Almost 100 million networked surveillance cam-
eras were purchased in 2017 (IHS). Machine learning—based
analytics on real-time streams collected by these cameras,
such as traffic monitoring, customer tracking, and event
detection, promise breakthroughs in efficiency and safety.
However, tens of thousands of always-on cameras installed
in a modern city collectively generate tens of gigabits of
data every second, surpassing the capabilities of shared net-
work infrastructure. Wireless and cellular—connected nodes
and areas outside of infrastructure-rich metropolitan centers
often have significantly less network bandwidth (Google
Wireless Internet; ITU/UNESCO Broadband Commission
for Sustainable Development, 2017), exacerbating this prob-
lem (FCC).

The combination of increasing sensor resolution and deploy-
ment proliferation necessitates edge-based filtering that is
parsimonious with limited bandwidth. This paper presents
FilterForward, a system that offers the benefits of both edge-
computing and datacenter-centric approaches to wide-area
video processing. Using edge compute resources collocated
with the cameras, FilterForward identifies short sequences
most relevant to the datacenter applications (“filtering”) and
offloads only those for further analysis (“forwarding”). In
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this way, FilterForward supports near real-time process-
ing running in datacenters while limiting the use of low-
bandwidth wide-area network links.

FilterForward is designed for scenarios meeting two key as-
sumptions, which hold for some, though certainly not all, ap-
plications: First, relevant events are rare. There is, therefore,
bandwidth to be saved by transmitting only relevant frames.
Second, datacenter applications require sufficiently high-
quality frame data in order to best complete their tasks. This
precludes solutions such as heavily compressing streams
or reducing their spatial (frame dimensions) or temporal
(frame frequency) resolutions.

In the FilterForward model, datacenter applications express
interest in specific types of visual content (e.g., “send me
sequences containing buses”). Each application installs on
the edge a set of small neural networks called microclassi-
fiers (MCs) that perform binary classification on incoming
frames to determine whether an interesting state is occur-
ring. These frame-level results are smoothed to determine
the start and end points of an “event” during which the ob-
ject appears. At runtime, the matched frames, or a subset
thereof, are streamed to the cloud. Multiple MCs work in
parallel to filter different types of events for many applica-
tions. Each MC is trained offline by an application deployer
to determine which frames are relevant to that application,
using the same training data that would be used to develop
a datacenter-based filter.

In contrast to prior video filtering work such as No-
Scope (Kang et al., 2017), FilterForward is designed to iden-
tify events that may occupy arbitrary and small regions of
the frame and require fine-grained details; examples might
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include differentiating pedestrians walking with canes from
those without, or spotting specific animals in wide-angle
shots.

FilterForward is further designed to scale to multiple, in-
dependent detection objectives (i.e., “find any of these five
types of fish”). Instead of designing the MCs to operate on
raw pixels, FilterForward draws inspiration from the design
of modern object detectors and uses a shared base neural
network to extract general features from each frame. Each
MC reuses the activations from that base network (either by
running a convolutional window across an entire layer, or
by extracting a spatially-cropped region). This amortizes
the expensive task of pixel processing across all of the MCs,
allowing FilterForward to scale to tens of concurrent MCs
using the CPU power available in a small-form-factor edge
node.

For applications meeting the requirements of FilterForward
(operating with severe bandwidth constraints and requiring
reasonable quality frames), our architecture deliver a greater
number of useful frames to the datacenter than either ex-
isting filtering approaches, or massively compressing the
stream using h.264. Our evaluation using two real-world
camera feeds demonstrates that FilterForward is computa-
tionally efficient, scaling to X applications on a consumer-
grade CPU. Microclassifiers are more accurate than the
pixel-based task-specific deep neural net (DNN) filters used
in prior work, and they provide a higher frame rate when
running 20 or more filters in parallel.

2 EDGE-TO-CLOUD CHALLENGES

The scenarios that motivate this paper include remote IoT-
style monitoring, and “smart-city” style deployments of
thousands of wide-angle, fixed-view cameras. The scenes
these cameras observe contain diverse objects and activ-
ities. FilterForward is designed to help overcome three
challenges:

2.1 Limited Bandwidth

Each camera’s wide area bandwidth is limited, both by
the physical constraints of modern infrastructure and the
monetary cost of operating a widespread camera deploy-
ment. Previous video analysis platforms (Kang et al., 2017;
Zhang et al., 2017) assume that cameras on the edge can
stream full video feeds to a datacenter, but we challenge that
assumption. Specifically, we consider large-scale deploy-
ments where each camera receives a bandwidth allocation
of a few hundreds of kilobits per second or less, which is
often insufficient to stream video at a high-enough qual-
ity to perform accurate analysis. Aggressive compression
severely degrades the F1 score of applications running in a
datacenter (Pakha et al., 2018). These requirements neces-

sitate edge-based computation to identify which frames to
send to the datacenter.

