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Abstract

We report a compact realization of short-term depression (STD) in a VLSI sto-
chastic synapse. The behavior of the circuit is based on a subtractive single re-
lease model of STD. Experimental results agree well with simulation and exhibit
expected STD behavior: the transmitted spike train has negative autocorrelation
and lower power spectral density at low frequencies which can remove redun-
dancy in the input spike train, and the mean transmission probability is inversely
proportional to the input spike rate which has been suggested as an automatic
gain control mechanism in neural systems. The dynamic stochastic synapse could
potentially be a powerful addition to existing deterministic VLSI spiking neural
systems.

1 Introduction

Synapses are the primary locations in neural systems where information is processed and transmit-
ted. Synaptic transmission is a stochastic process by natirg,has been observed that at central
synapses transmission proceeds in an all-or-none fashion with a certain probability. The synaptic
weight has been modeled &= npq [1], wheren is the number of quantal release sitgss the
probability of release per site, amgds some measure of the postsynaptic effect. The synapse un-
dergoes constant changes in order to learn from and adapt to the ever-changing outside world. The
variety of synaptic plasticities differ in the triggering condition, time span, and involvement of pre-
and postsynaptic activity. Regulation of the vesicle release probability has been considered as the
underlying mechanism for various synaptic plasticities [1-3]. The stochastic nature of the neural
computation has been investigated and the benefits of stochastic computation such as energy effi-
ciency, communication efficiency, and computational efficiency have been shown [4-6]. Recently
there is increasing interest in probabilistic modeling of brain functions [7]. VLSI stochastic synapse
could provide a useful hardware tool to investigate stochastic nature of the synapse and also function
as the basic computing unit for VLSI implementation of stochastic neural computation.

Although adaptive deterministic VLSI synapses have been extensively studied and developed for
neurally inspired VLSI learning systems [8—13], stochastic synapses have been difficult to imple-
ment in VLSI because it is hard to properly harness the probabilistic behavior, normally provided
by noise. Although stochastic behavior in integrated circuits has been investigated in the context of
random number generators (RNGs) [14], these circuits either are too complicated to use for a sto-
chastic synapse or suffer from poor randomness. Therefore other approaches were explored to bring
randomness into the systems. Stochastic transmission was implemented in software using a lookup
table and a pseudo random number generator [15]. Stochastic transition between potentiation and
depression has been demonstrated in bistable synapses driven by stochastic spiking behavior at the
network level for stochastic learning [16].

Previously we reported the first VLSI stochastic synapse. Experimental results demonstrated true
randomness as well as the adjustable transmission probability. The implementation 1fttran-
sistors is compact for these added features, although there are much more compact deterministic



synapsesvith as few as five transistors. We also proposed the method to implement plasticity and
demonstrated the implementation of STD by modulatingptiedability of spike transmission. Like

its deterministic counterpart, this stochastic synapse operates on individual spike train inputs; its
stochastic character, however, creates the possibility of a broader range of computational primitives
such as rate normalization of Poisson spike trains, probabilistic multiplication, or coincidence de-
tection. In this paper we extend the subtractive single release model of STD to the VLSI stochastic
synapse. We present the simulation of the new model. We describe a novel compact VLSI imple-
mentation of a stochastic synapse with STD and demonstrate extensive experimental results showing
the agreement with both simulation and theory over a range of conditions and biases.

2 VLSI Stochastic Synapse and Plasticity

Figurel: Schematic of the stochastic synapse with STD.

Previously we demonstrated a compact stochastic synapse circuit exhibiting true randomness and
consuming very little power (10-44W). The core of the structure is a clocked, cross-coupled dif-
ferential pair comparator with input voltagé%, andV;_, as shown in the dashed box in Fig. 1.

It uses competition between two intrinsic circuit noise sources to generate random events. The dif-
ferential design helps to reduce the influence from other noise sources. When a presynaptic spike
arrives,Vp,.~. goes low, and transistor M5 shuts off,. andV,_ are nearly equal and the circuit is

in its metastable state. When the two sides are closely matched, the imbalance BétwaedV/,

caused by current noise in M1-M4 eventually triggers positive feedback, which drives one output
to V. and the other close to ground. We use a dynamic buffer, shown in the dotted box in Fig. 1,
to generate rail-to-rail transmitted spik&s..,. Vir.n €ither goes high (with probability) or stays

low (with probability1 — p) during an input spike, emulating stochastic transmission.

