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Abstract

The odor transduction process has a large time constant and is susceptible to vari-
ous types of noise. Therefore, the olfactory code at the sensor/receptor level is in
general a slow and highly variable indicator of the input odor in both natural and
artificial situations. Insects overcome this problem by using a neuronal device in
their Antennal Lobe (AL), which transforms the identity code of olfactory recep-
tors to a spatio-temporal code. This transformation improves the decision of the
Mushroom Bodies (MBs), the subsequent classifier, in both speed and accuracy.
Here we propose a rate model based on two intrinsic mechanisms in the insect AL,
namely integration and inhibition. Then we present a MB classifier model that re-
sembles the sparse and random structure of insect MB. A local Hebbian learning
procedure governs the plasticity in the model. These formulations not only help to
understand the signal conditioning and classification methods of insect olfactory
systems, but also can be leveraged in synthetic problems. Among them, we con-
sider here the discrimination of odor mixtures from pure odors. We show on a set
of records from metal-oxide gas sensors that the cascade of these two new mod-
els facilitates fast and accurate discrimination of even highly imbalanced mixtures
from pure odors.

1 Introduction

Odor sensors are diverse in terms of their sensitivity to odor identity and concentrations. When
arranged in parallel arrays, they may provide a rich representation of the odor space. Biological
olfactory systems owe the bulk of their success to employing a large number of olfactory receptor
neurons (ORNs) of various phenotypes. However, chemo-diversity comes at the expense of two
pressing factors, namely response time and reproducibility, while fast and accurate processing of
chemo-sensory information is vital for survival not only in natural, but also in many artificial situa-
tions, including security applications.

Identifying and quantifying an odor accurately in a short time is an impressive characteristic of
insect olfaction. Given that there are approximately tens of thousands of ORNs sending slow and
noisy messages in parallel to downstream olfactory layers, in order to account for the observed
recognition performance, a computationally non-trivial process must be taking place along the insect
olfactory pathway following the transduction. The two stations responsible for this processing are
the Antennal Lobe (AL) and the Mushroom Bodies (MBs). The former acts as a signal conditioning
/ feature extraction device and the latter as an algebraic classifier.

Our motivation in this study is the potential for skillful feature extraction and classification methods
by insect olfactory systems in synthetic applications, which also deal with slow and noisy sensory
data. The particular problem we address is the discrimination of two-component odor mixtures from
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Figure 1: The considered biomimetic framework to identify whether an applied gas is a pure odor or
a mixture. The input is transduced by16 parallel metal-oxide gas sensors of different type generating
slow and noisy resistance time series. The signal conditioning in the antennal lobe is achieved by
the interaction of an excitatory Projection Neuron (PN) population (white nodes) with an inhibitory
Local Neurons (LNs, black nodes). The outcomes of AL processing is read from the PNs and
classified in the Mushroom Body, which is trained by a local Hebbian rule.

pure odors in a three-class classification setting. The problem is nontrivial when concentrations of
mixture components are imbalanced. It becomes particularly challenging when the overall mixture
concentration is small. We treat the problem on two mixture datasets recorded from metal-oxide gas
sensors (included in the supplementary material).

We propose in the next section a dynamical rate model mimicking the AL’s signal conditioning
function. By testing the model first with a generic Support Vector Machine (SVM) classifier, we
validate the substantial improvement that AL adds on the classificatory value of raw sensory signal
(Section 2). Then, we introduce a MB-like classifier to substitute for the SVM and complete the
biomimetic framework, as outlined in Fig. 1. The model MB exploits the structural organization of
the insect MB. Its plasticity is adjusted by a local Hebbian learning procedure, which is gated by a
binary learning signal (Section 3). Some concluding remarks are given in Section 4.

2 The Antennal Lobe
2.1 Insect Antennal Lobe Outline

The Antennal Lobe is a spatio-temporal encoder for ORN signals that include time in coding space.
Some of its qualitative properties are apparent from the input-output perspective, without requiring
much insight into its physiology. A direct analysis of spiking rates in raw ORN responses and in
the AL output [1] shows that in fruit fly AL maps ORN output to a low dimensional feature space
while providing lower variability in responses to the same odor type (reducing within-class scatter)
and longer average distance between responses for different odors (boosting between-class scatter).
These observations constitute sufficient evidence that a realistic AL model should be sought within
the class of nonlinear filters.