2.2 Scalable Multi-Tenancy

The surveillance video captured by each camera in a large-
scale deployment contains many types of content that are
interesting to applications. Therefore, any edge-filtering
approach must support multiple applications examining a
video stream in parallel, but doing so can be computationally
expensive. A naive approach to handling N applications is
to run N full DNNs concurrently, however even relatively
lightweight DNNs are costly—on modest hardware, Mo-
bileNet (Howard et al., 2017) runs at approximately 15 fps
on 512 x 512 pixel RGB input frames while consuming
more than a gigabyte of memory. This prevents edge nodes
from executing more than a handfull of full DNNs on a real-
time video stream. Section 5.2 compares the performance
of this approach to FilterForward.

Alternatively, conventional machine learning techniques for
reusing computation provide better scalability, but sacrifice
accuracy. Transfer learning accelerates multi-application
training and inference by leveraging the observation that
DNNss trained for image classification and object recognition
identify general features that transfer well to novel, special-
ized computer vision tasks (Donahue et al., 2014; Yosinski
et al., 2014). ! During inference, DNNs share computation
by running one base DNN to completion and extracting its
last layer as a feature vector, which is then used by multiple
specialized classifiers (one per application) (Pakha et al.,
2018). Recent transfer learning approaches (Jiang et al.,
2018) allow application-specific DNNs to share different
numbers of layers from the base DNN. Unfortunately, these
approaches suffer poor accuracy especially for small objects
because they retain the original neural network architecture
for their retrained layer(s), an approach that is not optimized
for small objects.

2.3 Real-World Video Streams

Given most cameras’ wide viewing angle and high mounting
position, interesting objects are typically small (e.g., distant
pedestrians in busy intersections). Additionally, around-the-
clock surviellence video experiences lighting changes and
weather phenomenoms (e.g., passing clouds, day-to-night
transitions, rain and snow, etc.) that drastically alter the
data over time. Therefore, pixel-level or histogram-based

!Classical transfer learning of DNNs involves starting with a
network trained on an existing large dataset, holding all weights
up to a given layer constant, and retraining only the last layer (also
known as fine-tuning for the task at hand). Fine-tuning more than
just the last layer is an instance of multi-task learning (Caruana,
1998), which leads to deployment inflexibility because all models
must be retrained when applications are added or removed.
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detectors are insufficient because large shifts in the content
over time lead to false positives—which further exacerbate
the aforementioned bandwidth constraint by sending unnec-
essary video frames to the datacenter—and false negatives—
which cause applications to miss events. Filtering based on
semantic content is necessary.

Previous systems (Kang et al., 2017) are often evaluated on
highly-curated datasets, where video processing is orches-
trated to be easier. For example, the video may be cropped
so that the object of interest is large (typically occupying the
majority of the frame), and edited to exclude challenging
time periods, such as nighttime. This constrains the state
space that a machine learning model must learn, giving an
advantage both in terms of model size and accuracy.

Ultimately, FilterForward addresses these three challenges—
limited bandwidth, scalable multi-tenancy, and support for
real-world video streams—through computational reuse,
novel microclassifier architectures, and content-based filter-

ing.

3 BACKGROUND AND RELATED WORK

Before delving into FilterForward’s design, we provide an
overview of related video analytics and machine learning
work.

Video analytics: Video analytics encompasses various
query processing tasks that examine content in video
streams. Examples of video analytics include the following:
Image classification categorizes a whole frame based on
its most dominant features (e.g., “This is an image of an
intersection.”). Object detection finds interesting objects
that may occupy only a small portion of the view in and
cetegorizes them (e.g., “This region is a car and that region
is a person.”). Object tracking aims to label each object
across multiple frames (e.g., “This path plots the progress of
pedestrian A crossing the road.”). These tasks require exten-
sive computation on large amounts of data (e.g., 1.5 Gbps of
uncompressed data per 1080p, 30 fps video stream). Accom-
plishing video analytics at scale requires abundant compute
and storage resources, making it logical to do this process-
ing in the cloud (Kang et al., 2017; Zhang et al., 2017). In
contrast to bulk analytics applications running in the cloud,
our edge filters economically search the video stream for
requested “events” with the explicit goal of reducing the
number of frames that must be transmitted and processed
later.

Video filtering with event detection: Filtering is a ba-
sic building block of video analytics. Dropping irrelevant
frames is a common techinique to reduce computation and
transmission load if analyzing those dropped frames would
yield marginal benefit (Kang et al., 2017; Pakha et al., 2018;

Wang et al., 2018). NoScope (Kang et al., 2017), for exam-
ple, detects pixel-level changes versus a reference image or
previous frame and executes classifiers on only those frames
whose difference exceeds a threshold. NoScope also trains
cheap, task-specific CNNs (i.e., a custom “shetland pony’
binary classifier instead of fine-tuning an advanced object-
detection network such as YOLO9000 (Redmon & Farhadi,
2016)), and only applies an expensive DNN when the con-
fidence of the cheap DNN is below a threshold. However,
unlike FilterForward, NoScope assumes that it is possible to
stream all of the video to a resource-rich datacenter, so all
of their processing is done in the cloud. The basic premise
of FilterForward is that this offloading is infeasible. Futher-
more, NoScope’s cheap binary classifiers are much more
expensive than FilterForward’s microclassifiers, limiting
scalability, as discussed in 5.2. Furthermore, we observe
that simple pixel-level DNN-based classifiers are inaccurate
on real-world video streams containing small objects, justi-
fying the need for specialized architectures (Section 5.4).