Fabrication mismatch in an uncompensated stochastic synapse circuit would likely permanently bias
the circuit to one solution. In this circuit, floating gate inputs to a pFET differential pair allow the
mismatch to be compensated. By controlling the common-mode voltage of the floating gates, we
operate the circuit such that hot-electron injection occurs only on the side where the output voltage
is close to ground. Over multiple clock cycles hot-electron injection works in negative feedback
to equalize the floating gate voltages, bringing the circuit into stochastic operation. The procedure
can be halted to achieve a specific probability or allowed to reach equilibfi0f fransmission
probability).

The transmission probability can be adjusted by changing the input offset or the floating gate
charges. The highevr,, is, the lowerp is. The probability tuning function is closely fitted by

an error functionf(v) = 0.5 (1 + erf (f/_ig)) wherep is the input offset voltage fgy = 50%,

0 is the standard deviation characterizing the spread of the probability tuning, ant;_ — V;

is the input offset voltage. Synaptic plasticity can be implemented by dynamically modulating the
probability. Input offset modulation is suitable for short-term plasticity. Short-term depression is
triggered by the transmitted input spikés...,, to emulate the probability decrease because of vesi-
cle depletion. Short-term facilitation is triggered by the input spigs to emulate the probability




increasebecause of presynaptic Eaaccumulation. Nonvolatile storage at the floating gate is suit-
able for long-term plasticity. STDP can be implemented by modulating the probability depending
on the precise timing relation between the pre- and postsynaptic spikes.

3 Short-Term Depression: Model and Simulation

Although long-term plasticity has attracted much attention because of its apparent association with
learning and memory, the functional role of short-term plasticity has only recently begun to be un-
derstood. Recent evidence suggests that short-term synaptic plasticity is involved in many functions
such as gain control [17], phase shift [18], coincidence detection, and network reconfiguration [19].

It has also been shown that depressing stochastic synapses can increase information transmission
efficiency by filtering out redundancy in presynaptic spike trains [5].

Activity dependent short-term changes in synaptic efficacy at the macroscopic level are determined
by activity dependent changes in vesicle release probability at the microscopic level. We will focus
on STD here. STD during repetitive stimulation results from a decrease in released vesicles. Since
there is a finite pool of vesicles, and released vesicles cannot be replenished immediately, a success-
ful release triggered by one spike potentially reduces the probability of release triggered by the next
spike. We propose an STD model based on our VLSI stochastic synapse that closely emulates the
simple subtractive single release model [5, 20]. A presynaptic spike that is transmitted reduces the
input offset voltage at the VLSI stochastic synapse By, so that the transmission probabiliiyt)

is reduced. Between successful releasaglaxes back to its maximum valus, ., exponentially

with a time constant; so thatp(t¢) relaxes back to its maximum valgg, ... as well. The model can

be written as

v(ty) = wv(t-) — Av, successful transmissionat 1)
Tddil—it) = Umaz — V(1) (2)
p(t) = f(u(®) ®)

For an input spike train with Poisson arrivals, the model can be expressed as a stochastic differential
equation
Umaxz — U
dv = ————dt — Av - dNp., (1) 4)
Td
wheredN,,., ) is a Poisson counting process with rater(t), andr(t) is the input spike rate. By
taking the expectatioft(-) on both sides, we obtain a differential equation
dE(v)  Vmas — E(v)
= —Av-E t 5

o - v E(p)r(t) (5)

Whenw is reduced, the probability that it will be reduced again becomes smallisreffectively

constrained to a small range where we can approximate the furygtion= 0.5 (1 + erf (%‘;))

by a linear functionf (v) = av + 0.5, wherep, = 0 for simplicity. We can then solve faE (p) at
steady state:

AVmaz + 0.5 Pmazx 1 (6)

CE} ~ ~ X —

p 1+ aAvrgr  alAvrgr 1

Thereforethe steady state mean probability is inversely proportional to the input spike rate when

aAvtyr > 1. This is consistent with prior work that modeled STD at the macroscopic level [17].