Another remarkable achievement of the AL shows itself in terms of recognition time. When sub-
jected to a constant odor concentration, the settling time of ORN activity is on the order of hundreds
of milliseconds to seconds [3], whereas recognition is known to occur earlier [7]. This is a clear
indicator that the AL makes extensive use of the ORN transient, since instantaneous activity is less
odor-specific in transient than it is in during the steady state. To provide high accuracy under such a
temporal constraint, the classificatory information during this period must be somehow accumulated,
which means that AL has to be a dynamical system, utilizing memory.

It is the cooperation of these filtering and memory mechanisms in the AL that expedites and consol-
idates the decision made in the subsequent classifier.

Strong experimental evidence suggests that the insect AL representation of odors is a transient,
yet reproducible, spatio-temporal encoding [8]. The AL is a dynamical network that is formed by
the coupling of an excitatory neuron population (projection neurons, PNs) with an inhibitory one
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(local neurons, LNs). It receives input from glomeruli, junctions of synapses that group the ORNs
according to the receptor gene they express. The fruit fly has about50 glomeruli as chemotopic
clusters of synapses from nearly50, 000 ORNs. There is no consensus on the functional role of this
convergence beyond serving as an input terminal to AL, which is certainly an active processing layer.
In the analogy we are building here (c.f. Fig. 1), the16 artificial gas sensors actually correspond to
glomeruli (rather than individual ORNs) so that the AL has direct access to sensor resistances.

We suggest that the two key principles underlying the AL’s information processing are decorrelation
(filtering) and integration (memory), which can be unified on a dynamical system. The filter property
provides selectivity, while the integrator accumulates the refined information on trajectories. This
setting is capable of evaluating the transient portion of the sensory signal effectively.

An instantaneous value read from a receptor early in the transduction process is considered as im-
mature, failing to convey a consistently high classificatory value by its own. Nevertheless, the ORN
transient as an interval indeed offers unique features to expedite the classification. In particular,
the novelty gained due to observing consecutive samples during the transient is on average greater
than the informational gain obtained during the steady-state. Hence, newly observed samples of the
receptor transients are likely to contribute to the cumulative classificatory information base formed
so far, whereas the informational entropy vanishes as the signal reaches the steady-state. As a device
that extracts and integrates odor-specific information in ORN signals, the AL provides an enriched
transient to the subsequent MB so that it can achieve accurate classification early in the odor period.

We also note that there have been efforts, e.g., [9, 10] to illustrate the sharpening effect of inhibition
in the olfactory system. However, to the best of our knowledge, the approach we present here is the
first to formulate the temporal gain due to AL processing.

2.2 The Model

The model AL is comprised of a population of PNs that project from the AL to downstream pro-
cessing. The neural activity corresponding to the rate of action potential generation of the biological
neurons is given byxi(t), i = 1, 2, ..., NE , for theNE neurons in the PN population. There are also
NI interneurons or LNs whose activity isyi(t); i = 1, 2, ..., NI .

The rate of change in these activities is stimulated by a weighted sum over both populations and a
set of input signalsSE

i (t) andSI
i (t) indicating the activity in the glomeruli stimulating the PNs and

the LNs, respectively. In addition, each population receives noise from the AL environment. Our
formulation of these ideas is through a Wilson-Cowan-like population model [11]

βE
i

dxi(t)

dt
= KE

i · Θ



−

NI
∑

j=1

wEI
ij yj(t) + gE

inpS
E
i (t)



 − xi(t) + µE
i (t), i ∈ 1, . . . , NE ,

βI
i

dyi(t)

dt
= KI

i · Θ





NE
∑

j=1

wIE
ij xj(t) + gI

inpS
I
i (t)



 − yi(t) + µI
i (t), i ∈ 1, . . . , NI .