5

While filtering may take many forms, we focus primarily on
filtering as “event detection”, wherein each filter discovers
contiguous segments of a video stream that contain a par-
ticular event, usually the presence of an object (e.g., “video
segments containing pedestrians crossing the road”). We
focus on event detection because of its role as a preproces-
sor in advance of other video applications, since detecting a
particular type of scene is often the first step in more spe-
cialized tasks (e.g., object counting, safety analysis, activity
recognition, etc.). FilterForward extends the benefit of video
filtering beyond computation reduction to the problem of
limited bandwidth, transmitting only video segments with
events of interest.

Resource scheduling for video applications: Resource
management is crucial for practical video analytics because
applications often impose the conflicting goals of maxi-
mizing their overall benefit and meeting performance con-
straints. For instance, VideoStorm (Zhang et al., 2017)
adjusts query quality to maximize a combined utility, us-
ing efficient scheduling that leverages offline quality and
resource profiles. LAVEA (Yi et al., 2017) places tasks
across edge nodes and clients (e.g., mobile phones) to mini-
mize latency of video analytics. DeepDecision (Ran et al.,
2018) expresses resource scheduling in video processing as
a combinatorial optimization problem.

FilterForward shares a similar motivation of balancing qual-
ity and throughput for resource-starved edge nodes with
constrained network bandwidth. Unlike prior scheduling
work that only adjusts general knobs such as video bitrate
for performance-quality tradeoffs, FilterForward directly
improves the computational efficiency of multiple filters
running on the same edge node through computation shar-

ing.
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Accelerating DNN inference: Using low-precision nu-
merics (e.g., binary weights and activations (Lin et al.,
2017)) can accelerate inference by reducing the DNN model
size and simplifying each arithmetic operation. This ap-
proach alone is insufficient to provide scalable video pro-
cessing on FilterForward’s target edge platform because us-
ing low-precision inference observes visible accuracy degra-
dation when computation reduction exceeds about 4 x (Lin
et al., 2017; Han et al., 2016), but it is complementary to
our work.

Edge-based video analytics under bandwidth con-
straints: Similar to FilterForward, others have ap-
proached the challenges of running ML workloads on mul-
titudes of edge-generated video in real time. Both (Pakha
et al., 2018) and (Wang et al., 2018) push computation to
the edge to determine which frames are “uninteresting” to
heavyweight analytics in the cloud.

(Pakha et al., 2018) uses sampling and superposition cod-
ing to only send the frames where objects appear, and send
those frames at the lowest possible quality. Their iterative
algorithm offloads low-quality frames to the cloud first, runs
them through the analysis workload, and uses the results as
a hint as to whether a frame (or regions of a frame) is rele-
vant and should be considered at higher quality. The authors
stress the difference between quality for the sake of hu-
man consumption and quality that improves DNN inference
accuracy. While the work displays impressive bandwidth
savings, the iterative nature of the algorithm along with its
requirement on back-and-forth communication between the
edge and the cloud mean that the throughput is limited. Fil-
terForward is entirely feed-forward, with no cloud-to-edge
communication (except for periodic updates to the micro-
classifier models), so the throughput is only limited by the
processing power of the edge nodes.

(Wang et al., 2018) examines the heavily bandwidth-
constrained use case of offloading video in real time from
a swarm of autonomous drones using the 4G LTE cellu-
lar network. The authors prioritize low end-to-end latency
between frame capture and cloud analysis in order to sup-
port tight feedback loops with human operators. Similar
to FilterForward, this system uses lightweight DNNs (e.g.,
MobileNet) running on the edge (here, on the drones) to
give an early indication of whether a frame is interesting.
The system improves accuracy in the face of changing envi-
ronments using continuously-retrained SVMs that operate
on the output from the DNNs’ final pooling layers. These
SVMs are similar in principle to our microclassifiers. How-
ever, since their architecture is constrained and they only
use features from the final pooling layer, the SVMs are by
design limited in the content they can detect (yet are slightly
cheaper) compared to our microclassifiers.
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Figure 1. The FilterForward architecture. At the heart of each filter
is a microclassifier that detects which frames are relevant to a single
application, making the best use of an edge node’s bandwidth
budget. The resulting set of relevant frames is forwarded to the
datacenter. Multiple microclassifiers share feature maps generated
by the feature extractor, allowing FilterForward to scale to dozens
of filters per machine. Thick lines indicate large volumes of data,
whereas thin lines represent decimated streams.