We simulated the model (1)-(3). We use the functjfgn) = 0.5 ( 1 + erf (\@g 16)), obtained

from the best fit of the experimental data. Initiatlyis set to 5 mV which setg,, .. close to 1.
Although the transformation from to p is nonlinear, both simulation and experimental data show
that this implementation exhibits behavior similar to the model with the linear approximation and
the biological data. Fig. 2(a) and 2(b) show that the mean probability is a linear function of the
inverse of the input spike rate at variafi® andr, for high input spike rates. Bothv andr, affect

the slope of the linear relation, following the trend suggested by (6): the biggéntioe the bigger

the 74, the smaller the slope is. Fig. 3 shows a simulation of the transient probability for a period
of 200 ms. Fig. 4 shows that the output spike train exhibits negative autocorrelation at small time
intervals and lower power spectral density (PSD) at low frequencies. This is a direct consequence
of STD.
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Figure 2: Mean probability as a function of input spike rate from simulation. Data were collected at
input rates from 100 Hz to 1000 Hz at 100 Hz intervals. The solid lines show the least mean square
fit for input rates from 400 Hz to 1000 Hz.
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Figure3: Simulated probability trajectory over 200 ms peried—= 100 Hz, 7 = 100 ms,Av = 2
mV.
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Figure 4: Characterization of the output spike train from the simulation of the stochastic synapse
with STD.r = 100 Hz, 74 = 200 ms,Av = 6 mV, V,,4 = 5 mV.



4 VLSI Implementation of Short-Term Depression

We implemented this model using the stochastic synapse circuit described above (see Fig. 1). Both
inputs are restored up to an equilibrium valgg,, by tunable resistors implemented by subthreshold
pFETs operating in the ohmic region. To change the transmission probability we only need to
modulate one side of the input, in this cdge. The resistor and capacitor provide for exponential
recovery of the voltage to its equilibrium value. The inpgt is modulated by transistors M6

and M7 based on the result of the previous spike transmission. Every time a spike is transmitted
successfully, a pulse with heighf, and widthT}, is generated av},. 7, is same as the input

spike pulse width. This pulse discharges the capacitor with a small current determifgdaog
reducesV;_ by a small amount, thus decreasing the transmission probability. The value of the
tunable resistors is controlled by the gate voltage of the pFETs,WhenV,_ is reduced, the
probability that it will be reduced again becomes smaller. Since the probability tuning only occurs
in a small voltage range<( 10 mV), the change iV;_ is limited to this small range as well. Under

this special condition, the resistance implemented by the subthreshold pFET is linear ané-large (
GQ). With capacitance as small as 100 fF, the exponential time constant is tens of milliseconds and
is adjustable. Similar control circuits can be appliedt@ to implement short-term facilitation.

The update mechanism would then be driven by the presynaptic spike rather than the successfully
transmitted spike. The extra components on the left provide for future implementation of short-term
facilitation and also symmetrize the stochastic synapse, improving its randomness.

5 Experimental Results

The circuit has been fabricated in a commercially-available@5CMOS process with 2 polysil-

icon layers and 3 metal layers. The layout size of the stochastic synapse igh5k 1.7 yum

and the layout size of the STD block is 3Bn x 32.2m. A 2-to-1 multiplexer with size 3am

x 30 um is used to enable or disable STD. As a proof of concept, the layout of the circuit is quite
conservative. Assuming no loss of performance, the existing circuit area could be reduced by 50%.

The circuit uses a nominal power supply of 5 V for normal operation. The differential pair compara-
tor uses a separate power supply for hot-electron injection. Each floating-gate pFET has a tunnelling
structure, which is a source-drain connected pFET with its gate connected to the floating node. A
separate power supply provides the tunnelling voltage to the shorted source and drain (tunnelling
node). When the tunnelling voltage is high enough (~14-15 V), electron tunnels through the sil-
icon dioxide, from the floating gate to the tunnelling node. We use this phenomenon to remove
electrons from the floating gate only during initialization. Alternatively Ultra-Violet (UV) activated
conductances may be used to remove electrons from the gate to avoid the need for special power
supplies.

To begin the test, we first remove residual charges on the floating gates in the stochastic synapse.
We setV.,, = 2 V. We raise the power supply of the differential pair comparator to 5.3 V to
facilitate the hot-electron injection. We use the negative feedback operation of hot-electron injection
described above to automatically program the circuit into its stochastic regime. We halt the injection
by lowering the power supply to 5 V. During this procedure, STD is disabled, so that the probability
at this operating point is the synaptic transmission probability without any dynamics.

We then enable STD. We use a signal generator to generate pulse signals which serve as input
spikes. Although spike trains are better modeled by Poisson arrivals, the averaging behavior should

be similar for deterministic spike trains which make testing easier. Wdyise= 100 nA. The

power consumption of the STD block is much smaller than the stochastic synapse. The total power

consumption is about 10W.