The superscriptsE andI stand for excitatory and inhibitory populations. The matrix elementswXY
ij ,

X,Y ∈ {E, I} are time-independent weights quantifying the effect from units of typeY to units
of type X. SX

i (t) is the external input toi-th unit from a glomerulus (odor sensor) weighted by
coupling strengthgX

inp. µY
i is an additive noise process andΘ(·), the unit-ramp activation function:

Θ(u) = 0 for u < 0, andΘ(u) = u, otherwise. The gainsKE
i ,KI

i and time constantsβE
i , βI

i are
fixed for an individual unit but vary across PN and LN populations.

The network topology is formed through a random process of Bernoulli type:

wXY
ij = gY ·

{

1 , with probability pXY

0 , with probability 1 − pXY

wheregY is a fixed coupling strength.pXY is a design parameter to be chosen by us.

Each unit, regardless of its type, accepts external input from exactly one sensor in the form of raw
resistance time series. This sensor is assigned randomly among all16 available sensors, ensuring
that all sensors are covered1.

1It is assumed thatNE + NI > 16.
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Figure 2: (a) A record from Dataset 1, where100ppm acetaldehyde was applied to the sensor array
for 0 ≤ t ≤ 100s. Offsets are removed from the time-series. Curve labels indicate the sensor types.
(b) Activity of NE = 75 excitatory PN units of the sample AL model in response to the (time-scaled
version of) record shown on panel (a). The conductances are selected as(gE , gI) = (10−6, 9 ·10−6)
and other parameters as given in text. Bar indicates the odor period.

For the mixture identification problem of this study, we consider a network withNE = NI = 75 and
gE
inp = gI

inp = 10−2. The probabilities used in the generative Bernoulli process are fixed atpIE =
pEI = 0.5. The synaptic conductancesgE andgI are optimized for the particular classification
instance through the brute force search described below. The gainsKE

i ,KI
j and the time-scales

βE
i , βI

j , i = 1, . . . , NE , j = 1, . . . , NI are drawn independently from exponential distributions
with λK = 7.5 andλβ = 0.5, respectively. Following construction, the initial condition of each
unit is taken as zero andµ is taken as a white noise process with variance10−4 independently
for each unit. We perform the simulation of the150-dimensional Wilson-Cowan dynamics by 5/6
Runge-Kutta integration with variable step size where the error tolerance is set to10−15.

Although the considered network structure can accommodate limit cycles and strange attractors, the
selected range of parameters yield a fixed point behavior. We confirm this in all simulations with the
selected parameter values, both during and after the sensory input (odor) period (see Fig. 2(b)).

2.3 Validation

We consider the activity in PN population as the only piece of information regarding the input odor
that is passed on to higher-order layers of the olfactory system. Access to this activity by those
layers can be modeled as instantaneous sampling of a selected brief window of temporal behavior
of PNs [7]. Therefore, the recognition system in our model utilizes such snapshots from the spiking
activity in the excitatory populationxi(t). A snapshot is passed as the feature vector to the classifier;
it is comprised of anNE-dimensional fixed vector taken as a sample from the statesx1, . . . , xNE

at
a particular timets.

2.3.1 Dataset
The model is driven by responses recorded from16 metal-oxide gas sensors in parallel. We have
made80 recordings and grouped them into two sets based on vapor concentration: records for
100ppm vapor in Dataset 1 and50ppm in Dataset 2. Each dataset contains40 records from three
classes:10 pure acetaldehyde,10 pure toluene, and20 mixture records. The mixture class con-
tains records from imbalanced acetaldehyde-toluene mixtures with96%-4%, 98%-2%, 2%-98%,
and4%-96% partial concentrations, five from each. Hence, we have two instances of the mixture
identification problem in the form of three-class classification. See the supplementary material for
details on measurement process.