(Wang et al., 2018) also makes the point that degrading a
stream’s encoding quality in turn measurably lowers DNN
inference accuracy. One of the key motivating factors behind
FilterForward is the desire to avoid this drop in per-frame
accuracy by sending fewer, but higher quality, frames. Pri-
oritizing relevant frames under this constraint is the primary
contribution of FilterForward.

Both (Pakha et al., 2018) and (Wang et al., 2018) focus on
streams where the camera is moving, whereas FilterForward
primarily considers stationary surveillance cameras. Operat-
ing on streams with less global motion gives FilterForward
an advantage because it is easier to train classifiers for these
streams, and the larger proportion of unchanging pixels
makes them more compressible. While we only evaulate
on static streams, the principles of FilterForward are also
applicable to moving streams.

One drawback of these works is that they both rely on drop-
ping individual frames, but for the video-centric applications
we target, frame dropping is sub-optimal: With h.264 or
similar compression, dropping a single frame often saves
relatively little bandwidth; event-based approaches are more
suited. Finally, of course, this prior work is not optimized
for multi-tenant use. FilterForward is designed with system
throughput and query scalability as first-class concerns, and
can run dozens of concurrent microclassifiers.

4 DESIGN

FilterForward is a novel video analytics architecture that
reuses computation to provide high-quality, multi-tenant
filtering for bandwidth-constrained edge nodes. The archi-
tecture is shown in Figure 1; the relatively more expensive
feature extractor’s computation is amortized across multiple
microclassifiers (MCs).

FilterForward offers applications the flexibility of split-
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ting their work between the edge and the cloud. Purely
edge-based approaches constrain applications to the static
compute and storage resources of field installations, while
datacenter-only deployments necessitate heavily compress-
ing the video for transport. FilterForward takes advantage
of high-fidelity data at the edge and makes relevant video
sequences available to the cloud.

The rest of this section covers the architecture of FilterFor-
ward’s feature extractor and microclassifiers, discussing how
they address the three challenges described in Section 2.

4.1 Generating Features

To enable computation reuse across multiple filters, Filter-
Forward’s microclassifiers take as input the intermediate
results from a single reference DNN, which we refer to as
the base DNN. Later layers of the base DNN typically en-
code less visual and more semantic information about the
image. For example, the output (activations) of the first
layer (which is usually a simple convolutional filter such as
an edge detector) is still visually recognizable. Later acti-
vations are feature maps representing higher-level concepts
(e.g., “eye”, “fur”, “tire”, etc.). Convolutional layers reduce
the spatial dimensionality of the data. Thus, an image may
start as 512x512x3 pixels (three color channels—RGB) and
end up as a feature map of varying dimensions (256x256x64,
128x128x128, 32x32x512, etc.). The final layer in an
ImageNet-based classifier is typically a 1x1x1000 vector,
where the 1000 output floats represent 1000 potential classes
for the image.

Selective processing of these feature maps has been used
successfully for tasks such as object region proposals, seg-
mentation, and tracking (Ren et al., 2015; Hariharan et al.,
2015; Ma et al., 2015; Bertinetto et al., 2016), as well as
video action classification (Sharma et al., 2015). As prior
work observes (Sharghi et al.; Yeung et al.), the feature
maps capture many of the things humans intuitively de-
sire to detect in video, such as the presence and number
of objects in a scene, outperforming handcrafted low-level
features (Razavian et al., 2014; Yue-Hei Ng et al., 2015;
Babenko & Lempitsky, 2015).

Operating on feature maps from a single DNN provides the
microclassifiers with competitive accuracy and an order of
magnitude lower computation load than operating directly
on raw pixels (Section 5.2). For our experiments, we use
the full-size MobileNet (Howard et al., 2017) architecture
trained on ImageNet (Russakovsky et al., 2015) as the base
DNN. This network offers a balance between accuracy and
computational demand that is appropriate for constrained
edge nodes. One important difference from a typical use of
MobileNet is that FilterForward uses full-resolution frames
as input, instead of resizing to 224x224 pixels (or smaller).
The type of video that FilterForward is designed to process

(wide-angle surveillance video) contains many small details
that are interesting to applications but difficult to detect if
the video is too aggressively down-sampled. Using a large
input imposes a significant computation overhead, as the
work done by each layer increases. However, by operating
on more pixels, small content such as distant pedestrians,
model-specific details in automobiles, and faces are much
more visible.

Evaluating the DNN is the most computationally intensive
phase of FilterForward, but its results are reused by all
parts of the system, effectively amortizing the up-front, per-
frame overhead across filters. Each microclassifier can pull
features from a different layer of the base DNN, as well
as crop the features to focus on a certain portion of the
frame. Feature cropping not only reduces computation, but
increases accuracy by forcing the microclassifier to only
consider that region when making its prediction.