We collect output spikes from the depressing stochastic synapse at an input spike rate of 100 Hz. We
divide time into bins according to the input spike rate so that in each bin there is either 1 or 0 output
spike. In this way, we convert the output spike train into a bit sequence s(k). We then compute the
normalized autocorrelation, defined 4é1) = E(s(k)s(k + n)) — E?(s(k)), wheren is the num-

ber of time intervals between two bitsl(0) gives the variance of the sequence. For two bits with
distancen > 0, A(n) = 0 if they are independent, indicating good randomness,And < 0 if

they are anticorrelated, indicating the depressing effect of preceding spikes on the later spikes. Fig.
5 shows the autocorrelation of the output spike trains at two différgntThere is significant nega-



tive correlation at small time intervals and little correlation at large time intervals, as expected from
STD. Fig. 6 shows the PSD of the output spike trains from the same data shown in Fig. 5. Cleatrly,
the PSD is reduced at low frequencies. The time constant of STD increasds.\sithat the larger

V.. is, the longer the period of the negative autocorrelation is and the lower the frequencies where
power is reduced. This agrees with simulation results. Notice that the autocorrelation and PSD for
V, = 1.59 V show very close similarity to the simulation results in Fig. 4. Normally redundant
information is represented by positive autocorrelation in the time domain, which is characterized by
power at low frequencies. By reducing the low frequency component of the spike train, redundant
information is suppressed and overall information transmission efficiency is improved. If the nega-
tive autocorrelation of the synaptic dynamics matches the positive autocorrelation in the input spike
train, the redundancy is cancelled and the output is uncorrelated [5].
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Figure5: Autocorrelation of output spike trains from the VLSI stochastic synapse with STD for
an input spike rate of 100 Hz. Autocorrelation at zero time represents the sequence variance, and
negative autocorrelation at short time intervals indicates STD.
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Figure6: Power spectral density of output spike trains from the VLSI stochastic synapse with STD
for an input spike rate of 100 Hz. Lower PSD at low frequencies indicates STD.

We collect output spikes in responseli@* input spikes at input spike rates from 100 Hz to 1000

Hz with 100 Hz intervals. Fig. 7(a) shows that the mean transmission probability is inversely pro-
portional to the input spike rate for various pulse widths when the rate is high enough. This matches
the theoretical prediction in (6) very well. By scaling the probability with the input spike rate, the
synapse tends to normalize the DC component of input frequency and preserve the neuron dynamic
range, thus avoiding saturation due to fast firing presynaptic neurons and retaining sensitivity to less
frequently firing neurons [17]. The slope of mean probability decreases as the pulse width increases.
Since the pulse width determines the discharging time of the capacit¢r athe larger the pulse

width, the larger thé\v is and the smaller the slope is. Fig. 7(b) shows that7, scales linearly

with the pulse width. The discharging current is approximately constantAlus proportional to

the pulse width.
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Figure 7: Steady state behavior of VLSI stochastic synapse with STD for different pulse widths.

We perform the same experiments for differéitandV,,. As V. increases, the slope of mean
transmission probability as a linear functionbﬂecreasesThis is due to the increasing = RC,
where the equivalent resistangefrom the pFET increases withi.. Fig. 8(a) shows thatAvry

is approximately an exponential function Bf, indicating that the equivaler of the pFET is ap-
proximately exponential to its gate voltayg. ForV,,, the slope of mean transmission probability
decreases dg, increases. This is due to the increasihg with V,,,.. Fig. 8(b) shows thaiAvt, is
approximately an exponential function Bf,, indicating that the discharging current from the tran-
sistor M6 is approximately exponential to its gate voltdQe This matches the I-V characteristics
of the MOSFET in subthreshold.
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Figure 8: The effect of biasds. andV,, on the depressing behavior.

6 Conclusion

We designed and tested a VLSI stochastic synapse with short-term depression. The behavior of
the depressing synapse agrees with theoretical predictions and simulation. The strength and time
duration of the depression can be tuned by the biases. The circuit is compact and consumes low
power. It is a good candidate to bring randomness and rich dynamics into VLSI spiking neural



systemssuch as for rate-independent coincidence detection of Poisson spike trains. However, the
application of such dynamic stochastic synapses in large networks still remains a challenge.
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