We removed the offset from each sensor record and scaled the odor period to1s. This was done
by mapping the odor period, which has fixed length of100s in the original records, to1s by re-
indexing the time series. These one-second long raw time series, included in the supplementary
material, constitute the pool of raw inputs to be applied to the AL network during the time interval
0.5 ≤ t ≤ 1.5s. The input is set to zero outside of this odor period. See Fig. 2 for a sample record
and the AL network’s response to it. Note that, although we apply the network to pre-recorded data
in simulations, the general scheme is causal, thus can be applied in real-time.
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Figure 3: (a) Estimated correct classification profile versus snapshot timets during the normalized
odor period for Dataset 1. The red curve is the classification profile due to the proposed AL network,
which has the fixed sample topology with(gE , gI) = (10−6, 9 · 10−6). The black baseline profile is
obtained by discarding AL and directly classifying snapshots from raw sensor responses by SVM.
(b) Correct classification rates extracted by a sweep throughgE , gI using Dataset 1. Panels (c) & (d)
show the results for Dataset 2, where the best pair is determined as(gE , gI) = (6 · 10−6, 9 · 10−6).

2.3.2 Adjustment of AL Network and Performance Evaluation

To reveal the signal conditioning performance of the stand-alone AL model, we first interface it
with an established classifier. We use a Support Vector Machine (SVM) classifier with linear kernel
to map the snapshots from PN activity to odor identity. This choice is due to the parameter-free
design that rules out the possibility of over-fitting. The classifier is realized by the publicly available
software LibSVM [2].

Due to the wide diversity of PNs and LNs in terms of their time scalesβ and gainsK, the perfor-
mance of the network is highly sensitive to the agreement between the outcome of the generative
process and the choice of parametersgE andgI . Therefore, it is not possible to give a one-size-
fits-all value for these. Instead, we have generated one sample network topology via the Bernoulli
process described above and customizedgE andgI for it on each problem. For reproducibility, this
topology is provided in the supplementary material. Comparable results can be obtained with other
topologies but possibly with differentgE , gI values than the ones reported below.

The validation is carried out in the following way: First we set the classification problem (i.e.,
select Dataset 1 or 2) and fixgE = gI = 0 (suppress the connectivity). We present each record
in the dataset to the network and then log the network response from excitatory population in the
form of NE simultaneous time series (see Fig. 2). Then, at each percentile of the odor period
ts ∈ {0.5 + k/100}100

k=0, we take a snapshot from eachNE-dimensional time series and label it
by the odor identity (pure acetaldehyde, pure toluene, or mixture). We use randomly selected80%
of the resulting data in training the SVM classifier and keep the remaining20% for testing it. We
record the rate of correct classification on the test data. The train-test stage is repeated1000 times
with different random splits of labelled data. The average correct classification rate is assigned as
the performance of the AL model at thatts. The classification profile versus time is extracted when
thets sweep through the odor period is complete.

To maximize the performance over conductancesgE andgI , we further perform a sweep through
a range of these parameters by repeating the above procedure for each combination ofgE , gI . Fig-
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ure 3 (a) shows the classification profile for the best pair encountered along the parameter sweep
gE , gI ∈ {k/100}100

k=0. This pair is determined as the one maximizing classification success rate
when samples from the end of odor period is usedts = 1.5. Note that these optimum values are
problem-specific. For the two instances considered in this work, we mark them by the peaks of the
surfaces in Fig. 3 (b) and (d).

Dataset 1 induces an easier instance of the identification problem toward the end of odor period,
which can be resolved reasonably well using raw sensor data at the steady state. Therefore, the gain
over baseline due to AL processing is not so significant in later portions of the odor period for Dataset
1. Also observe from panels (b) and (d) that, when dealing with Dataset 1, the conductance values are
less decisive than they are for Dataset 2. Again, this is because the former is an easier problem when
the sensors reach the steady-state atts = 1.5s, where almost all conductance within the swept range
ensures> 95% performance. The relative difficulty of the problem in Dataset 2 manifests itself as
the fluctuations in the baseline performance. We see in Fig. 3(c) that there are actually periods early
in the period where the raw sensor data can be fairly indicative of the class information; however, it
is not possible to predict these intervals in advance. It should also be noted that some of these peaks
in baseline performance, at least the very first one nearts = 0.55s, are artifacts (due to classification
of pure noise) since we know that there is hardly any vapor in the measurement chamber during that
period (see Fig. 2(a) and other records in supplementary material). In any case, in both problems,
the suggested AL dynamics (with adjusted parameters) contributes substantially to the classification
performance during the transient of the sensory signal. This makes early decisions of the classifier
substantially and consistently more accurate with respect to the baseline classification.