Ultimately, the features generated by the base DNN, and the
flexible manner in which we use them, underpin FilterFor-
ward’s scalability and accuracy achievements.

4.2 Finding Relevant Frames Using Microclassifiers
4.2.1 Microclassifiers From Afar

Microclassifiers are single-frame, lightweight binary clas-
sification neural networks that take as input the features
extracted by the base DNN (Section 4.1) and output the
probability that a frame is relevant to a particular applica-
tion. An application developer chooses a microclassifier
architecture (we present several possibilities below) and
trains it offline so that it can detect the application’s desired
content. To deploy a MC, the developer supplies the net-
work weights and architecture along with a specification
of which layer activations (and optionally, a crop of these)
to use as input. Ideally, a microclassifier will identify all
of the frames that an application needs to process in the
cloud (the redundancy inherent in video provides a safety
margin for false negatives), while rejecting a large fraction
of unimportant frames (false positives, which pollute the
bandwidth with irrelevant data). Dropping irrelevant frames
is crucial to limiting bandwidth use (Section2.1).

By design, microclassifiers are cheap enough to run on every
frame, enabling dozens to run concurrently on each edge
node (Section 2.2). Their resource use is static and pre-
dictable, so the system designer can guarantee that they op-
erate within edge node compute constraints. A single edge
node can run several microclassifiers on a single, content-
rich stream, or a handful of microclassifiers on several
streams simultaneously. By analyzing high resolution video
at the edge, FilterForward can achieves better accuracy than
approaches which attempt to relay all of the frames to the
datacenter under the bandwidth constraints (Section 5.2.1).
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4.2.2  Microclassifier Architectures

The architecture of a microclassifier must be specialized to
the wide-angle, surveillance-style video that FilterForward
processes. As discussed in Section 2.3, running off-the-shelf
classifiers and detectors on this type of video is inaccurate
because the objects of interest are small. We propose three
custom architectures, shown in Figure 2, that solve these
challenges in different ways. An important feature of these
designs is that they operate on different layers of the base
DNN and optionally crop their input features. The micro-
classifiers operate on whichever granularity of features is
most appropriate for their task while “ignoring” regions of
the frame that are uninteresting. Both of these capabilities
are critical to achieving high accuracy on real-world data
(evaluated in Section 5.4) and differentiate FilterForward
from existing systems like NoScope (Kang et al., 2017).

Full-Frame Object Detector (Figure 2a): Modeled af-
ter sliding window-style object detectors (such as SSD and
Faster R-CNN), the full-frame object detector microclas-
sifier applies a small binary classification DNN at each
location in a CNN layer feature map and then aggregates the
detections to make a global prediction. This is achieved by
using multiple layers of 1x 1 convolutions and then applying
a max operator over the grid of logits (signifying looking
for > 1 objects). Spatial scoping could be accomplished
by selectively zeroing the grid of logits prior to response
aggregation. This model is specifically for pattern match-
ing queries, with an implicit assumption of translational
invariance (i.e., the model runs the same template matcher
everywhere, treating every location the same).

Localized Binary Classifier (Figure 2b): Localized bi-
nary classification microclassifiers are lightweight CNNs
that use a fixed rectangular crop of an internal CNN layer as
input. The crop is selected ahead of time by the user. The
ability to select a static subregion is a natural option for a
fixed camera feed, enabling the model to perform spatially
scoped classification at reduced computational cost. A po-
tential extension could see these classifiers operate off of a
region-of-interest selected at runtime.

Windowed Localized Binary Classifier (Figure 2c):
This model is a simple extension of the localized binary
classification microclassifier that incorporates nearby tem-
poral context to perform better per-frame classification. The
user specifies a fixed temporal window of size K. Given the
convolutional features in a symmetric K -sized window at
time ¢ (i.e., features from time steps [t — K/2,t + K/2]),
the windowed localized microclassifier first appliesa 1 x 1
convolution on each frame’s features in the given window.
It then depthwise concatenates the resulting features and
applies a CNN on the resulting output to predict whether the

event was occurring at time ¢. This setup allows the model
to pick up on motion cues in the scene, which helps achieve
higher accuracies on the tasks where objects are constantly
moving. In addition, the initial 1 x 1 convolution is only
computed once and its output is shared by subsequent win-
dows; this requires low overall memory footprint since first
step significantly reduces the size of the input feature map.

4.2.3 Choosing Microclassifier Inputs

Choosing which layer to use as each microclassifier’s input
is critical to its accuracy. The layers of a CNN feature
hierarchy offer a trade-off between spatial localization and
semantic information. Too late a layer may not be able to
observe small details (because they have been subsumed
by global semantic classification). Too early a layer could
be computationally expensive due to the large size of early
layer activations and the amount of processing still required
to transform them into a classification result. Given that
a key feature of microclassifiers is their flexibility to draw
from any internal activations in a reference CNN, how can
we “train” a microclassifier such that it does so effectively?

As a baseline, we hand-select a layer and crop region based
upon two simple heuristics: For the layer depth, we tried to
match the typical size of the object class we were detecting.
(e.g., to detect pedestrians in an input video in which the
average human height was 40 pixels, we would choose the
first layer at which a roughly 20-50:1 spatial reduction had
been effected). We chose the crop layer based upon the
region of interest for the application, such as the crosswalks
in the Jackson Hole pedestrian task (Section 5).

In the future, we plan to experiment with sampling from
non-contiguous regions and across multiple layers. We also
plan to further automate the process of choosing which
layer activations and specific crops to use. Our preliminary
experiments with choosing random crops were encouraging,
but not much simpler than the guided heuristics above, so
we do not report on them further.

4.3 Detecting Events Using Microclassifiers

A microclassifier assigns per-frame classifications, which
FilterForward then smooths into event detections. First,
each MC'’s results for NV consecutive frames are accumu-
lated into a window. Then, to smooth spurious positives, we
apply K -Voting to this window, treating the middle frame as
a detection if at least K of the frames in the window are pos-
itive detections. We set N = 5 and K = 2. The resulting
smoothed per-frame labels are fed into an event detector that
considers each contiguous segment of positively-classifier
frames as a unique event. Each event is assigned a unique
ID, which is stored in each frame’s metadata. When frames
arrive in the datacenter, this ID is used to reestablish the
event boundaries.
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Figure 2. Layer details for the three proposed microclassifier architectures. The details for the full-frame object detector and localized
binary classifier are for the case where features generated from 2048 x 850 images. The details for the windowed, localized binary
classifier shown in this diagram is for features generated from 512 x 512 images, due to lack of computational resources/time to train this

model on features generated from 2048 x 850 images.

Most classification metrics operate on a per-frame basis;
because our work is event-centric, we adopt a simplified
metric from (Lee et al., 2018) that defines a modified recall
metric for events that span time. The resulting metric weighs
two success measures: Existence rewards detecting at least
one frame from an event, and Overlap rewards detecting an
increasing fraction of the frames from an event:

) 1 if any frame predicted in event ¢
Existence; = .
0 otherwise

Z |Intersect(R;, P;)|

Overlap, = X
i

J

where I%; and P; are the ground-truth event ranges and
predicted event ranges, respectively.

The final event recall metric is: a x Existence+ 3 x Overlap.
We choose av = 0.9 and 3 = 0.1 in order to place a greater
importance on detecting a single frame in each event. In
real-time streaming event detection in a city surveillance
setting, we believe that not missing a single event is more im-
portant than processing all frames in an event. We evaluate
microclassifier accuracy using this metric in Section 5.4.

For precision, we retain the standard definition: Precision
is the fraction of predicted frames that are true positives
(ie., %. For FilterForward, this corresponds
to a measure of how well the edge node’s bandwidth is
used: A precision of 1 means that all bandwidth is used to
send “true positive” frames. We combine precision with
our modified definition of event recall to calculate an event

F1-score, which is the basis for our evaluation.

5 EVALUATION

FilterForward’s goal is to maximize filtering accuracy while
limiting bandwidth use and scaling to multiple applications.
We show that FilterForward achieves a high frame rate on
commodity hardware by sharing computation between the
microclassifiers while maintaining high event-level accuracy
on two event detection tasks.

5.1 Datasets

Because our target for FilterForward is large real-world
deployments, we evaluate using two datasets (Figure 4) cap-
tured with cameras and surveying types of scenes that are
representative of our intended use cases. The first dataset
consists of video captured from a traffic camera deploy-
ment in Jackson Hole, Wyoming (the Jackson dataset). We
collected two six-hour videos from two consecutive days
between 10AM and 4PM. Then, we annotated the twelve
hours of data with labels for two events: (1) when pedes-
trians appear in the crosswalks (the Pedestrian task); and
(2) when red pickup trucks appear in the left street area (the
Red Truck task). These tasks allow us to demonstrate the
spatial selectivity of our microclassifiers in a way that is
hopefully relevant to future traffic monitoring applications.
For example, combined with a simple traffic light detector,
one could craft composite queries to detect near-misses on
unprotected left turns.

Because the encoding quality of the Jackson dataset (ob-
tained from Youtube) is relatively low and lacks sufficent
detail to reliably distinguish, e.g., clothing or other finer de-
tails, we collected a second dataset from high-quality cam-
eras of our own. It consists of two three-hour videos from
a camera overlooking a city street (the Roadway dataset),
captured back-to-back during the middle of the day. We
then labeled segments during which the camera observed



Scaling Video Analytics on Constrained Edge Nodes

1.0
°

2 0.8 ° ® ®
(=}
1)
(2]
T 0.6
E .
[

0.4 ®
o °
[
[
>
m 0.2 A ® Send Everything

® FilterForward
0.0 T T
10 100 1000 10000

Bitrate (kilobits per second)

(a) Full-frame binary classifier, with FilterForward operating
on a 250 kbps stream.
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(b) Localized binary classifier, with FilterForward operating
on a 1000 kbps stream.