Having established the contribution of the AL network to classification, our goal in the remainder
of the paper is to replace the unbiased SVM classifier by a biologically plausible MB model, while
preserving the performance gain seen in Fig. 3.

3 Mushroom Body Classifier

The MBs of insects employ a large number of identical small intrinsic cells, the so-called Kenyon
cells, and fewer output neurons in the MB lobes. It has been observed that, unlike in the AL, the
activity in the KCs is very sparse, both across the population and for individual cells over time. The-
oretical work suggests that a large number of cells with sparse activity enables efficient classification
with random connectivity [4]. The power of this architecture lies in its versatility: The connectivity
is not optimized for any specific task and can, therefore, accommodate a variety of input types.

3.1 The Model

The insect MB consists of four crucial elements (see Fig. 4): i) a nonlinear expansion from the
AL representation at the final stage,x, that resembles the connectivity from the Antennal Lobe to
the MBs, ii) a gain control in the MB to achieve a uniform level of sparse activity the KCs,y, iii)
a classification phase, where the connections from the KCs to the output neurons,z, are modified
according to a Hebbian learning rule, and iv) a learning signal that determines when and which
output neuron’s synapses are reinforced.

It has been shown in locusts that the activity patterns in the AL are practically discretized by a
periodic feedforward inhibition onto the MB calyces and that the activity levels in KCs are very
low [7]. Based on the observed discrete and sparse activity pattern in insect MB, we choose to
represent KC units as simple algebraic McCulloch-Pitts ‘neurons.’ The neural activity values taken

by this neural model are binary (0 =no spike and1 = spike):µj = Φ
(

∑NE

i=1 cjixi − θKC
)

j =

1, 2, ..., NKC. The vectorx is the representation of the odor that is received as a snapshot from the
excitatory PN units of AL model. The components of the vectorx = (x1, x2, ..., xNE

) are the direct
values obtained by integration of the ODE of the AL model described above. The KC layer vectorµ
is NKC dimensional.cij ∈ {0, 1} are the components of the connectivity matrix which isNE×NKC

in size. The firing thresholdθKC is integer number andΦ(·) is the Heaviside function.

The connectivity matrix[cji] is determined randomly by an independent Bernoulli process. Since
the degree of connectivity from the input neurons to the KC neurons did not appear to be critical for
the performance of the system, we made it uniform by setting the connection probability aspc = 0.1.
It, nevertheless, seems advisable to ensure in the construction that the input-to-KC layer mapping is
bijective to avoid loss of information. We performed this check during network construction. All
other parameters of the KC layer are then assigned admissible values uniformly randomly and fixed.

6



ji

lj[ w   ]

Antennal Lobe PNs
x

Calyx
µ

[ c   ]

Output Nodes
z

Acetaldehyde

Toluene
+

Mixture
Acetaldehyde

PurePure
Toluene

Figure 4: Suggested MB model for
classifyingthe AL output. The first layer
of connections from AL to calyx are set
randomly and fixed. The plasticity of the
output layer is due to a binary learning
signal that rewards the weights of output
units responding to the correct stimulus.

Although the basic system described so far implements the divergent (and static) input layer ob-
served in insect calyx, it is very unstable against fluctuations in the total number of active input
neurons due to the divergence of connectivity. This is an obstacle for inducing sparse activity at KC
level. One mechanism suggested to remove this instability is gain control by feedforward inhibition.
For our purposes, we impose a numbernKC of simultaneously active KCs, and admit the firing of
only the topnKC = NKC/5 neurons that receive the most excitation in the first layer.