Figure 3. Achieved bitrate use on the Roadway dataset for two
strategies for offloading data: (1) compressing the video using
h.264 and sending all frames; and (2) FilterForward, where only
relevant sequences are sent (also h.264 encoded). By dropping
irrelevant frames, FilterForward uses bandwidth more efficiently
and achieves a higher event-level F1 score despite using less band-
width. We evaluate our microclassifiers as proxies for datacenter
applications, running full training on each experimental bitrate.
To pick the bitrate at which to run FilterForward, we (i.e., the
application developer) select the bitrate at which the event-level F1
score’s improvement tappers off (250 kbps for (a) and 1000 kbps
for (b)).

pedestrians wearing red articles of clothing or carrying red
parcels (the People with red task). We found throughout our
experiments that the coarseness of the Jackson video made
it difficult to train classifiers to observe smaller objects or
fine details, and so, in general, we focus on the Roadway
dataset because of its higher-fidelity images.

All performance experiments are conducted on a desktop
computer with a quad-core Intel i7-6700K CPU and 32 GB
of RAM. We will make the datasets available online once
not bound by anonymity requirements.

5.2 End-to-End Performance

On an H.264 encoded, 1920x 1080 video, including de-
coding and recording to disk, FilterForward is capable of

N D g -

(a) Left: The Jackson dataset; crosswalk and street regions for
the Pedestrian and Red Truck tasks, respectively. Right: The
Roadway dataset.

Dataset Jackson Roadway
Resolution 512x512 2048x850
Frame rate 15 15
# Frames 648,000 324,000
Task Pedestrian ~ Red Truck | People with red
# Event Frames 95,238 8,872 71,296
# Events 506 139 326

(b) Dataset details

Figure 4. Video datasets used for evaluation.

processing its full-resolution input at 5 fps with a single
query, or roughly 3 fps with 10 concurrent queries.

Figure 6 shows the breakdown of execution time for our
three proposed microclassifier architectures. With few
queries, the feature extraction DNN execution time domi-
nates, but the total execution cost remains modest even with
dozens of concurrent queries. (We expect that real-world
deployments would use either GPU or specialized hardware
acceleration; our results here are using full 32 bit versions
of Mobilenet).

An alternative approach is to train discrete, from-the-pixels
classifiers specialized to a specific class (and camera view),
as used in NoScope (Kang et al., 2017). A single discrete
classifier is faster than the base DNN used in FilterForward
(Figure 7), but also achieves lower accuracy. Because the
discrete classifiers do not share computation, once there
are four or more concurrent queries, FilterForward’s shared
design both achieves higher accuracy and lower cost.

5.2.1 Bandwidth Savings

When FilterForward identifies an event, it streams an h.264-
encoded sequence of the event’s frames back to the data-
center, at whatever bitrate was determined necessary for the
application. Figure 3 shows the bandwidth and event-level
F1 scores (which, as the reader will recall, combine preci-
sion and recall, but using precision modified to give slight
extra weight to detecting any frames during an event). Using
either the crop-based “localized classifier” or the full-frame
binary classifier, FilterForward is able to reduce the network
bandwidth by nearly an order of magnitude compared to
sending the equivalent full video stream back to the datacen-
ter. Compared to alternatives that compress the video more
highly, FilterForward provides substantially better accuracy.

In the remainder of the evaluation, we dig into the perfor-
mance and accuracy of each of FilterForward’s components
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Figure 5. Throughput of FilterForward for our three microclassifier architectures. FilterForward achieve superior throughput as the number
of filters increases because more filters means more effective amortization of the cost of the base DNN.
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Figure 6. Execution time breakdown of the main components in FilterForward for our three microclassifier architectures. The full-frame
binary classifier MC does not contain a “Feature Crop” stage because it operates on a full feature map. For (b) and (c), the “Feature Crop”
is so fast that it is not visible. FilterForward pays the upfront cost of evaluating the base DNN (MobileNet), but reaps the resulting benefit

of each additional microclassifier being relatively cheap.

to explore why it is able to provide these savings, and to
help understand where it may or may not generalize.

5.3 Feature Generation

The first step in the FilterForward processing pipeline uses
an existing DNN to create feature maps for each frame.
After evaluating a set of modern networks, we selected
MobileNet (Howard et al., 2017), for its balance of maturity,
accuracy and inference performance. (This was a choice
made at the outset of this research; picking a good base
network is, of course, a moving target, and we do not view
the selection of a specific base as particularly important—-
improved base networks, in fact, improve FilterForward’s
performance relative to discrete classifiers.)

We run the DNNGs using a version of the Caffe deep learning
framework (caffe) that has been optimized for Intel CPUs
and uses the Intel Math Kernel Library for Deep Neural
Networks (Intel MKL-DNN) (intel-mkl-dnn). When per-
forming only DNN inference, our hardware can achieve
approximately 5 fps. We record the full frame rate video to
disk so that applications can request full-rate video frames
from the edge nodes’ local storage upon a match.

Generating feature maps through DNN inference is the sin-
gle most expensive component of FilterForward, but we
view this cost as a less important aspect of our system:

this area is rapidly evolving, and both the CPU require-
ments and accuracy of DNNs are improving. (For example,
the MobileNet architecture was published in April 2017
and has already been surpassed.) All of the inference pe-
formed in FilterForward could be accelerated by using ac-
celeration frameworks that quantize and/or sparsify net-
works, such as Nvidia’s TensorRT, and future platforms may
be able to draw from a growing slate of accelerators for
deep learning inference, such as Google’s TPUs (Jouppi
et al., 2017), NVidia’s Tensor Core-containing platforms,
Apple’s Neural Engine (Apple, 2017), Movidius’s Neural
Compute Stick (intel-movidius), and Microsoft’s Project
Brainwave (microsoft-project-brainwave). We therefore be-
lieve that low-cost 30 or 60 fps inference will be feasible
on edge camera systems in the near future, and we have
designed the rest of FilterForward under this assumption.

5.4 Microclassifier Accuracy and Utility

The purpose of the microclassifier evaluation is twofold.
First, we show that microclassifier models are reasonably
accurate over a number of tasks. Second, we compare the mi-
croclassifiers to CNNs operating on raw pixels and demon-
strate that microclassifiers scale more effectively to large
numbers of applications.

We evaluate the frame-by-frame accuracy of our microclas-
sifiers on the tasks described above using the following
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Figure 7. Number of operations versus event-level F1 score for
various cheap classifier architectures. Models are trained on the
Roadway dataset (2048x850 pixel input resolution). The micro-
classifiers are very cheap, but rely on features extracted from a
base DNN (e.g., MobileNet). With sufficiently large numbers of
microclassifiers, this upfront cost is amortized away.

training-test splits. In the Jackson dataset, we sampled the
first and second 6 hour segments at 15 fps to obtain 300,000
training and test frames respectively. Similarly, for the Road-
way dataset, we sample the two adjacent 3 hour segments
at 15 fps to obtain 162,000 training and test frames respec-
tively. These splits ensure that only past information is used
for training.

To illustrate the microclassifier’s better scaling, we compare
the accuracy and computational cost of microclassifiers and
discrete classifiers on the People with Red task. We count
the number of multiply-adds within each model and use
the F; score—the harmonic mean of precision and recall—
as an accuracy metric that captures class imbalance. We
constructed discrete classifiers having between roughly 100
million and 2.5 billion multiply-adds. They varied in the
number of convolutional layers (2-4), number of kernels (16-
64), stride length (1-3), number of pooling layers (0-2), and
type of convolution (standard or separable). Kernel sizes are
fixed to 3. The best-peforming (highest accuracy without
unnecessary extra cost) discrete classifier we devised is
“cnn3” in Figure 7. In this figure, a small 2-layer CNN
microclassifier with a few hundred million multiply-adds
achieves comparable (actually, better) F; score to a much
larger 2.25B multiply-add discrete classifier (cnn3). Using
these two models as representative workloads and factoring
in the cost of running MobileNet (18 billion multiply-adds
on full resolution images), we find that, the microclassifier
approach wins out with more than 8 queries in theory, and
empirically performs better for deployments running 4 or
more concurrent queries (the FMA count and the runtime are
not identical; in practice, the mobilenets ops are somewhat
cheaper, perhaps due to much of the cost happening in larger
convolutions).

6 CONCLUSION

Scaling wide-area live video analytics poses a challenge
for bandwidth-limited, compute-constrained camera deploy-
ments. FilterForward is designed to connect cameras at
the edge with video analysis applications in the datacenter
when the edge nodes face bandwidth constraints due to, e.g.,
physical topology or cost. To reduce bandwidth use, Filter-
Forward filters events at the edge and only forwards to the
datacenter sequences of frames that are relevant to analysis
applications. For scalable and high-accuracy filtering with
limited computation resources at the edge, FilterForward
shares computation between multiple concurrent applica-
tions (or queries) by deriving per-query microclassifiers
from a shared base DNN—but unlike traditional transfer
learning approaches, the microclassifiers can draw from
arbitrary interior activations in the base DNN. We show
empirically that extracting and transmitting high-quality,
compressed, short video segments of events can save up
to an order of magnitude of the bandwidth that would be
needed to stream the equivalent-quality full video, and that
further dropping the transmitted bitrate would be deleterious
for the accuracy of the in-datacenter application. Although
there are many more challenges in fully realizing the vi-
sion of wide-area video analytics at scale, we believe that
these mechanisms for enabling edge-to-cloud hybrid video
analytics represents a useful advance for this emerging envi-
ronment.
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