The fan-in stage of projections from the KCs to the extrinsic MB cells in the MB lobes is the
hypothesized locus of learning. In our model, the output units in the MB lobes are again McCulloch-

Pitts neurons:zl = Φ
(

∑NKC

j=1 wlj · µj − θLB
)

, l = 1, 2, ..., NLB. Here, the index LB denotes the

MB lobes. The output vectorz of the MB lobes has dimensionNLB (equals3 in our problem) and
θLB is the threshold for the decision neurons in the MB lobes. TheNLB ×NKC connectivity matrix
wlj has integer entries. Similar to the above-mentioned gain control, we allow only the decision
neuron that receives the highest synaptic input to fire. These synaptic strengthswlj are subject to
changes during learning according to a Hebbian type plasticity rule described next.

3.2 Training

The hypothesis of locating reinforcement learning in mushroom bodies goes back to Montague and
collaborators [6]. Every odor class is associated with an output neuron of the MB, so there are three
output nodes firing for either pure toluene, pure acetaldehyde, or mixture type of input. The plas-
ticity rule is applied on the connectivity matrixW , whose entries are randomly and independently
initialized within [0, 10]. The exact initial distribution of weights have no significant impact on the
resulting performance nor on the learning speed.

During learning, the inputs are presented to the system in an arbitrary order. The entries of the
connectivity matrix at the time of thenth input are denoted bywlj(n). When the next training input
with labelℓ is applied, then the weightwℓj is updated by the rulewℓj(n + 1) = H (zℓ, µj , wℓj(n)),
whereH(z, µ, w) = w + 1 whenz = 1, µ = 1; and0, otherwise. This learning rule strenghtens
a synaptic connection with probabilityp+ if presynaptic activity is accompanied by postsynaptic
activity. To facilitate learning during the training phase, the ‘correct’ output neuronℓ is forced to
fire for an input with labelℓ, while the rest are kept silent. This is provided by pulling down the
thresholdθLB

ℓ , unless neuronℓ is already firing for such input. Learning is terminated when the
performance (correct classification rate) converges.

3.3 Validation

Using Dataset 2, we applied the proposed MB model withNKC = 10, 000 KCs at the output of
the sample AL topology having the same parameters reported in Section 2. Forp+ = p

−
= 1,

we trained the output layer of MB using the labelled AL outputs sampled at10 points in the odor
period. The mean correct classification rate over20 splits of the labelled snapshots (five-fold cross-
validation) are shown in Fig.3(c) as blue dots. With respect to the red curve on the same panel, which
was obtained by the (maximum-margin) SVM classifier, a slight reduction in the generalization
capability is visible. Nevertheless, the MB classifier in its current form still exploits the superior
job of AL over baseline classification during transient, while mimicking two essential features of
the biological MB, namely sparsity in KC-layer and incremental local learning in MB lobes. The
implementation details and parameters of the MB model are provided in the supplementary material.
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4 Conclusions

We have presented a complete odor identification scheme based on the key principles of insect
olfaction, and demonstrated its validity in discriminating mixtures of odors from pure odors using
actual records from metal-oxide gas sensors.

The bulk of the observed performance is due to the AL, which is a dynamical feature extractor for
slow and noisy chemo-sensory time series. The cooperation of integration (accumulation) mecha-
nism and sharpening filter enabled by inhibition leave an almost linearly separable problem for the
subsequent classifier. The proposed signal conditioning scheme can be considered as a mathematical
image of reservior computing [5]. For this simplified classification task, we have also suggested a
bio-inspired MB classifier with local Hebbian plasticity. By exploiting the dynamical nature of the
AL stage and the sparsity in MB representation, the overall model provides an explanation for the
high speed and accuracy of odor identification in insect olfactory processing.

For future study, we envision an improvement on the MB classification performance, which has been
explored here to be slightly worse than linear SVM. We think that this can be done without compro-
mising biological plausibility, by imposing mild constraints on the KC-level generative process.

The mixture identification problem investigated here is in general more difficult than the traditional
problem of discriminating pure odors, since the mixture class can be made arbitrarily close to the
pure odor classes. The classification performance attained here is promising for other mixture-
related problems that are among the hardest in the field of artificial olfaction.
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